1
|
Sardesai N, Foulk S, Chen W, Wu H, Etchison E, Gupta M. Coexpression of octopine and succinamopine Agrobacterium virulence genes to generate high quality transgenic events in maize by reducing vector backbone integration. Transgenic Res 2018; 27:539-550. [PMID: 30293127 DOI: 10.1007/s11248-018-0097-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Agrobacterium-mediated transformation is a complex process that is widely utilized for generating transgenic plants. However, one of the major concerns of this process is the frequent presence of undesirable T-DNA vector backbone sequences in the transgenic plants. To mitigate this deficiency, a ternary strain of A. tumefaciens was modified to increase the precision of T-DNA border nicking such that the backbone transfer is minimized. This particular strain supplemented the native succinamopine VirD1/VirD2 of EHA105 with VirD1/VirD2 derived from an octopine source (pTi15955), the same source as the binary T-DNA borders tested here, residing on a ternary helper plasmid containing an extra copy of the succinamopine VirB/C/G operons and VirD1. Transformation of maize immature embryos was carried out with two different test constructs, pDAB101556 and pDAB111437, bearing the reporter YFP gene and insecticidal toxin Cry1Fa gene, respectively, contained in the VirD-supplemented and regular control ternary strains. Molecular analyses of ~ 700 transgenic events revealed a significant 2.6-fold decrease in events containing vector backbone sequences, from 35.7% with the control to 13.9% with the VirD-supplemented strain for pDAB101556 and from 24.9% with the control to 9.3% with the VirD-supplemented strain for pDAB111437, without compromising transformation efficiency. In addition, while the number of single copy events recovered was similar, there was a 24-26% increase in backbone-free events with the VirD-supplemented strain compared to the control strain. Thus, supplementing existing VirD1/VirD2 genes in Agrobacterium, to recognize diverse T-DNA borders, proved to be a useful tool to increase the number of high quality events in maize.
Collapse
Affiliation(s)
- Nagesh Sardesai
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA.
| | - Stephen Foulk
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Wei Chen
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Huixia Wu
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Emily Etchison
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Manju Gupta
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| |
Collapse
|
2
|
Wang GP, Yu XD, Sun YW, Jones HD, Xia LQ. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation. FRONTIERS IN PLANT SCIENCE 2016; 7:1324. [PMID: 27708648 PMCID: PMC5030305 DOI: 10.3389/fpls.2016.01324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/18/2016] [Indexed: 05/18/2023]
Abstract
Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.
Collapse
Affiliation(s)
- Gen-Ping Wang
- Department of Plant Gene Resources and Molecular Design, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)Beijing, China
- Cereal Crops Research Laboratory of Hebei Province, National Millet Improvement Center, Institute of Millet Crops, Hebei Academy of Agriculture and Forestry SciencesShijiazhuang, China
| | - Xiu-Dao Yu
- Department of Plant Gene Resources and Molecular Design, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)Beijing, China
| | - Yong-Wei Sun
- Department of Plant Gene Resources and Molecular Design, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)Beijing, China
| | - Huw D. Jones
- Translational Genomics for Plant Breeding, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Lan-Qin Xia
- Department of Plant Gene Resources and Molecular Design, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)Beijing, China
| |
Collapse
|
3
|
Mano H, Fujii T, Sumikawa N, Hiwatashi Y, Hasebe M. Development of an Agrobacterium-mediated stable transformation method for the sensitive plant Mimosa pudica. PLoS One 2014; 9:e88611. [PMID: 24533121 PMCID: PMC3922943 DOI: 10.1371/journal.pone.0088611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements.
Collapse
Affiliation(s)
- Hiroaki Mano
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Tomomi Fujii
- School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Naomi Sumikawa
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Yuji Hiwatashi
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
- * E-mail:
| |
Collapse
|
4
|
Yau YY, Stewart CN. Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 2013; 13:36. [PMID: 23617583 PMCID: PMC3689633 DOI: 10.1186/1472-6750-13-36] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/05/2013] [Indexed: 02/07/2023] Open
Abstract
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.
Collapse
Affiliation(s)
- Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Citovsky V, DE Vos G, Zambryski P. Single-Stranded DNA Binding Protein Encoded by the virE Locus of Agrobacterium tumefaciens. Science 2010; 240:501-4. [PMID: 17784072 DOI: 10.1126/science.240.4851.501] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The transfer process of T (transfer)-DNA of Agrobacterium tumefaciens is activated after the induction of the expression of the Ti plasmid virulence (vir) loci by plant signal molecules such as acetosyringone. The vir gene products then act to generate a free transferable single-stranded copy of the T-DNA, designated the T-strand. Although some vir proteins are responsible for the synthesis of the T-strand, others may mediate T-strand transfer to plant cells as part of a DNA-protein complex. Here, a novel 69-kilodalton vir-specific single-stranded DNA binding protein is identified in Agrobacterium harboring a nopaline-type Ti plasmid. This protein binds single-stranded but not double-stranded DNA regardless of nucleotide sequence composition. The molecular size of the vir-specific single-stranded DNA binding protein and its relative abundance in acetosyringone-induced Agrobacterium suggested that it might be the product of the virE locus; molecular cloning and expression of the virE region in Escherichia coli confirmed this prediction.
Collapse
|
6
|
Komori T, Imayama T, Kato N, Ishida Y, Ueki J, Komari T. Current status of binary vectors and superbinary vectors. PLANT PHYSIOLOGY 2007; 145:1155-60. [PMID: 18056865 PMCID: PMC2151727 DOI: 10.1104/pp.107.105734] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 08/24/2007] [Indexed: 05/18/2023]
Affiliation(s)
- Toshiyuki Komori
- Plant Innovation Center, Japan Tobacco Incorporated, Iwata, Shizuoka 438-0802, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Maghuly F, da Câmara Machado A, Leopold S, Khan MA, Katinger H, Laimer M. Long-term stability of marker gene expression in Prunus subhirtella: A model fruit tree species. J Biotechnol 2007; 127:310-21. [PMID: 16889860 DOI: 10.1016/j.jbiotec.2006.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/14/2006] [Accepted: 06/23/2006] [Indexed: 11/22/2022]
Abstract
Transgenic trees currently are being produced by Agrobacterium-mediated transformation and biolistics. Since trees are particularly suited for long-term evaluations of the impact of the technology, Prunus subhirtella autumno rosa (PAR) was chosen as model fruit tree species and transformed with a reporter gene (uidA) under the control of the 35S promoter. Using Southern and GUS fluorometric techniques, we compared transgene copy numbers and observed stability of transgene expression levels in 34 different transgenic plants, grown under in vitro, greenhouse and screenhouse conditions, over a period of 9 years. An influence of grafting on gene expression was not observed. No silenced transgenic plant was detected. Overall, these results suggest that transgene expression in perennial species, such as fruit trees, remains stable in time and space, over extended periods and in different organs, confirming the value of PAR as model species to study season-dependent regulation in mature stone fruit tissues. While the Agrobacterium-derived Prunus transformants contained one to two copies of the transgenes, 91% of the transgenic events also contained various lengths of the bacterial plasmid backbone, indicating that the Agrobacterium-mediated transformation is not as precise as previously perceived. The implications for public acceptance and future applications are discussed.
Collapse
Affiliation(s)
- Fatemeh Maghuly
- Plant Biotechnology Unit, Institute of Applied Microbiology, Department of Biotechnology, BOKU, Nussdorfer Läende 11, A-1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
8
|
Podevin N, De Buck S, De Wilde C, Depicker A. Insights into recognition of the T-DNA border repeats as termination sites for T-strand synthesis by Agrobacterium tumefaciens. Transgenic Res 2006; 15:557-71. [PMID: 16830227 DOI: 10.1007/s11248-006-9003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
The recognition of the T-DNA left border (LB) repeat is affected by its surrounding sequences. Here, the LB regions were further characterized by molecular analysis of transgenic plants, obtained after Agrobacterium tumefaciens-mediated transformation with T-DNA vectors that had been modified in this LB region. At least the 24-bp LB repeat by itself was insufficient to terminate the T-strand synthesis. Addition of the natural inner and/or outer border regions to at least the LB repeat, even when present at a distance, enhanced the correct recognition of the LB repeat, reducing the number of plants containing vector backbone sequences. In tandem occurrence of both the octopine and nopaline LB regions with their repeats terminated the T-strand synthesis most efficiently at the LB, yielding a reproducibly high number of plants containing only the T-DNA. Furthermore, T-strand synthesis did not terminate efficiently at the right border (RB) repeat, which might indicate that signals in the outer RB region inhibit the termination of T-strand synthesis at the RB repeat.
Collapse
Affiliation(s)
- Nancy Podevin
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | |
Collapse
|
9
|
Huang S, Gilbertson LA, Adams TH, Malloy KP, Reisenbigler EK, Birr DH, Snyder MW, Zhang Q, Luethy MH. Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res 2005; 13:451-61. [PMID: 15587269 DOI: 10.1007/s11248-004-1453-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By introducing additional T-DNA borders into a binary plasmid used in Agrobacterium-mediated plant transformation, previous studies have demonstrated that the marker gene and the gene of interest (GOI) can be carried by independent T-strands, which sometimes integrate in unlinked loci in the plant genome. This allows the recovery of marker-free transgenic plants through genetic segregation in the next generation. In this study, we have found that by repositioning the selectable marker gene in the backbone and leaving only the GOI in the T-DNA region, a regular two-border binary plasmid was able to generate marker-free transgenic maize plants more efficiently than a conventional single binary plasmid with multiple T-DNA borders. These results also provide evidence that both the right and left borders can initiate and terminate T-strands. Such non-canonical initiation and termination of T-strands may be the basis for the elevated frequencies of cotransformation and unlinked insertions.
Collapse
Affiliation(s)
- Shihshieh Huang
- Mystic Research, Monsanto Company, 62 Maritime Drive, Mystic, CT 06355, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 2003; 67:16-37, table of contents. [PMID: 12626681 PMCID: PMC150518 DOI: 10.1128/mmbr.67.1.16-37.2003] [Citation(s) in RCA: 631] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and related Agrobacterium species have been known as plant pathogens since the beginning of the 20th century. However, only in the past two decades has the ability of Agrobacterium to transfer DNA to plant cells been harnessed for the purposes of plant genetic engineering. Since the initial reports in the early 1980s using Agrobacterium to generate transgenic plants, scientists have attempted to improve this "natural genetic engineer" for biotechnology purposes. Some of these modifications have resulted in extending the host range of the bacterium to economically important crop species. However, in most instances, major improvements involved alterations in plant tissue culture transformation and regeneration conditions rather than manipulation of bacterial or host genes. Agrobacterium-mediated plant transformation is a highly complex and evolved process involving genetic determinants of both the bacterium and the host plant cell. In this article, I review some of the basic biology concerned with Agrobacterium-mediated genetic transformation. Knowledge of fundamental biological principles embracing both the host and the pathogen have been and will continue to be key to extending the utility of Agrobacterium for genetic engineering purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
11
|
Affiliation(s)
- G Hansen
- Novartis Agribusiness Biotechnology Research, Inc., Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
12
|
Ramanathan V, Veluthambi K. Analysis of octopine left border-directed DNA transfer fromAgrobacterium to plants. J Biosci 1996. [DOI: 10.1007/bf02716812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Ramanathan V, Veluthambi K. Transfer of non-T-DNA portions of the Agrobacterium tumefaciens Ti plasmid pTiA6 from the left terminus of TL-DNA. PLANT MOLECULAR BIOLOGY 1995; 28:1149-54. [PMID: 7548833 DOI: 10.1007/bf00032676] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduced a plant selection marker, nptII, to the left of border A in the Agrobacterium Ti plasmid pTiA6. Infection of tobacco leaf discs with the modified Agrobacterium strain gave rise to kanamycin-resistant calli which grew in a hormone-dependent manner. Southern hybridization analysis of DNA isolated from four transformants indicated initiation of DNA transfer at or near border A and absence of T-DNA sequences. These results demonstrate that DNA transfer events starting at a left border on a native Ti plasmid and moving away from the T-DNA region occur and that they can be detected by designing a suitable selection strategy.
Collapse
Affiliation(s)
- V Ramanathan
- Department of Plant Molecular Biology, School of Biotechnology, Madurai Kamaraj University, India
| | | |
Collapse
|
14
|
Waters VL, Guiney DG. Processes at the nick region link conjugation, T-DNA transfer and rolling circle replication. Mol Microbiol 1993; 9:1123-30. [PMID: 7934927 DOI: 10.1111/j.1365-2958.1993.tb01242.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Data from prokaryotic replicative and conjugative systems, which interrelate DNA processing events initiated by a site-specific nick, are reviewed. While the replicative systems have been established in accordance with the rolling circle replication model, the mechanism of conjugative replication has not been elucidated experimentally. We summarize data involving random point mutagenesis of the RK2 transfer origin (oriT), which yielded relaxation-deficient and transfer-deficient derivatives having mutations exclusively in a 10bp region defined as the nick region. Features of the RK2 (IncP) nick region, including the DNA sequence, nick site position, and 5' covalent attachment of the nicking protein, have striking parallels in other systems involving nicking and mobilization of single-stranded DNA from a supercoiled substrate. These other systems include T-DNA transfer occurring in Agrobacterium tumefaciens Ti plasmid-mediated tumorigenesis in plants, and the rolling circle replication of plasmids of Gram-positive bacteria and of phi X174-like bacteriophage. The structural and functional similarities suggest that IncP conjugative replication, originating at the oriT, and T-DNA transfer replication, originating at the T-DNA border, produce continuous strands via a rolling circle-type replication.
Collapse
Affiliation(s)
- V L Waters
- Department of Medicine, UCSD Medical Center 92103
| | | |
Collapse
|
15
|
Cooley MB, Kado CI. Mapping of the ros virulence regulatory gene of A. tumefaciens. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:24-7. [PMID: 1660566 DOI: 10.1007/bf00290645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Virulence functions associated with the oncogenicity of Agrobacterium tumefaciens are encoded by vir genes contained in six major operons located on the Ti plasmid. The virC and virD operons encode functions responsible for host range and T-intermediate processing. These two operons are regulated positively by the product of virG and negatively by the product of the chromosomal gene ros, which encodes a 15.5 kDa repressor. To determine the location of the ros gene we have constructed A. tumefaciens HFR strains, using transposon Tn5mob to mobilize the ros locus, and used them to map the location of ros relative to auxotrophic loci. Tight linkage was found between ros, his-34 and his-19. A linkage map is presented showing the location of ros relative to other known chromosomal genes associated with virulence functions.
Collapse
Affiliation(s)
- M B Cooley
- Davis Crown Gall Group, Dept. of Plant Pathology, University of California Davis 95616
| | | |
Collapse
|
16
|
Shurvinton CE, Ream W. Stimulation of Agrobacterium tumefaciens T-DNA transfer by overdrive depends on a flanking sequence but not on helical position with respect to the border repeat. J Bacteriol 1991; 173:5558-63. [PMID: 1885533 PMCID: PMC208272 DOI: 10.1128/jb.173.17.5558-5563.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
T-DNA transfer by Agrobacterium tumefaciens depends on the right border repeat of the T-DNA and is greatly stimulated by overdrive, an adjacent sequence. We report that the function of overdrive does not depend on helical position with respect to the border repeat. A synthetic 24-bp overdrive and a 12-bp region containing a fully conserved 8-bp core overdrive sequence stimulated virulence equally, but full function required additional bases to the left of the 24-bp sequence.
Collapse
Affiliation(s)
- C E Shurvinton
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-6502
| | | |
Collapse
|
17
|
Wang K, Herrera-Estrella A, Van Montagu M. Overexpression of virD1 and virD2 genes in Agrobacterium tumefaciens enhances T-complex formation and plant transformation. J Bacteriol 1990; 172:4432-40. [PMID: 2165478 PMCID: PMC213272 DOI: 10.1128/jb.172.8.4432-4440.1990] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The VirD1 and VirD2 proteins encoded by an inducible locus of the virulence (vir) region of the Agrobacterium tumefaciens Ti plasmid are required for site-specific nicking at T-DNA border sites. We have determined the nucleotide sequence of a 3.6-kilobase-pair fragment carrying the virD locus from nopaline Ti plasmid pTiC58. In contrast to the previous report (Hagiya et al., Proc. Natl. Acad. Sci. USA 82:2669-2673, 1985), we found that the first three open reading frames were capable of encoding polypeptides of 16.1, 49.7, and 21.4 kilodaltons. Deletion analysis demonstrated that the N-terminal conserved domain of VirD2 was absolutely essential for its endonuclease activity. When extra copies of the virD1 and virD2 genes were present in an A. tumefaciens strain carrying a Ti plasmid, increased amounts of T-strand and nicked molecules could be detected at early stages of vir induction. Such strains possessed the ability to transform plants with higher efficiency.
Collapse
Affiliation(s)
- K Wang
- Laboratorium voor Genetica, Rijksuniversiteit Gent, Belgium
| | | | | |
Collapse
|
18
|
Zyprian E, Kado CI. Agrobacterium-mediated plant transformation by novel mini-T vectors in conjunction with a high-copy vir region helper plasmid. PLANT MOLECULAR BIOLOGY 1990; 15:245-56. [PMID: 2103448 DOI: 10.1007/bf00036911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A new binary vector system for Agrobacterium-mediated plant transformation was developed. A set of four mini-T vectors comprised of T-DNA border sequences from nopaline-type Ti-plasmid pTiC58 flanking a chimaeric hygromycin-resistance gene for selection of transformants and up to eight unique restriction sites for cloning foreign DNA was constructed on a broad-host replicon containing the oriV of plasmid pSa. In two of the constructs these multiple cloning sites are flanked by a strong promoter to activate transcription of inserted DNA in planta. High-efficiency transformation was prompted by a high-copy, stable virulence helper plasmid pUCD2614, which contains a cloned virulence region of pTiC58 and tandem copies of the par locus of plasmid pTAR. Southern blot hybridization and genetic analyses of the progeny of transformed plants showed that the hygromycin resistance gene was stably inherited.
Collapse
Affiliation(s)
- E Zyprian
- Department of Plant Pathology, University of California, Davis 95616
| | | |
Collapse
|
19
|
25-bp long border sequence of-TDNA is sufficient for cleavage byvir D endonuclease ofAgrobacterium. J Genet 1989. [DOI: 10.1007/bf02927858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Zambryski P, Tempe J, Schell J. Transfer and function of T-DNA genes from agrobacterium Ti and Ri plasmids in plants. Cell 1989; 56:193-201. [PMID: 2643473 DOI: 10.1016/0092-8674(89)90892-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- P Zambryski
- Division of Molecular Plant Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
21
|
Van Haaren MJ, Sedee NJ, Krul M, Schilperoort RA, Hooykaas PJ. Function of heterologous and pseudo border repeats in T region transfer via the octopine virulence system of Agrobacterium tumefaciens. PLANT MOLECULAR BIOLOGY 1988; 11:773-781. [PMID: 24272627 DOI: 10.1007/bf00019517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/1988] [Accepted: 09/12/1988] [Indexed: 06/02/2023]
Abstract
The successful transfer of the Ti plasmid T region to the plant cell is mediated by its 24 bp border repeats. Processing of the T-region prior to transfer to the plant cell is started at the right border repeat and is stimulated by a transfer enhancer sequence called "overdrive". Left and right border repeats differ somewhat in nucleotide sequence; moreover, the repeats of different Ti and Ri plasmids are slightly different. Our data indicate that these differences do not have a significant influence on border activity. However, the overdrive sequence is essential for the efficient transfer of a T region via an octopine transfer system. Our data suggest that an overdrive sequence must also be present next to the right border repeats of the nopaline Ti plasmid and the agropine of octopine and nopaline Ti plasmids express some differences in T-DNA processing activities. of cotopine and nopaline Ti plasmids express some differences in T-DNA processing activities.Furthermore, we demonstrate that certain pseudo border repeats, sequences that resemble the native 24 bp border repeat and naturally occur within the octopine Ti plasmid T-region, are able to mediate T region transfer to the plant cell, albeit with much reduced efficiency as compared to wild-type border repeats.
Collapse
Affiliation(s)
- M J Van Haaren
- Department of Plant Molecular Biology, Biochemistry Laboratory, Leiden University, Wassenaarseweg 64, 2333, AL Leiden, Netherlands
| | | | | | | | | |
Collapse
|
22
|
Timmerman B, Van Montagu M, Zambryski P. vir-induced recombination in Agrobacterium. Physical characterization of precise and imprecise T-circle formation. J Mol Biol 1988; 203:373-84. [PMID: 3199438 DOI: 10.1016/0022-2836(88)90005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Induction of Ti plasmid virulence (vir) gene expression during the early stages of plant cell transformation by Agrobacterium tumefaciens initiates the generation of several T-DNA-associated molecular events: (1) site-specific nicks at T-DNA border sequences (border nicks); (2) free, unipolar, linear, single-stranded T-DNA copies (T-strands); and (3) double-stranded, circular T-DNA molecules (T-circles). The first two T-DNA products have been detected in A. tumefaciens, while T-circles have only been detected following Escherichia coli transformation or transduction. The relationship between the three events has not been evaluated since the genesis of T-circles in A. tumefaciens has not been clarified. Evidence is presented here that T-circles are not an artefact of E. coli transformation, but are present as free, double-stranded molecules in A. tumefaciens resulting from site-specific reciprocal recombination between the left and right 25-base-pair border sequences that flank the T-DNA. Furthermore, the frequency of T-circle formation correlates with the frequency of formation of its reciprocal product, the Ti plasmid deleted in the T-DNA region. Several types of recombinant T-DNA circles arise after activation of vir gene expression, a major class representing precise site-specific recombination between both T-DNA borders, and a minor class representing recombination events either utilizing only one T-DNA border sequence and other Ti plasmid sequences, or utilizing only Ti plasmid sequences (i.e. no T-DNA borders). Nucleotide sequence analyses show that when one (nicked) border recombines with other Ti plasmid sequences, a small stretch (16 to 17 base-pairs) of local homology suffices to allow crossing over.
Collapse
Affiliation(s)
- B Timmerman
- Laboratorium voor Genetica, Rijksuniversiteit Gent, Belgium
| | | | | |
Collapse
|