1
|
Caruso L, Fields M, Rimondi E, Zauli G, Longo G, Marcuzzi A, Previati M, Gonelli A, Zauli E, Milani D. Classical and Innovative Evidence for Therapeutic Strategies in Retinal Dysfunctions. Int J Mol Sci 2024; 25:2124. [PMID: 38396799 PMCID: PMC10889839 DOI: 10.3390/ijms25042124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The human retina is a complex anatomical structure that has no regenerative capacity. The pathogenesis of most retinopathies can be attributed to inflammation, with the activation of the inflammasome protein platform, and to the impact of oxidative stress on the regulation of apoptosis and autophagy/mitophagy in retinal cells. In recent years, new therapeutic approaches to treat retinopathies have been investigated. Experimental data suggest that the secretome of mesenchymal cells could reduce oxidative stress, autophagy, and the apoptosis of retinal cells, and in turn, the secretome of the latter could induce changes in mesenchymal cells. Other studies have evidenced that noncoding (nc)RNAs might be new targets for retinopathy treatment and novel disease biomarkers since a correlation has been found between ncRNA levels and retinopathies. A new field to explore is the interaction observed between the ocular and intestinal microbiota; indeed, recent findings have shown that the alteration of gut microbiota seems to be linked to ocular diseases, suggesting a gut-eye axis. To explore new therapeutical strategies for retinopathies, it is important to use proper models that can mimic the complexity of the retina. In this context, retinal organoids represent a good model for the study of the pathophysiology of the retina.
Collapse
Affiliation(s)
- Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.C.); (A.G.)
| | - Matteo Fields
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia;
| | - Giovanna Longo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Maurizio Previati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Arianna Gonelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.C.); (A.G.)
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Daniela Milani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| |
Collapse
|
2
|
Mishra I, Gupta K, Mishra R, Chaudhary K, Sharma V. An Exploration of Organoid Technology: Present Advancements, Applications, and Obstacles. Curr Pharm Biotechnol 2024; 25:1000-1020. [PMID: 37807405 DOI: 10.2174/0113892010273024230925075231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. The capacity to research complex biological processes and disorders in a controlled setting is laid out by these miniature organ-like structures. OBJECTIVES This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. It aims to emphasize the pivotal role of organoids in disease modeling, drug discovery, developmental biology, precision medicine, and fundamental research. METHODS The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases. RESULTS The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders, and infectious diseases. CONCLUSION The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Komal Gupta
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Raghav Mishra
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kajal Chaudhary
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
3
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
4
|
Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, Hu H, Xu M, Guo X, Liu Y. Human organoids in basic research and clinical applications. Signal Transduct Target Ther 2022; 7:168. [PMID: 35610212 PMCID: PMC9127490 DOI: 10.1038/s41392-022-01024-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Organoids are three-dimensional (3D) miniature structures cultured in vitro produced from either human pluripotent stem cells (hPSCs) or adult stem cells (AdSCs) derived from healthy individuals or patients that recapitulate the cellular heterogeneity, structure, and functions of human organs. The advent of human 3D organoid systems is now possible to allow remarkably detailed observation of stem cell morphogens, maintenance and differentiation resemble primary tissues, enhancing the potential to study both human physiology and developmental stage. As they are similar to their original organs and carry human genetic information, organoids derived from patient hold great promise for biomedical research and preclinical drug testing and is currently used for personalized, regenerative medicine, gene repair and transplantation therapy. In recent decades, researchers have succeeded in generating various types of organoids mimicking in vivo organs. Herein, we provide an update on current in vitro differentiation technologies of brain, retinal, kidney, liver, lung, gastrointestinal, cardiac, vascularized and multi-lineage organoids, discuss the differences between PSC- and AdSC-derived organoids, summarize the potential applications of stem cell-derived organoids systems in the laboratory and clinic, and outline the current challenges for the application of organoids, which would deepen the understanding of mechanisms of human development and enhance further utility of organoids in basic research and clinical studies.
Collapse
Affiliation(s)
- Xiao-Yan Tang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Shanshan Wu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Da Wang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Chu Chu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Xing Guo
- Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing, China.
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Eldred KC, Reh TA. Human retinal model systems: Strengths, weaknesses, and future directions. Dev Biol 2021; 480:114-122. [PMID: 34529997 DOI: 10.1016/j.ydbio.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The retina is a complex neuronal structure that converts light energy into visual perception. Many specialized aspects of the primate retina, including a cone rich macula for high acuity vision, ocular size, and cell type diversity are not found in other animal models. In addition, the unique morphologies and distinct laminar positions of cell types found in the retina make this model system ideal for the study of neuronal cell fate specification. Many key early events of human retinal development are inaccessible to investigation as they occur during gestation. For these reasons, it has been necessary to develop retinal model systems to gain insight into human-specific retinal development and disease. Recent advances in culturing retinal tissue have generated new systems for retinal research and have moved us closer to generating effective regenerative therapies for vision loss. Here, we describe the strengths, weaknesses, and future directions for different human retinal model systems including dissociated primary tissue, explanted primary tissue, retinospheres, and stem cell-derived retinal organoids.
Collapse
Affiliation(s)
- Kiara C Eldred
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Thomas A Reh
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Adherent but Not Suspension-Cultured Embryoid Bodies Develop into Laminated Retinal Organoids. J Dev Biol 2021; 9:jdb9030038. [PMID: 34564087 PMCID: PMC8482155 DOI: 10.3390/jdb9030038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are differentiated into three-dimensional (3D) retinal organoids to study retinogenesis and diseases that would otherwise be impossible. The complexity and low yield in current protocols remain a technical challenge, particularly for inexperienced personnel. Differentiation protocols require labor-intensive and time-consuming dissection of optic vesicles (OVs). Here we compare this method with a suspension method of developing retinal organoids. iPSCs were differentiated with standard protocols but the suspension-grown method omitted the re-plating of embryoid bodies and dissection of OVs. All other media and treatments were identical between developmental methods. Developmental maturation was evaluated with RT-qPCR and immunocytochemistry. Dissection- and suspension-derived retinal organoids displayed temporal biogenesis of retinal cell types. Differences in retinal organoids generated by the two methods of differentiation included temporal developmental and the organization of neural retina layers. Retinal organoids grown in suspension showed delayed development and disorganized retinal layers compared to the dissected retinal organoids. We found that omitting the re-plating of EBs to form OVs resulted in numerous OVs that were easy to identify and matured along a retinal lineage. While more efficient, the suspension method led to retinal organoids with disorganized retinal layers compared to those obtained using conventional dissection protocols.
Collapse
|
7
|
Xiang YY, Dong H, Yang BB, Macdonald JF, Lu WY. Interaction of acetylcholinesterase with neurexin-1β regulates glutamatergic synaptic stability in hippocampal neurons. Mol Brain 2014; 7:15. [PMID: 24594013 PMCID: PMC3973991 DOI: 10.1186/1756-6606-7-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 02/27/2014] [Indexed: 02/11/2023] Open
Abstract
Background Excess expression of acetylcholinesterase (AChE) in the cortex and hippocampus causes a decrease in the number of glutamatergic synapses and alters the expression of neurexin and neuroligin, trans-synaptic proteins that control synaptic stability. The molecular sequence and three-dimensional structure of AChE are homologous to the corresponding aspects of the ectodomain of neuroligin. This study investigated whether excess AChE interacts physically with neurexin to destabilize glutamatergic synapses. Results The results showed that AChE clusters colocalized with neurexin assemblies in the neurites of hippocampal neurons and that AChE co-immunoprecipitated with neurexin from the lysate of these neurons. Moreover, when expressed in human embryonic kidney 293 cells, N-glycosylated AChE co-immunoprecipitated with non-O–glycosylated neurexin-1β, with N-glycosylation of the AChE being required for this co-precipitation to occur. Increasing extracellular AChE decreased the association of neurexin with neuroligin and inhibited neuroligin-induced synaptogenesis. The number and activity of excitatory synapses in cultured hippocampal neurons were reduced by extracellular catalytically inactive AChE. Conclusions Excessive glycosylated AChE could competitively disrupt a subset of the neurexin–neuroligin junctions consequently impairing the integrity of glutamatergic synapses. This might serve a molecular mechanism of excessive AChE induced neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | - Wei-Yang Lu
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
8
|
Layer PG, Araki M, Vogel-Höpker A. New concepts for reconstruction of retinal and pigment epithelial tissues. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
A scaffold-free in vitro model for osteogenesis of human mesenchymal stem cells. Tissue Cell 2011; 43:91-100. [PMID: 21329953 DOI: 10.1016/j.tice.2010.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 12/21/2010] [Accepted: 12/27/2010] [Indexed: 11/21/2022]
Abstract
For studying cellular processes three-dimensional (3D) in vitro models are of a high importance. For tissue engineering approaches osseous differentiation is performed on 3D scaffolds, but material depending influences promote cellular processes like adhesion, proliferation and differentiation. To investigate developmental processes of mesenchymal stem cells without cell-substrate interactions, self-contained in vitro models mimicking physiological condition are required. However, with respect to scientific investigations and pharmaceutical tests, it is essential that these tissue models are well characterised and are of a high reproducibility. In order to establish an appropriate in vitro model for bone formation, different protocols are compared and optimised regarding their aggregate formation efficiency, homogeneity of the aggregates, the viability and their ability to induce differentiation into the osteogenic lineage. The protocols for the generation of 3D cell models are based on rotation culture, hanging drop technique, and the cultivation in non adhesive culture vessels (single vessels as well as 96 well plates). To conclude, the cultivation of hMSCs in 96 well non adhesive plates facilitates an easy way to cultivate homogenous cellular aggregates with high performance efficiency in parallel. The size can be controlled by the initial cell density per well and within this spheroids, bone formation has been induced.
Collapse
|
10
|
Daus AW, Goldhammer M, Layer PG, Thielemann C. Electromagnetic exposure of scaffold-free three-dimensional cell culture systems. Bioelectromagnetics 2011; 32:351-9. [PMID: 21280061 DOI: 10.1002/bem.20649] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 12/24/2010] [Indexed: 11/11/2022]
Abstract
In recent years, a number of in vitro studies have reported on the possible athermal effects of electromagnetic exposure on biological tissue. Typically, this kind of study is performed on monolayers of primary cells or cell lines. However, two-dimensional cell layer systems lack physiological relevance since cells in vivo are organized in a three-dimensional (3D) architecture. In monolayer studies, cell-cell and cell-ECM interactions obviously differ from live tissue and scale-ups of experimental results to in vivo systems should be considered carefully. To overcome this problem, we used a scaffold-free 3D cell culture system, suitable for the exploration of electrophysiological effects due to electromagnetic fields (EMF) at 900 MHz. Dissociated cardiac myocytes were reaggregated into cellular spheres by constant rotation, and non-invasive extracellular recordings of these so-called spheroids were performed with microelectrode arrays (MEA). In this study, 3D cell culture systems were exposed to pulsed EMFs in a stripline setup. We found that inhomogeneities in the EMF due to electrodes and conducting lines of the MEA chip had only a minor influence on the field distribution in the spheroid if the exposure parameters were chosen carefully.
Collapse
Affiliation(s)
- Andreas W Daus
- Bioelectronics and BioMEMS Laboratory, University of Applied Sciences Aschaffenburg, Aschaffenburg, Germany.
| | | | | | | |
Collapse
|
11
|
Paraoanu LE, Mocko JB, Becker-Roeck M, Smidek-Huhn J, Layer PG. Exposure to Diazinon Alters In Vitro Retinogenesis: Retinospheroid Morphology, Development of Chicken Retinal Cell Types, and Gene Expression. Toxicol Sci 2005; 89:314-24. [PMID: 16207942 DOI: 10.1093/toxsci/kfj003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Developing embryos are more vulnerable than adults to acute cholinergic intoxication by anticholinesterases, including organophosphorus pesticides. These agents affect the process of neural development itself, leading to permanent deficits in the architecture of the nervous system. Recent evidence on direct roles of acetylcholinesterase (AChE) on neuronal differentiation provides additional grounds for investigating the developmental toxicity of anticholinesterases. Therefore, the effect of the organophosphate diazinon on the development of chick retinal differentiation was studied by an in vitro reaggregate approach. Reaggregated spheres from dissociated retinal cells of the E6 chick embryo were produced in rotation culture. During the whole culture period of 10 days, experimental cultures were supplemented with different concentrations of the pesticide, from 20 to 120 microM diazinon. The pesticide-treated spheres were reduced in size, and their outer surface was irregular. More importantly, inner structural distortions could be easily traced because the structure of control spheroids can be well characterized by a histotypical arrangement of laminar parts homologous to the normal retina. Acetylcholinesterase activity in diazinon-treated spheres was reduced when compared with controls. As a dramatic effect of exposure to the pesticide, inner plexiform layer (IPL)-like areas in spheroids were not distinguishable anymore. Similarly, photoreceptor rosettes and Müller radial glia were strongly decreased, whereas apoptosis was stimulated. The expression of transcripts for choline-acetyltransferase and muscarinic receptors was affected, revealing an effect of diazinon on the cholinergic system. This further proves the significance of cholinesterases and the cholinergic system for proper nervous system development and shows that further studies of debilitating diazinon actions on development are necessary.
Collapse
Affiliation(s)
- L E Paraoanu
- Department of Developmental Biology and Neurogenetics, University of Technology Darmstadt, Institute of Zoology, Schnittspahnstrasse 3, D-64287, Darmstadt, Germany.
| | | | | | | | | |
Collapse
|
12
|
Bytyqi AH, Lockridge O, Duysen E, Wang Y, Wolfrum U, Layer PG. Impaired formation of the inner retina in an AChE knockout mouse results in degeneration of all photoreceptors. Eur J Neurosci 2005; 20:2953-62. [PMID: 15579149 DOI: 10.1111/j.1460-9568.2004.03753.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Blinding diseases can be assigned predominantly to genetic defects of the photoreceptor/pigmented epithelium complex. As an alternative, we show here for an acetylcholinesterase (AChE) knockout mouse that photoreceptor degeneration follows an impaired development of the inner retina. During the first 15 postnatal days of the AChE-/- retina, three major calretinin sublaminae of the inner plexiform layer (IPL) are disturbed. Thereby, processes of amacrine and ganglion cells diffusely criss-cross throughout the IPL. In contrast, parvalbumin cells present a nonlaminar IPL pattern in the wild-type, but in the AChE-/- mouse their processes become structured within two 'novel' sublaminae. During this early period, photoreceptors become arranged regularly and at a normal rate in the AChE-/- retina. However, during the following 75 days, first their outer segments, and then the entire photoreceptor layer completely degenerate by apoptosis. Eventually, cells of the inner retina also undergo apoptosis. As butyrylcholinesterase (BChE) is present at a normal level in the AChE-/- mouse, the observed effects must be solely due to the missing AChE. These are the first in vivo findings to show a decisive role for AChE in the formation of the inner retinal network, which, when absent, ultimately results in photoreceptor degeneration.
Collapse
Affiliation(s)
- Afrim H Bytyqi
- Darmstadt University of Technology, Developmental Biology & Neurogenetics, D-64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, Guo LH, Alemany M, Zhang LY, Shi YF. Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ 2002; 9:790-800. [PMID: 12107822 DOI: 10.1038/sj.cdd.4401034] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Revised: 01/22/2002] [Accepted: 01/28/2002] [Indexed: 12/11/2022] Open
Abstract
Acetylcholinesterase (AChE) plays a key role in terminating neurotransmission at cholinergic synapses. AChE is also found in tissues devoid of cholinergic responses, indicating potential functions beyond neurotransmission. It has been suggested that AChE may participate in development, differentiation, and pathogenic processes such as Alzheimer's disease and tumorigenesis. We examined AChE expression in a number of cell lines upon induction of apoptosis by various stimuli. AChE is induced in all apoptotic cells examined as determined by cytochemical staining, immunological analysis, affinity chromatography purification, and molecular cloning. The AChE protein was found in the cytoplasm at the initiation of apoptosis and then in the nucleus or apoptotic bodies upon commitment to cell death. Sequence analysis revealed that AChE expressed in apoptotic cells is identical to the synapse type AChE. Pharmacological inhibitors of AChE prevented apoptosis. Furthermore, blocking the expression of AChE with antisense inhibited apoptosis. Therefore, our studies demonstrate that AChE is potentially a marker and a regulator of apoptosis.
Collapse
Affiliation(s)
- X J Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Layer PG, Robitzki A, Rothermel A, Willbold E. Of layers and spheres: the reaggregate approach in tissue engineering. Trends Neurosci 2002; 25:131-4. [PMID: 11852139 DOI: 10.1016/s0166-2236(00)02036-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reaggregate approach involves the regeneration of histotypical three-dimensional spheres from dispersed cells of a given tissue in suspension culture. Reaggregated spheres are used as tumour, genetic, toxicological, biohybrid and neurosphere models, and often replace animal experimentation. A particularly instructive example is the use of reaggregation to regenerate complete laminar tissue from avian embryonic retina. By revealing constraints of layered tissue formation, such retinal spheres could be instrumental for regenerative medicine, including stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Paul G Layer
- Darmstadt University of Technology, Faculty of Biology, Developmental Biology & Neurogenetics, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany.
| | | | | | | |
Collapse
|
15
|
Keller M, Robitzki A, Layer PG. Anticholinesterase treatment of chicken retinal cells increases acetylcholinesterase protein independently of protein kinase C. Neurosci Lett 2001; 309:21-4. [PMID: 11489537 DOI: 10.1016/s0304-3940(01)02013-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been reported that anticholinesterase exposure, e.g. by environmental toxins or nerve gases, can increase acetylcholinesterase (AChE) protein, possibly as an autoregulatory stress response. We earlier have transfected retinal cells of the chick embryo with a pSVK3-AChE(rab)-cDNA vector to heterologously express rabbit AChE, which concomitantly also increased AChE protein from chick. To analyse further the cell-internal pathways of these different paradigms (anticholinesterase treatment vs. AChE transfection) which both lead to an AChE increase, we here show that AChE overexpression by transfection leads to an increase in protein kinase C (PKC). Most remarkably, when cells independently of, or in addition to their transfection are treated with 10 microM of the AChE inhibitor BW284c51, AChE protein levels are much more dramatically increased up to 20-fold. This treatment, however, does not affect PKC. These data show that (i) retinal cells respond to anticholinesterase insult by a massive increase of AChE protein; (ii) the response to BW284c51 is not PKC-mediated; and (iii) both strategies of AChE increase follow different cell-internal pathways, their effects being additive. The ecological and biomedical implications of these findings are briefly discussed.
Collapse
MESH Headings
- Acetylcholinesterase/drug effects
- Acetylcholinesterase/genetics
- Acetylcholinesterase/metabolism
- Animals
- Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/toxicity
- Cells, Cultured/drug effects
- Cells, Cultured/enzymology
- Chemical Warfare Agents/toxicity
- Chick Embryo
- Cholinesterase Inhibitors/toxicity
- Dementia/chemically induced
- Dementia/enzymology
- Dementia/physiopathology
- Environmental Pollutants/toxicity
- Female
- Genetic Vectors/physiology
- Homeostasis/drug effects
- Homeostasis/genetics
- Humans
- Neuroglia/drug effects
- Neuroglia/enzymology
- Neurons/drug effects
- Neurons/enzymology
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/enzymology
- Parkinsonian Disorders/physiopathology
- Pesticides/toxicity
- Pregnancy
- Prenatal Exposure Delayed Effects
- Protein Kinase C/drug effects
- Protein Kinase C/metabolism
- Retina/drug effects
- Retina/embryology
- Retina/enzymology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Stress, Physiological/chemically induced
- Stress, Physiological/enzymology
- Stress, Physiological/physiopathology
- Transfection
Collapse
Affiliation(s)
- M Keller
- Department of Developmental Biology & Neurogenetics, Faculty of Biology, Darmstadt University of Technology, Schnittspahnstrasse 3, D-64287, Darmstadt, Germany
| | | | | |
Collapse
|
16
|
Layer PG, Rothermel A, Willbold E. From stem cells towards neural layers: a lesson from re-aggregated embryonic retinal cells. Neuroreport 2001; 12:A39-46. [PMID: 11388446 DOI: 10.1097/00001756-200105250-00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cells from dissociated embryonic avian retinae have the capacity to re-aggregate in rotation culture and form cellular spheres reconstituting a complete arrangement of all retinal layers. This exquisite phenomenon is based upon in vitro proliferation of multipotent precursor stem cells and spatial organization of their differentiating descendants. The addition of soluble factors from cultured retinal pigmented epithelial (RPE) or radial glial cells is essential to revert inside-out spheres (rosetted retinal spheres) into correctly laminated outside-out spheres (stratified spheres). Such complete restoration of a laminated brain tissue by cell re-aggregation has been achieved only for the embryonic avian retina, but not the mammalian retina, nor for other brain parts. This review summarises the history of the re-aggregation approach, presents avian retinal re-aggregate models, and analyses roles of the RPE and Müller cells for successful retinal tissue regeneration. It is predicted that these results will become biomedically relevant, as stem cell biology will soon open ways to produce large amounts of human retinal precursors.
Collapse
Affiliation(s)
- P G Layer
- Darmstadt University of Technology, Department of Developmental Biology and Neurogenetics, Germany
| | | | | |
Collapse
|
17
|
Johnson G, Moore SW. Cholinesterases modulate cell adhesion in human neuroblastoma cells in vitro. Int J Dev Neurosci 2000; 18:781-90. [PMID: 11154847 DOI: 10.1016/s0736-5748(00)00049-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cholinesterases are expressed non-synaptically during embryonic development, neoplasia and neurodegeneration. We have investigated the effects of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and, conversely, anti-AChE and -BChE antibodies and inhibitors on cell adhesion and neurite outgrowth in human neuroblastoma cells. Analysis of cholinesterase levels and isoforms in undifferentiated and differentiated cells indicated a significant rise in AChE levels on differentiation. This increase was related to both cell-associated and secreted enzyme, and was predominantly the G4 isoform. BChE levels and isoforms, on the other hand, showed no significant variation. Coating the tissue culture plate with AChE stimulated neurite outgrowth, while BChE had an anti-adhesive effect. Cell adhesion was affected by the BChE inhibitor, ethopropazine, and the AChE peripheral site inhibitor, BW284c51, but not by eserine which binds to the active site. This indicates that the adhesion function is non-cholinergic, a finding supported by the lack of effect of AE-2, a monoclonal antibody that inhibits AChE, on cell adhesion. Four out of a panel of nine anti-AChE antibodies inhibited adhesion to varying degrees. Of these antibodies, two are catalytic, with epitopes associated with the peripheral anionic site of AChE, and the remaining two have epitopes overlapping this site. Neither of the two anti-BChE antibodies used had any effect on adhesion. These results indicate the importance of AChE in neuroblastoma cell adhesion and neurite outgrowth, and suggest that the peripheral anionic site may be involved in these processes.
Collapse
Affiliation(s)
- G Johnson
- Department of Paediatric Surgery and Medical Biochemistry, Faculty of Medicine, University of Stellenbosch, Tygerberg, South Africa.
| | | |
Collapse
|
18
|
Mack A, Robitzki A. The key role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5'butyrylcholinesterase-DNA study. Prog Neurobiol 2000; 60:607-28. [PMID: 10739090 DOI: 10.1016/s0301-0082(99)00047-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The wide tissue distribution of butyrylcholinesterase (BChE) in organisms makes specific roles possible, although no clear physiologic function has yet been assigned to this enzyme. In vertebrates, it appears e.g. in serum, hemopoietic cells, liver, lung, heart, at cholinergic synapses, in the central nervous system. in tumors and not at least (besides acetylcholinesterase, AChE) in developing embryonic tissues. Here, a functional role of BChE can be found in regulation of cell proliferation and the onset of differentiation during early neuronal development--independent of its enzymatic activity. For studies concerning this point, we have established a strategy for a specific and efficient inhibition of BChE to investigate how the expected decrease of enzyme and, therefore, the manipulation of cellular cholinesterase-equilibrium influences embryonic neurogenesis--among others to gain information about the significance of noncholinergic, activity-independent and cell growth functions of BChE. The antisense-5'BChE-DNA strategy is based on inhibition of BChE mRNA transcription and protein synthesis. For this, the BChE gene is cloned into a suitable vector system; this is done in antisense-orientation, so that a transfected cell will produce their own antisense mRNA to inhibit gene expression. For such investigations in neurogenesis, the developing retina is a good model and we are able to create organotypic, three-dimensional retinal aggregates in vitro (retinospheroids) using isolated retinal cells of 6-day-old chicken embryos. Using this in vitro retina and "knock out" of BChE gene expression, we could show a key role of BChE during neurogenesis. The results are of great interest because in tumorigenesis and some neuronal disorders, the BChE gene is amplified or abnormally expressed. It has to be discussed how the antisense-5'BChE strategy can play a role in the development of new and efficient therapy forms.
Collapse
Affiliation(s)
- A Mack
- Fraunhofer Institute for Biomedical Engineering (FhG-IBMT), Section Biohybrid Systems, St. Ingbert/Saar, Germany.
| | | |
Collapse
|
19
|
Lakshmana MK, Rao BS, Dhingra NK, Ravikumar R, Meti BL, Raju TR. Chronic (-) deprenyl administration increases dendritic arborization in CA3 neurons of hippocampus and AChE activity in specific regions of the primate brain. Brain Res 1998; 796:38-44. [PMID: 9689452 DOI: 10.1016/s0006-8993(98)00312-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism by which (-) deprenyl enhances cognitive function in Alzheimer's disease (AD) is not yet understood. (-) Deprenyl (0.2 mg/kg/day) was administered intramuscularly to adult male monkeys (n = 6) for 25 days. Control monkeys (n = 6) received physiological saline by the same route. The activity of acetylcholinesterase (AChE) in different brain regions and the dendritic arborization in CA3 pyramidal neurons of hippocampus were analysed. (-) Deprenyl-treated monkeys showed a significant increase in the AChE activity by 43% (p < 0.001) in the frontal cortex, by 39% (p < 0.025) in the motor cortex, by 66% (p < 0.001) in the hippocampus and by 26% (p < 0.05) in the striatum compared to controls. The branching points and the intersections of both apical and basal dendrites of CA3 hippocampal pyramidal neurons were also significantly increased in (-) deprenyl-treated monkeys. Enhanced AChE activity may increase dendritic arborization in the hippocampus and it may also play a role in improving cognitive functions observed in AD, following (-) deprenyl treatment.
Collapse
Affiliation(s)
- M K Lakshmana
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | |
Collapse
|
20
|
Koenigsberger C, Hammond P, Brimijoin S. Developmental expression of acetyl- and butyrylcholinesterase in the rat: enzyme and mRNA levels in embryonic dorsal root ganglia. Brain Res 1998; 787:248-58. [PMID: 9518638 DOI: 10.1016/s0006-8993(97)01507-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dorsal root ganglia (DRG) in the adult rat contain acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), enzymes implicated in neural morphogenesis. We used quantitative histochemistry, reverse transcription-PCR (RT-PCR), and in situ hybridization histochemistry to study cholinesterase expression during embryogenesis. Longitudinal sections of rat embryos, embryonic day 9 (E9), E11-E17, and E19, were studied by video microscopy of the stained enzyme reaction products. Both enzymes were detectable in the early DRG (E11-E12), with BChE being most prominent. There was a spatiotemporal change in expression of each cholinesterase within the DRG. From E13 on, AChE expression predominated, especially in the neuronal cell bodies, while BChE was more highly expressed in the surrounding neuropil and the ganglionic roots. This distribution resembled the pattern in adult DRG. AChE mRNA levels, as determined by RT-PCR from DRG collected at days E12-E17, and E19, varied in parallel with the intensity of enzyme stain in the DRG. Overall, these results demonstrate temporally regulated ganglionic expression of cholinesterases, which may be important in the development of the sensory nervous system.
Collapse
Affiliation(s)
- C Koenigsberger
- Department of Pharmacology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
21
|
Robitzki A, Mack A, Hoppe U, Chatonnet A, Layer PG. Regulation of cholinesterase gene expression affects neuronal differentiation as revealed by transfection studies on reaggregating embryonic chicken retinal cells. Eur J Neurosci 1997; 9:2394-405. [PMID: 9464933 DOI: 10.1111/j.1460-9568.1997.tb01656.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the embryonic chicken neuroepithelium, butyrylcholinesterase (BChE) as a proliferation marker and then acetylcholinesterase (AChE) as a differentiation marker are expressed in a mutually exclusive manner. These and other data indicate a coregulation of cholinesterase expression, and also possible roles of cholinesterases during neurogenesis. Here, both aspects are investigated by two independent transfection protocols of dissociated retina cells of the 6-day-old chick embryo in reaggregation culture, both protocols leading to efficient overexpression of AChE protein. The effect of the overexpressed AChE protein on the re-establishment of retina-like three-dimensional networks (so-called retinospheroids) was studied. In a first approach, we transfected retinospheroids with a pSVK3 expression vector into which a cDNA construct encoding the entire rabbit AChE gene had been inserted in sense orientation. As detected at the mRNA level, rabbit AChE was heterologously overexpressed in chicken retinospheroids. Remarkably, this was accompanied by a strong increase in endogenous chicken AChE protein, while the total AChE activity was only slightly increased. This increase was due to chicken enzyme, as shown by species-specific inhibition studies using fasciculin. Clearly, total AChE activity is regulated post-translationally. As an alternative method of AChE overexpression, transfection of spheroids was performed with an antisense-5'-BChE vector, which not only resulted in the down-regulation of BChE expression, but also strongly increased chicken AChE transcripts, protein and enzyme activity. Histologically, a higher concentration of AChE protein (as a consequence of either AChE overexpression or BChE suppression) was associated with an advanced degree of tissue differentiation, as detected by immunostaining for the cytoskeletal protein vimentin.
Collapse
Affiliation(s)
- A Robitzki
- Department of Developmental and Neurobiology, Institute for Zoology, University of Technology, Darmstadt, Germany
| | | | | | | | | |
Collapse
|
22
|
Abstract
In vitro assays for the screening of developmental toxicity potential have been under development for approximately 15 years. During that period, we have learned that assays consisting of primary cultures of embryonic tissues or cells, intact embryos in culture, or free-living embryos are capable of distinguishing between mammalian developmental toxicants and nondevelopmental toxicants with an accuracy of > or = 80%. Despite this level of performance, there is still considerable reluctance among the scientific community to employ these assays for preliminary screening. In this paper, I review the theoretical basis for the predictiveness of these assays, outline the empirical data indicating their utility in screening toxicants, discuss the major limitations of in vitro assays and how they can be managed, and suggest applications for in vitro pre-screens. The embryo-derived assays should work because they continue to develop in vitro, and the underlying cellular and molecular processes driving this development are the same as those in the mammalian embryo in situ, and therefore, susceptible to the same insults. The assays do work, as specific mechanisms of developmental toxicity have been demonstrated in vitro, and because extensive validation studies have shown them to be highly concordant with traditional in vivo screens. The assays are inherently limited by the fact that they do not include all the levels of complexity of the maternal-embryonic unit; however, these limitations can be minimized by thoughtful assay selection, study design, and interpretation. Potential applications are suggested that complement but do not replace in vivo testing. Pre-screens will make product development more efficient and add to our knowledge about the developmental toxicity of previously untested compounds. In vivo screening would still be conducted on all classes of substances that are currently tested for developmental toxicity; however, fewer chemicals with high likelihood of being developmentally toxic, and therefore not appropriate for further commercial consideration, would be evaluated in these costly screens.
Collapse
Affiliation(s)
- G P Daston
- Procter & Gamble Company, Miami Valley Laboratories, Cincinnati, Ohio 45253-8707, USA
| |
Collapse
|
23
|
Small DH, Michaelson S, Sberna G. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem Int 1996; 28:453-83. [PMID: 8792327 DOI: 10.1016/0197-0186(95)00099-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cholinesterases are members of the serine hydrolase family, which utilize a serine residue at the active site. Acetylcholinesterase (AChE) is distinguished from butyrylcholinesterase (BChE) by its greater specificity for hydrolysing acetylcholine. The function of AChE at cholinergic synapses is to terminate cholinergic neurotransmission. However, AChE is expressed in tissues that are not directly innervated by cholinergic nerves. AChE and BChE are found in several types of haematopoietic cells. Transient expression of AChE in the brain during embryogenesis suggests that AChE may function in the regulation of neurite outgrowth. Overexpression of cholinesterases has also been correlated with tumorigenesis and abnormal megakaryocytopoiesis. Acetylcholine has been shown to influence cell proliferation and neurite outgrowth through nicotinic and muscarinic receptor-mediated mechanisms and thus, that the expression of AChE and BChE at non-synaptic sites may be associated with a cholinergic function. However, structural homologies between cholinesterases and adhesion proteins indicate that cholinesterases could also function as cell-cell or cell-substrate adhesion molecules. Abnormal expression of AChE and BChE has been detected around the amyloid plaques and neurofibrillary tangles in the brains of patients with Alzheimer's disease. The function of the cholinesterases in these regions of the Alzheimer brain is unknown, but this function is probably unrelated to cholinergic neurotransmission. The presence of abnormal cholinesterase expression in the Alzheimer brain has implications for the pathogenesis of Alzheimer's disease and for therapeutic strategies using cholinesterase inhibitors.
Collapse
Affiliation(s)
- D H Small
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
24
|
Layer PG. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem Int 1996; 28:491-5. [PMID: 8792329 DOI: 10.1016/0197-0186(95)00101-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P G Layer
- Technical University of Darmstadt, Institute for Zoology, Darmstadt, Germany
| |
Collapse
|
25
|
Jbilo O, L'Hermite Y, Talesa V, Toutant JP, Chatonnet A. Acetylcholinesterase and butyrylcholinesterase expression in adult rabbit tissues and during development. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:115-24. [PMID: 7925428 DOI: 10.1111/j.1432-1033.1994.00115.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A large cDNA fragment covering the complete sequence of the mature catalytic subunit of rabbit acetylcholinesterase (AChE) has been cloned and sequenced. This sequence was compared to that of rabbit butyrylcholinesterase [BChE; Jbilo, O. & Chatonnet, A. (1990) Nucleic Acids Res. 18, 3990]. Amino acid sequences of AChE and BChE have 51% identity. They both possessed a choline-binding site W84, a catalytic triad S200-H440-E327 and six cysteine residues (positions 67-94, 254-265, 402-521) in conserved sequence positions to those that form three intrachain disulfide bonds in all cholinesterases (by convention, numbering of amino acids is that used for Torpedo AChE). Rabbit AChE had a larger number of aromatic residues lining the active-site gorge than rabbit BChE (14 compared to 8, respectively) and a smaller number of potential N-glycosylation sites (3 compared to 8, respectively). Both catalytic subunits have a hydrophilic C-terminus (catalytic subunits of type T). Expression of acetylcholinesterase and butyrylcholinesterase genes (ACHE and BCHE) was studied in rabbit tissues and during development by a correlation of Northern-blot analysis and enzymic activities. This correlation was rendered difficult by the presence of an eserine-resistant esterase active on butyrylthiocholine in serum, liver and lung. When the contribution of this carboxylesterase was taken into account, brain was found as the richest source of BChE followed by lung and heart. Rabbit liver had a very low content of BChE that correlated with the low BChE activity in plasma. During development, BCHE transcripts were detected as early as day 10 post coitum, whereas ACHE transcripts appeared only on day 12.
Collapse
Affiliation(s)
- O Jbilo
- Laboratorire de Différenciation cellulaire et Croissance, INRA, Montpellier, France
| | | | | | | | | |
Collapse
|
26
|
Soreq H, Patinkin D, Lev-Lehman E, Grifman M, Ginzberg D, Eckstein F, Zakut H. Antisense oligonucleotide inhibition of acetylcholinesterase gene expression induces progenitor cell expansion and suppresses hematopoietic apoptosis ex vivo. Proc Natl Acad Sci U S A 1994; 91:7907-11. [PMID: 8058733 PMCID: PMC44513 DOI: 10.1073/pnas.91.17.7907] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To examine the role of acetylcholinesterase (EC 3.1.1.7) in hematopoietic cell proliferation and differentiation, we administered a 15-mer phosphorothioate oligonucleotide, antisense to the corresponding ACHE gene (AS-ACHE), to primary mouse bone marrow cultures. Within 2 hr of AS-ACHE addition to the culture, ACHE mRNA levels dropped by approximately 90%, as compared with those in cells treated with the "sense" oligomer, S-ACHE. Four days after AS-ACHE treatment, ACHE mRNA increased to levels 10-fold higher than in S-ACHE cultures or in fresh bone marrow. At this later time point, differential PCR display revealed significant differences between cellular mRNA transcripts in bone marrow and those in AS-ACHE- or S-ACHE-treated cultures. These oligonucleotide-triggered effects underlay considerable alterations at the cellular level: AS-ACHE but not S-ACHE increased cell counts, reflecting enhanced proliferation. In the presence of erythropoietin it also enhanced colony counts, reflecting expansion of progenitors. AS-ACHE further suppressed apoptosis-related fragmentation of cellular DNA in the progeny cells, and it diverted hematopoiesis toward production of primitive blasts and macrophages in a dose-dependent manner promoted by erythropoietin. These findings suggest that the hematopoietic role of acetylcholinesterase, anticipated to be inverse to the observed antisense effects, is to reduce proliferation of the multipotent stem cells committed to erythropoiesis and megakaryocytopoiesis and macrophage production and to promote apoptosis in their progeny. Moreover, these findings may explain the tumorigenic association of perturbations in ACHE gene expression with leukemia.
Collapse
Affiliation(s)
- H Soreq
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
27
|
Layer PG, Willbold E. Cholinesterases in avian neurogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 151:139-81. [PMID: 8014021 DOI: 10.1016/s0074-7696(08)62632-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- P G Layer
- Technical University of Darmstadt, Institute for Zoology, Germany
| | | |
Collapse
|
28
|
Layer PG, Willbold E. Novel functions of cholinesterases in development, physiology and disease. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1994; 29:1-94. [PMID: 7568907 DOI: 10.1016/s0079-6336(11)80046-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P G Layer
- Institut für Zoologie, Technische Hochschule Darmstadt, Germany
| | | |
Collapse
|
29
|
|
30
|
Vigneron P, Jbilo O, Chatonnet A. Localization of acetylcholinesterase activity and mRNA in the rabbit embryo between 10 and 15 days. Neuromuscul Disord 1993; 3:447-50. [PMID: 8186691 DOI: 10.1016/0960-8966(93)90094-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Histoenzymatic methods and in situ hybridization were used to follow AChE expression in rabbit embryos from 10 to 15 days. Transcripts of AChE are detected at the same developmental stages in all structures where enzymatic activity is found, except in neuronal extension and the ventral part of mesonephros. AChE and BChE expression were compared. BChE transcripts are detected before BChE activity can be revealed in blood cells and mesonephros.
Collapse
|
31
|
Layer PG, Weikert T, Alber R. Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res 1993; 273:219-26. [PMID: 8103422 DOI: 10.1007/bf00312823] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cholinesterases present homologies with some cell adhesion molecules; however, it is unclear whether and how they perform adhesive functions. Here, we provide the first direct evidence showing that neurite growth in vitro from various neuronal tissues of the chick embryo can be modified by some, but not all, anticholinesterase agents. By quantifying the neuritic G4 antigen in tectal cell cultures, the effect of anticholinesterases on neurite growth is directly compared with their cholinesterase inhibitory action. BW 284C51 and ethopropazine, inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively, strongly decrease neurite growth in a dose-dependent manner. However, echothiophate which inhibits both cholinesterases, does not change neuritic growth. These quantitative data are supplemented by morphological observations in retinal explant cultures grown on striped laminin carpets, viz., defasciculation of neurite bundles by BW 284C51 and Bambuterol occurs, indicating that these drugs disturb adhesive mechanisms. These data strongly suggest that a) cholinesterases can participate in regulating axonal growth, b) both AChE and BChE can perform such a nonsynaptic function, and c) this function is not the result of the enzyme activity per se, since at least one drug was found that inhibits all cholinesterase activities but not neurite growth. Thus, a secondary site on cholinesterase molecules must be responsible for adhesive functions.
Collapse
Affiliation(s)
- P G Layer
- Technische Hochschule Darmstadt, Institut für Zoologie, Darmstadt, Germany
| | | | | |
Collapse
|
32
|
Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Prog Neurobiol 1993; 41:31-91. [PMID: 8321908 DOI: 10.1016/0301-0082(93)90040-y] [Citation(s) in RCA: 836] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J Massoulié
- Laboratoire de Neurobiologie, CNRS URA 295, Ecole Normale Supérieure, Paris, France
| | | | | | | | | |
Collapse
|