1
|
Yang Y, Chan Y, Wang Y, Guo H, Song L, Zhang H, Sun L, Cong R, Zhang H. Preliminary establishment of genetic transformation system for embryogenic callus of Acer truncatum 'Lihong'. FRONTIERS IN PLANT SCIENCE 2024; 15:1419313. [PMID: 39301161 PMCID: PMC11410635 DOI: 10.3389/fpls.2024.1419313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024]
Abstract
Introduction Acer truncatum Bunge, belonging to the Acer genus in the Aceraceae family, is a commonly planted afforestation species across China, Japan, Korea, Europe, and North America. Renowned for its vibrant fall colors, it holds significant ecological and ornamental value. Methods In this study, Acer truncatum ' Lihong ' was used as the research object. Starting from the callus induction of explants, the embryogenic callus of Acer truncatum 'Lihong' was obtained by systematically optimizing the medium and culture conditions. Then, the candidate gene AtrGST894 screened by transcriptome sequencing was transformed into embryogenic callus by Agrobacterium-mediated transformation. The genetic transformation system of Acer truncatum 'Lihong' embryogenic callus was initially established by continuously adjusting the conditions of Agrobacterium tumefaciens infection receptor materials, thus laying a material foundation for the study of the molecular regulation mechanism of Acer truncatum 'Lihong' leaf color, and also preparing for the later molecular improvement breeding of Acer truncatum. Therefore, this study has important theoretical and practical significance. Results The results showed that the best medium for callus induction of Acer truncatum was 1/2MS+2 mg/L 2,4-D+0.3 mg/L 6-BA+0.5 mg/L NAA; The embryogenic callus induction medium of Acer truncatum was 1/2MS+3.0mg/L 6-BA+2.0mg/L TDZ+0.5mg/L IBA+0.1mg/L GA3; The proliferation medium of embryogenic callus of Acer truncatum was WPM+1.0mg/L TDZ+0.5mg/L IBA+0.1mg/L GA3+3mg/L 6-BA+1.0mg/L KT; The infection experiment of Agrobacterium tumefaciens on the embryogenic callus of Acer truncatum showed that the best antibacterial medium was WPM+30g/L sucrose+8g/L agar+0.5g/L acid-hydrolyzed casein+0.2mg/L KT+1.0 mg/L TDZ+0.5 mg/L IBA+0.1 mg/L GA3+200mmol/L carboxybenzyl+200mg/L cephalosporin, and then WPM+30g/L sucrose+8g/L agar+0.5g/L acid-hydrolyzed casein+0.2mg/L KT+1.0 mg/L TDZ+0.5 mg/L IBA+0.1 mg/L GA3+300mmol/L carboxybenzyl+200mg/L cephalosporin+25mg/L hygromycin. Screening medium screening, The obtained embryogenic callus browning rate, pollution rate and mortality rate were the lowest, and maintained vigorous growth. Discussion The embryogenic callus was used as the infection material to verify that we successfully transferred the target gene into the embryogenic callus, which means that the genetic transformation system of Acer truncatum embryogenic callus was partially completed, and the infection process could be effectively inhibited. Although there was partial browning, it could continue to proliferate. Therefore, in future experiments, the focus is still to continue to verify the optimal conditions for optimizing the genetic transformation of Acer truncatum embryogenic callus and to solve the problems of difficulty in embryonic callus germination.
Collapse
Affiliation(s)
- Yipeng Yang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Yuan Chan
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Yongge Wang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Hao Guo
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Lina Song
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Huali Zhang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Liping Sun
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Richen Cong
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| |
Collapse
|
2
|
Lin RC, Rausher MD. Absence of long-term balancing selection on variation in EuMYB3, an R2R3-MYB gene responsible for the anther-color polymorphism in Erythronium umbilicatum. Sci Rep 2024; 14:5364. [PMID: 38438787 PMCID: PMC10912454 DOI: 10.1038/s41598-024-56117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
Balancing selection has been shown to be common in plants for several different types of traits, such as self-incompatibility and heterostyly. Generally, for these traits balancing selection is generated by interactions among individuals or between individuals and other species (e.g., pathogens or pollinators). However, there are phenotypic polymorphisms in plants that do not obviously involve types of interactions that generate balancing selection. Little is known about the extent to which balancing selection also acts to preserve these polymorphisms. Here we ask whether balancing selection preserves an anther-color polymorphism in Erythronium umbilicatum (Liliaceae). We identified a major gene underlying this polymorphism. We then attempted to detect signatures of balancing selection on that gene by developing a new coalescence test for balancing selection. We found that variation in anther color is in large part caused by variation in a paralog of EuMYB3, an anthocyanin-regulating R2R3-MYB transcription factor. However, we found little evidence for balancing selection having acted historically on EuMYB3. Our results thus suggest that plant polymorphisms, especially those not involved in interactions that are likely to generate negative frequency-dependent selection, may reflect a transient state in which one morph will eventually be fixed by either genetic drift or directional selection. Our results also suggest that regulation of the anthocyanin pathway is more evolutionarily labile than is generally believed.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
3
|
Dong H, Li H, Xue Y, Su S, Li S, Shan X, Liu H, Jiang N, Wu X, Zhang Z, Yuan Y. E183K Mutation in Chalcone Synthase C2 Causes Protein Aggregation and Maize Colorless. FRONTIERS IN PLANT SCIENCE 2021; 12:679654. [PMID: 34249050 PMCID: PMC8261305 DOI: 10.3389/fpls.2021.679654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Flavonoids give plants their rich colors and play roles in a number of physiological processes. In this study, we identified a novel colorless maize mutant showing reduced pigmentation throughout the whole life cycle by EMS mutagenesis. E183K mutation in maize chalcone synthase C2 (ZmC2) was mapped using MutMap strategy as the causal for colorless, which was further validated by transformation in Arabidopsis. We evaluated transcriptomic and metabolic changes in maize first sheaths caused by the mutation. The downstream biosynthesis was blocked while very few genes changed their expression pattern. ZmC2-E183 site is highly conserved in chalcone synthase among Plantae kingdom and within species' different varieties. Through prokaryotic expression, transient expression in maize leaf protoplasts and stable expression in Arabidopsis, we observed that E183K and other mutations on E183 could cause almost complete protein aggregation of chalcone synthase. Our findings will benefit the characterization of flavonoid biosynthesis and contribute to the body of knowledge on protein aggregation in plants.
Collapse
Affiliation(s)
- Haixiao Dong
- College of Plant Science, Jilin University, Changchun, China
| | - He Li
- College of Plant Science, Jilin University, Changchun, China
| | - Yingjie Xue
- College of Plant Science, Jilin University, Changchun, China
| | - Shengzhong Su
- College of Plant Science, Jilin University, Changchun, China
| | - Shipeng Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, China
| | - Hongkui Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Nan Jiang
- College of Plant Science, Jilin University, Changchun, China
| | - Xuyang Wu
- College of Plant Science, Jilin University, Changchun, China
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Yaping Yuan
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
4
|
Lin RC, Rausher MD. R2R3-MYB genes control petal pigmentation patterning in Clarkia gracilis ssp. sonomensis (Onagraceae). THE NEW PHYTOLOGIST 2021; 229:1147-1162. [PMID: 32880946 DOI: 10.1111/nph.16908] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Petal pigmentation patterning is widespread in flowering plants. The genetics of these pattern elements has been of great interest for understanding the evolution of phenotypic diversification. Here, we investigate the genetic changes responsible for the evolution of an unpigmented petal element on a colored background. We used transcriptome analysis, gene expression assays, cosegregation in F2 plants and functional tests to identify the gene(s) involved in petal coloration in Clarkia gracilis ssp. sonomensis. We identified an R2R3-MYB transcription factor (CgsMYB12) responsible for anthocyanin pigmentation of the basal region ('cup') in the petal of C. gracilis ssp. sonomensis. A functional mutation in CgsMYB12 creates a white cup on a pink petal background. Additionally, we found that two R2R3-MYB genes (CgsMYB6 and CgsMYB11) are also involved in petal background pigmentation. Each of these three R2R3-MYB genes exhibits a different spatiotemporal expression pattern. The functionality of these R2R3-MYB genes was confirmed through stable transformation of Arabidopsis. Distinct spatial patterns of R2R3-MYB expression have created the possibility that pigmentation in different sections of the petal can evolve independently. This finding suggests that recent gene duplication has been central to the evolution of petal pigmentation patterning in C. gracilis ssp. sonomensis.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
5
|
Gomez-Cano L, Gomez-Cano F, Dillon FM, Alers-Velazquez R, Doseff AI, Grotewold E, Gray J. Discovery of modules involved in the biosynthesis and regulation of maize phenolic compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110364. [PMID: 31928683 DOI: 10.1016/j.plantsci.2019.110364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Phenolic compounds are among the most diverse and widespread of specialized plant compounds and underly many important agronomic traits. Our comprehensive analysis of the maize genome unraveled new aspects of the genes involved in phenylpropanoid, monolignol, and flavonoid production in this important crop. Remarkably, just 19 genes accounted for 70 % of the overall mRNA accumulation of these genes across 95 tissues, indicating that these are the main contributors to the flux of phenolic metabolites. Eighty genes with intermediate to low expression play minor and more specialized roles. Remaining genes are likely undergoing loss of function or are expressed in limited cell types. Phylogenetic and expression analyses revealed which members of gene families governing metabolic entry and branch points exhibit duplication, subfunctionalization, or loss of function. Co-expression analysis applied to genes in sequential biosynthetic steps revealed that certain isoforms are highly co-expressed and are candidates for metabolic complexes that ensure metabolite delivery to correct cellular compartments. Co-expression of biosynthesis genes with transcription factors discovered connections that provided candidate components for regulatory modules governing this pathway. Our study provides a comprehensive analysis of maize phenylpropanoid related genes, identifies major pathway contributors, and novel candidate enzymatic and regulatory modules of the metabolic network.
Collapse
Affiliation(s)
- Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Francisco M Dillon
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Andrea I Doseff
- Department of Physiology, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
6
|
Shoeva OY, Glagoleva AY, Khlestkina EK. The factors affecting the evolution of the anthocyanin biosynthesis pathway genes in monocot and dicot plant species. BMC PLANT BIOLOGY 2017; 17:256. [PMID: 29297327 PMCID: PMC5751542 DOI: 10.1186/s12870-017-1190-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND The available data demonstrate that even in universal metabolic pathways, some species-specific regulatory features of structural genes are present. For instance, in the anthocyanin biosynthesis pathway (ABP), genes may be regulated by ABP-specific regulatory factors, and their expression levels may be strongly associated with anthocyanin pigmentation, or they may be expressed independently of pigmentation. A dataset of orthologous ABP genes (Chs, Chi, F3h, F3'h, Dfr, Ans) from monocot and dicot plant species that have distinct gene regulation patterns and different types of pollination was constructed to test whether these factors affect the evolution of the genes. RESULTS Using a maximum likelihood approach, we demonstrated that although the whole set of the ABP genes is under purifying selection, with greater selection acting on the upstream genes than on the downstream genes, genes from distinct groups of plant species experienced different strengths of selective pressure. The selective pressure on the genes was higher in dicots than in monocots (F3h and further downstream genes) and in pollinator-dependent plants than in pollinator-independent species (Chi and further downstream genes), suggesting an important role of pollination type in the evolution of the anthocyanin biosynthesis gene network. Contrasting effects of the regulation patterns on evolution were detected for the F3h and Dfr genes, with greater selective pressure on the F3h gene in plant species where the gene expression was not strongly associated with pigmentation and greater selective pressure on Dfr in plant species where the gene expression was associated with pigmentation. CONCLUSIONS We demonstrated the effects of pollination type and patterns of regulation on the evolution of the ABP genes, but the evolution of some of the genes could not be explained in the framework of these factors, such as the weaker selective pressure acting on Chs in species that attract pollinators or the stronger selective pressure on F3h in plant species where the gene expression was not associated with pigmentation. The observations suggest that additional factors could affect the evolution of these genes. One such factor could be an effect of gene duplication with further division of functions among gene copies and relaxed selective pressure acting on them. Additional tests with an appropriate dataset combining data on duplicated gene sequences and their functions in the flavonoid biosynthesis pathway are required to test this hypothesis.
Collapse
Affiliation(s)
- Olesya Yu. Shoeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiya Yu. Glagoleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
7
|
Regulation of the Flavonoid Biosynthesis Pathway Genes in Purple and Black Grains of Hordeum vulgare. PLoS One 2016; 11:e0163782. [PMID: 27706214 PMCID: PMC5051897 DOI: 10.1371/journal.pone.0163782] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/14/2016] [Indexed: 01/12/2023] Open
Abstract
Barley grain at maturity can have yellow, purple, blue, and black pigmentations which are suggested to play a protective role under stress conditions. The first three types of the colors are caused by phenolic compounds flavonoids; the last one is caused by phytomelanins, oxidized and polymerized phenolic compounds. Although the genetic basis of the flavonoid biosynthesis pathway in barley has been thoroughly studied, there is no data yet on its regulation in purple and black barley grains. In the current study, genetic model of Hordeum vulgare ‘Bowman’ near-isogenic lines (NILs) was used to investigate the regulation of the flavonoid biosynthesis in white, purple, and black barley grains. Microsatellite genotyping revealed donor segments in the purple- and black-grained lines on chromosomes 2H (in region of the Ant2 gene determining purple color of grains) and 1H (in region of the Blp gene determining black lemma and pericarp), respectively. The isolated dominant Ant2 allele of the purple-grained line has high level of sequence similarity with the recessive Bowman’s ant2 in coding region, whereas an insertion of 179 bp was detected in promoter region of ant2. This structural divergence between Ant2 and ant2 alleles may underlie their different expression in grain pericarp: Bowman’s Ant2 is not transcribed, whereas it was up-regulated in the purple-grained line with coordinately co-expressed flavonoid biosynthesis structural genes (Chs, Chi, F3h, F3’h, Dfr, Ans). This led to total anthocyain content increase in purple-grained line identified by ultra-performance liquid chromatography (HPLC). Collectively, these results proved the regulatory function of the Ant2 gene in anthocyanin biosynthesis in barley grain pericarp. In the black-grained line, the specific transcriptional regulation of the flavonoid biosynthesis pathway genes was not detected, suggesting that flavonoid pigments are not involved in development of black lemma and pericarp trait.
Collapse
|
8
|
Han Y, Ding T, Su B, Jiang H. Genome-Wide Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in Maize. Int J Mol Sci 2016; 17:E161. [PMID: 26828478 PMCID: PMC4783895 DOI: 10.3390/ijms17020161] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 11/16/2022] Open
Abstract
Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogenetic relationships, gene structures, chromosomal locations and expression analysis. Fourteen CHS genes (ZmCHS01-14) were identified in the genome of maize, representing one of the largest numbers of CHS family members identified in one organism to date. The gene family was classified into four major classes (classes I-IV) based on their phylogenetic relationships. Most of them contained two exons and one intron. The 14 genes were unevenly located on six chromosomes. Two segmental duplication events were identified, which might contribute to the expansion of the maize CHS gene family to some extent. In addition, quantitative real-time PCR and microarray data analyses suggested that ZmCHS genes exhibited various expression patterns, indicating functional diversification of the ZmCHS genes. Our results will contribute to future studies of the complexity of the CHS gene family in maize and provide valuable information for the systematic analysis of the functions of the CHS gene family.
Collapse
Affiliation(s)
- Yahui Han
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| | - Ting Ding
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| | - Bo Su
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| | - Haiyang Jiang
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Iaria DL, Chiappetta A, Muzzalupo I. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins "Switch-Off" in Olive (Olea europaea L.) Drupes at Different Stages of Maturation. FRONTIERS IN PLANT SCIENCE 2016; 6:1246. [PMID: 26834761 PMCID: PMC4717290 DOI: 10.3389/fpls.2015.01246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/21/2015] [Indexed: 05/23/2023]
Abstract
Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown "spot" which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of "Leucocarpa" and "Cassanese" olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in "Leucocarpa" and "Cassanese" genotypes, respectively, during 100-130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3'-hydrogenase (F3'H), flavonol 3'5 '-hydrogenase (F3'5'H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute to reducing the current gap in information regarding metabolic processes, including those linked to fruit pigmentation in the olive.
Collapse
Affiliation(s)
- Domenico L. Iaria
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Olivicoltura e l'Industria OleariaCosenza, Italy
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaCosenza, Italy
| | - Innocenzo Muzzalupo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Olivicoltura e l'Industria OleariaCosenza, Italy
- Dipartimento di Farmacia, Scienze della Salute e della Nutrizione, Università della CalabriaCosenza, Italy
| |
Collapse
|
10
|
Affiliation(s)
- E. H. Coe
- USDA-ARS University of Missouri; Columbia Missouri
| | | | | |
Collapse
|
11
|
FENG QIAO, GUI-GONG GENG, YANG ZENG, HUI-CHUN XIE, LAN JIN, JUN SHANG, ZHI CHEN. Molecular cloning and expression profiling of a chalcone synthase gene from Lamiophlomis rotata. J Genet 2015; 94:193-205. [DOI: 10.1007/s12041-015-0502-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Ahmed NU, Park JI, Jung HJ, Hur Y, Nou IS. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Funct Integr Genomics 2014; 15:383-94. [PMID: 25504198 DOI: 10.1007/s10142-014-0427-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/27/2014] [Accepted: 11/30/2014] [Indexed: 01/08/2023]
Abstract
Flavonoids are divided into several structural classes, including anthocyanins, which provide flower and leaf colors and other derivatives that play diverse roles in plant development and interactions with the environment. This study characterized four anthocyanidin synthase (ANS) genes of Brassica rapa, a structural gene of the anthocyanin biosynthetic pathway, and investigated their association with pigment formation, cold and freezing tolerance in B. rapa. Sequences of these genes were analyzed and compared with similar gene sequences from other species, and a high degree of homology with their respective functions was found. Organ-specific expression analysis revealed that these genes were only expressed in the colored portion of leaves of different lines of B. rapa. Conversely, B. rapa anthocyanidin synthase (BrANS) genes also showed responses to cold and freezing stress treatment in B. rapa. BrANSs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold stress. Thus, the above results suggest the association of these genes with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold-resistant Brassica crops with desirable colors as well.
Collapse
Affiliation(s)
- Nasar Uddin Ahmed
- Department of Horticulture, Sunchon National University, 413 Jungang-ro, Suncheon, Jeonnam, 540-950, Republic of Korea
| | | | | | | | | |
Collapse
|
13
|
Ahmed NU, Park JI, Jung HJ, Yang TJ, Hur Y, Nou IS. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene 2014; 550:46-55. [DOI: 10.1016/j.gene.2014.08.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
|
14
|
Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:81-90. [PMID: 24907528 DOI: 10.1016/j.pbi.2014.05.011] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/13/2014] [Accepted: 05/06/2014] [Indexed: 05/18/2023]
|
15
|
Tereshchenko O, Arbuzova V, Khlestkina E. Allelic state of the genes conferring purple pigmentation in different wheat organs predetermines transcriptional activity of the anthocyanin biosynthesis structural genes. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2012.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Song J, Guo Y, Yu LJ, Qiu LJ. [Progress in genes related to seed-coat color in soybean]. YI CHUAN = HEREDITAS 2012; 34:687-94. [PMID: 22698739 DOI: 10.3724/sp.j.1005.2012.00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Seed-coat color has changed from black to yellow during natural and artificial selection of cultivated soybean from wild soybean, and it is also an important morphological marker. Therefore, discovering genes related to the soybean seed-coat color will play a very important role in breeding and evolutionary study. Different seed-coat colors caused by deposition of various anthocyanin pigments. Although pigmentation has been well dissected at molecular level in several plant species, the genes controlling natural variation of seed-coat color in soybean remain to be unknown. Genes related to seed-coat color in soybean were discussed in this paper, including 5 genetic loci (I, T, W1, R and O). Locus I is located in a region that riches in chalcone synthase (CHS) genes on chromosome 8. Gene CHS is a multi-gene family with highly conserved sequences in soybean. Locus T located on chromosome 6 has been cloned and verified, which encodes a flavon-oid-3'-hydroxylase. Mutant of F3'H can not interact with the heme-binding domain due to lack of conservative domain GGEK caused by a nucleotide deletion in the coding region of F3'H. Locus R is located between A668-1 and K387-1 on chromosome 9 (linkage group K). This locus may encode a R2R3 MYB transcription factor or a UDP flavonoid 3-O glyco-syltransferase. Locus O is located between Satt207 and Satt493 on chromosome 8 (linkage group A2) and its molecular characteristics has not been characterized. Locus W1 may be a homology of F3'5'H gene.
Collapse
Affiliation(s)
- Jian Song
- College of Biological Science and Technology, Harbin Normal University, Harbin 150025, China.
| | | | | | | |
Collapse
|
17
|
Streisfeld MA, Rausher MD. Genetic changes contributing to the parallel evolution of red floral pigmentation among Ipomoea species. THE NEW PHYTOLOGIST 2009; 183:751-763. [PMID: 19594698 DOI: 10.1111/j.1469-8137.2009.02929.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The repeated, independent evolution of phenotypic traits reflects adaptation to similar selective pressures. In some circumstances, parallel phenotypic evolution has a common genetic basis. Here, we investigate the types of genetic change responsible for the repeated evolution of red flowers among Ipomoea species. We identified three independent transitions from cyanidin- (blue/purple) to pelargonidin-type (red) anthocyanin pigments among Ipomoea species. The genetic basis for these transitions was examined using transgenics and gene expression assays. Using a literature survey to estimate the expected spectrum of mutation types capable of producing red flowers, we evaluated whether the observed distribution of mutation types differed from expectation. In these species, red floral pigmentation appears to be caused by the disruption of flux through the anthocyanin pathway at the same position. Results implicate tissue-specific regulatory changes in the same gene, which suggests the possibility that flower color evolved independently via the same genetic mechanism. Although multiple molecular mechanisms are capable of producing red flowers, we found a deviation between the distributions of observed and expected mutation types responsible for these evolutionary transitions. Regulatory mutations thus appear to be preferentially targeted during evolutionary change between species. We discuss possible explanations for this apparent bias.
Collapse
Affiliation(s)
| | - Mark D Rausher
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
18
|
Streisfeld MA, Rausher MD. Altered trans-regulatory control of gene expression in multiple anthocyanin genes contributes to adaptive flower color evolution in Mimulus aurantiacus. Mol Biol Evol 2008; 26:433-44. [PMID: 19029190 DOI: 10.1093/molbev/msn268] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A fundamental goal in evolutionary biology is to identify the molecular changes responsible for adaptive evolution. In this study, we describe a genetic analysis to determine whether the molecular changes contributing to adaptive flower color divergence in Mimulus aurantiacus affect gene expression or enzymatic activity. High performance liquid chromatography analysis confirms that flower color differences are caused by the presence versus absence of anthocyanin pigments. Cosegregation analysis and in vitro enzymatic assays rule out mutations that affect enzymatic function in the anthocyanin pathway genes. By contrast, cosegregation of gene expression with flower color suggests that tissue-specific differences in pigment production are caused by the coordinated regulatory control of three anthocyanin pathway genes. We provide evidence indicating that these expression differences are caused by a locus that acts in trans- and explains 45% of the phenotypic variance in flower color. A second locus with sequence similarity to the R2R3 MYB family of transcription factors explains 9% of the variation but does so in a complex fashion. These results demonstrate one of only two examples where we have clear evidence of both the adaptive nature of a flower color transition and evidence for its genetic basis. In both cases, mutations appear to affect expression of the anthocyanin structural genes. Future studies will allow us to determine whether these differences represent a real bias in favor of mutations that affect gene expression.
Collapse
|
19
|
Casati P, Campi M, Chu F, Suzuki N, Maltby D, Guan S, Burlingame AL, Walbot V. Histone acetylation and chromatin remodeling are required for UV-B-dependent transcriptional activation of regulated genes in maize. THE PLANT CELL 2008; 20:827-42. [PMID: 18398050 PMCID: PMC2390752 DOI: 10.1105/tpc.107.056457] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/19/2008] [Accepted: 03/25/2008] [Indexed: 05/20/2023]
Abstract
The nuclear proteomes of maize (Zea mays) lines that differ in UV-B tolerance were compared by two-dimensional gel electrophoresis after UV light treatment. Differential accumulation of chromatin proteins, particularly histones, constituted the largest class identified by mass spectrometry. UV-B-tolerant landraces and the B73 inbred line show twice as many protein changes as the UV-B-sensitive b, pl W23 inbred line and transgenic maize expressing RNA interference constructs directed against chromatin factors. Mass spectrometic analysis of posttranslational modifications on histone proteins demonstrates that UV-B-tolerant lines exhibit greater acetylation on N-terminal tails of histones H3 and H4 after irradiation. These acetylated histones are enriched in the promoter and transcribed regions of the two UV-B-upregulated genes examined; radiation-sensitive lines lack this enrichment. DNase I and micrococcal nuclease hypersensitivity assays indicate that chromatin adopts looser structures around the selected genes in the UV-B-tolerant samples. Chromatin immunoprecipitation experiments identified additional chromatin factor changes associated with the nfc102 test gene after UV-B treatment in radiation-tolerant lines. Chromatin remodeling is thus shown to be a key process in acclimation to UV-B, and lines deficient in this process are more sensitive to UV-B.
Collapse
Affiliation(s)
- Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hidema J, Kumagai T. Sensitivity of rice to ultraviolet-B radiation. ANNALS OF BOTANY 2006; 97:933-42. [PMID: 16520342 PMCID: PMC2803405 DOI: 10.1093/aob/mcl044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/15/2005] [Accepted: 12/22/2005] [Indexed: 05/07/2023]
Abstract
BACKGROUND Depletion of the stratospheric ozone layer leads to an increase in ultraviolet-B (UVB: 280-320 nm) radiation reaching the earth's surface, and the enhanced solar UVB radiation predicted by atmospheric models will result in reduction of growth and yield of crops in the future. Over the last two decades, extensive studies of the physiological, biochemical and morphological effects of UVB in plants, as well as the mechanisms of UVB resistance, have been carried out. SCOPE In this review, we describe recent research into the mechanisms of UVB resistance in higher plants, with an emphasis on rice (Oryza sativa), one of the world's most important staple food crops. Recent studies have brought to light the following remarkable findings. UV-absorbing compounds accumulating in the epidermal cell layers have traditionally been considered to function as UV filters, and to play an important role in countering the damaging effects of UVB radiation. Although these compounds are effective in reducing cyclobutane pyrimidine dimer (CPD) induction in plants exposed to a challenge exposure to UVB, certain levels of CPD are maintained constitutively in light conditions containing UVB, regardless of the quantity or presence of visible light. These findings imply that the systems for repairing DNA damage and scavenging reactive oxygen species (ROS) are essential for plants to grow in light conditions containing UVB. CONCLUSION CPD photolyase activity is a crucial factor determining the differences in UVB sensitivity between rice cultivars. The substitution of one or two bases in the CPD photolyase gene can alter the activity of the enzyme, and the associated resistance of the plant to UVB radiation. These findings open up the possibility, in the near future, of increasing the resistance of rice to UVB radiation, by selective breeding or bioengineering of the genes encoding CPD photolyase.
Collapse
Affiliation(s)
- Jun Hidema
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| | | |
Collapse
|
21
|
Della Vedova CB, Lorbiecke R, Kirsch H, Schulte MB, Scheets K, Borchert LM, Scheffler BE, Wienand U, Cone KC, Birchler JA. The dominant inhibitory chalcone synthase allele C2-Idf (inhibitor diffuse) from Zea mays (L.) acts via an endogenous RNA silencing mechanism. Genetics 2005; 170:1989-2002. [PMID: 15956664 PMCID: PMC1449766 DOI: 10.1534/genetics.105.043406] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 05/09/2005] [Indexed: 11/18/2022] Open
Abstract
The flavonoid pigment pathway in plants has been used as a model system for studying gene regulatory mechanisms. C2-Idf is a stable dominant mutation of the chalcone synthase gene, c2, which encodes the first dedicated enzyme in this biosynthetic pathway of maize. Homozygous C2-Idf plants show no pigmentation. This allele also inhibits expression of functional C2 alleles in heterozygotes, producing a less pigmented condition instead of the normal deeply pigmented phenotype. To explore the nature of this effect, the C2-Idf allele was cloned. The gene structure of the C2-Idf haplotype differs substantially from that of the normal c2 gene in that three copies are present. Two of these are located in close proximity to each other in a head-to-head orientation and the third is closely linked. Previous experiments showed that the lower level of pigmentation in heterozygotes is correlated with reduced enzyme activity and low steady-state mRNA levels. We found that c2 transcription occurs in nuclei of C2-Idf/C2 heterozygotes, but mRNA does not accumulate, suggesting that the inhibition is mediated by RNA silencing. Infection of C2-Idf/C2 heterozygotes with viruses that carry suppressors of RNA silencing relieved the phenotypic inhibition, restoring pigment production and mRNA levels. Finally, we detected small interfering RNAs (siRNAs) in plants carrying C2-Idf, but not in plants homozygous for the wild-type C2 allele. Together, our results indicate that the inhibitory effect of C2-Idf occurs through RNA silencing.
Collapse
MESH Headings
- Acyltransferases/genetics
- Alleles
- Cell Nucleus/genetics
- Cloning, Molecular
- DNA Methylation
- DNA, Plant/analysis
- Gene Dosage
- Genes, Dominant
- Genes, Plant
- Genome, Plant
- Haplotypes
- Heterozygote
- Homozygote
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/analysis
- Sequence Analysis, DNA
- Transcription, Genetic
- Zea mays/genetics
Collapse
|
22
|
Casati P, Zhang X, Burlingame AL, Walbot V. Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity. Mol Cell Proteomics 2005; 4:1673-85. [PMID: 16043824 DOI: 10.1074/mcp.m500173-mcp200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UV-B radiation causes diverse morphological and physiological responses in plants, but the underlying mechanisms governing these integrated responses are unknown. In this study, we systematically surveyed responses of maize leaves to UV-B radiation using DIGE 2D gels and identified selected proteins by mass spectrometry and immunodetection analysis. To identify changes in protein accumulation in response to UV-B radiation, a line (b, pl W23) deficient in flavonoid sunscreen compounds and hence similar to commercial corn was used. In addition, its proteome in natural UV-B conditions was compared with that of two maize landraces from high altitudes (Cacahuacintle and Confite Puneño) that have improved UV-B tolerance. Protein patterns in adult maize leaves (Zea mays) were documented after growth for 21 days in sunlight depleted of UV-B radiation or growth in sunlight including an 8-h UV-B supplementation during 1 day in the field. We found that there is a very high correlation between previously documented mRNA accumulation assessed by microarray hybridization and quantitative real time reverse transcription-PCR and protein expression after UV-B irradiation in leaves of W23. Multiple isoforms were confirmed for some proteins; at least one protein, pyruvate, phosphate dikinase, is regulated post-translationally by phosphorylation by UV-B exposure. Proteins differentially regulated by UV-B radiation in W23 with higher levels under similar UV-B conditions in high altitude plants were also identified. These could be genetically fixed traits conferring UV-B tolerance and offer clues to specific adaptations to living in high ambient UV-B conditions.
Collapse
Affiliation(s)
- Paula Casati
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| | | | | | | |
Collapse
|
23
|
Swigonová Z, Bennetzen JL, Messing J. Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 2005; 169:891-906. [PMID: 15489523 PMCID: PMC1449108 DOI: 10.1534/genetics.104.034629] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 10/13/2004] [Indexed: 11/18/2022] Open
Abstract
The r1 and b1 genes of maize, each derived from the chromosomes of two progenitors that hybridized >4.8 million years ago (MYA), have been a rich source for studying transposition, recombination, genomic imprinting, and paramutation. To provide a phylogenetic context to the genetic studies, we sequenced orthologous regions from maize and sorghum (>600 kb) surrounding these genes and compared them with the rice genome. This comparison showed that the homologous regions underwent complete or partial gene deletions, selective retention of orthologous genes, and insertion of nonorthologous genes. Phylogenetic analyses of the r/b genes revealed that the ancestral gene was amplified independently in different grass lineages, that rice experienced an intragenomic gene movement and parallel duplication, that the maize r1 and b1 genes are descendants of two divergent progenitors, and that the two paralogous r genes of sorghum are almost as old as the sorghum lineage. Such sequence mobility also extends to linked genes. The cisZOG genes are characterized by gene amplification in an ancestral grass, parallel duplications and deletions in different grass lineages, and movement to a nonorthologous position in maize. In addition to gene mobility, both maize and rice regions experienced recent transposition (<3 MYA).
Collapse
Affiliation(s)
- Zuzana Swigonová
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854-8020, USA
| | | | | |
Collapse
|
24
|
Casati P, Walbot V. Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. PLANT PHYSIOLOGY 2003; 132:1739-54. [PMID: 12913132 PMCID: PMC181262 DOI: 10.1104/pp.103.022871] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 03/27/2003] [Accepted: 05/05/2003] [Indexed: 05/19/2023]
Abstract
Microarray hybridization was used to assess acclimation responses to four UV regimes by near isogenic maize (Zea mays) lines varying in flavonoid content. We found that 355 of the 2,500 cDNAs tested were regulated by UV radiation in at least one genotype. Among these, 232 transcripts are assigned putative functions, whereas 123 encode unknown proteins. UV-B increased expression of stress response and ribosomal protein genes, whereas photosynthesis-associated genes were down-regulated; lines lacking UV-absorbing pigments had more dramatic responses than did lines with these pigments, confirming the shielding role of these compounds. Sunlight filtered to remove UV-B or UV-B plus UV-A resulted in significant expression changes in many genes not previously associated with UV responses. Some pathways regulated by UV radiation are shared with defense, salt, and oxidative stresses; however, UV-B radiation can activate additional pathways not shared with other stresses.
Collapse
Affiliation(s)
- Paula Casati
- Department of Biological Sciences, 385 Serra Mall, Stanford University, Stanford, California 94305-5020, USA.
| | | |
Collapse
|
25
|
Abstract
The accumulation of red or purple flavonoids is a hallmark of plant stress. Mounting evidence points to diverse physiological functions for these compounds in the stress response. Advances are also being made toward understanding how plants control the types and amounts of flavonoids that are produced in response to different cues.
Collapse
|
26
|
Guo BZ, Zhang ZJ, Li RG, Widstrom NW, Snook ME, Lynch RE, Plaisted D. Restriction fragment length polymorphism markers associated with silk maysin, antibiosis to corn earworm (Lepidoptera: Noctuidae) larvae, in a dent and sweet corn cross. JOURNAL OF ECONOMIC ENTOMOLOGY 2001; 94:564-571. [PMID: 11332855 DOI: 10.1603/0022-0493-94.2.564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Maysin, a C-glycosylflavone in maize silk, has insecticidal activity against corn earworm, Helicoverpa zea (Boddie), larvae. Sweet corn, Zea mays L., is a vulnerable crop to ear-feeding insects and requires pesticide protection from ear damage. This study was conducted to identify maize chromosome regions associated with silk maysin concentration and eventually to transfer and develop high silk maysin sweet corn lines with marker-assisted selection (MAS). Using an F2 population derived from SC102 (high maysin dent corn) and B31857 (low maysin sh2 sweet corn), we detected two major quantitative trait loci (QTL). It was estimated that 25.6% of the silk maysin variance was associated with segregation in the genomic region of npi286 (flanking to p1) on chromosome 1S. We also demonstrated that a1 on chromosome 3L had major contribution to silk maysin (accounted for 15.7% of the variance). Locus a1 has a recessive gene action for high maysin with the presence of functional p1 allele. Markers umc66a (near c2) and umc105a on chromosome 9S also were detected in this analysis with minor contribution. A multiple-locus model, which included npi286, a1, csu3 (Bin 1.05), umc245 (Bin 7.05), agrr21 (Bin 8.09), umc105a, and the epistatic interactions npi286 x a1, a1 x agrr21, csu3 x umc245, and umc105a x umc245, accounted for 76.3% of the total silk maysin variance. Tester crosses showed that at the a1 locus, SC102 has functional A1 alleles and B31857 has homozygous recessive a1 alleles. Individuals of (SC102 x B31857) x B31857 were examined with MAS and plants with p1 allele from SC102 and homozygous a1 alleles from B31857 had consistent high silk maysin. Marker-assisted selection seems to be a suitable method to transfer silk maysin to sweet corn lines to reduce pesticide application.
Collapse
Affiliation(s)
- B Z Guo
- Crop Protection and Management Research Unit, Coastal Plain Experiment Station, USDA-ARS, Tifton, GA 31793, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Martin C, Jin H, Schwinn K. Chapter Eight Mechanisms and applications of transcriptional control of phenylpropanoid metabolism. RECENT ADVANCES IN PHYTOCHEMISTRY 2001. [DOI: 10.1016/s0079-9920(01)80009-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Petroni K, Cominelli E, Consonni G, Gusmaroli G, Gavazzi G, Tonelli C. The developmental expression of the maize regulatory gene Hopi determines germination-dependent anthocyanin accumulation. Genetics 2000; 155:323-36. [PMID: 10790406 PMCID: PMC1461070 DOI: 10.1093/genetics/155.1.323] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Hopi gene is a member of the maize r1 gene family. By genetic and molecular analyses we report that Hopi consists of a single gene residing on chromosome 10 approximately 4.5 cM distal to r1. Hopi conditions anthocyanin deposition in aleurone, scutellum, pericarp, root, mesocotyl, leaves, and anthers, thus representing one of the broadest specifications of pigmentation pattern reported to date of all the r1 genes. A unique feature of the Hopi gene is that seeds are completely devoid of pigment at maturity but show a photoinducible germination-dependent anthocyanin accumulation in aleurone and scutellum. Our analysis has shown that the Hopi transcript is not present in scutellum of developing seeds but is induced only upon germination and that the simultaneous presence of both C1 and Hopi mRNAs is necessary to achieve A1 activation in scutella. We conclude that the expression pattern of the Hopi gene accounts for the germination-dependent anthocyanin synthesis in scutella, whereas the developmental competence of germinating seeds to induce anthocyanin production in scutella results from the combination of the light-inducible expression of C1 and the developmentally regulated expression of the Hopi gene.
Collapse
Affiliation(s)
- K Petroni
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
29
|
McMullen MD, Byrne PF, Snook ME, Wiseman BR, Lee EA, Widstrom NW, Coe EH. Quantitative trait loci and metabolic pathways. Proc Natl Acad Sci U S A 1998; 95:1996-2000. [PMID: 9482823 PMCID: PMC33831 DOI: 10.1073/pnas.95.5.1996] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for "channeling" of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits.
Collapse
Affiliation(s)
- M D McMullen
- Plant Genetics Research Unit, Agricultural Research Service-United States Department of Agriculture, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Helariutta Y, Kotilainen M, Elomaa P, Teeri TH. Gerbera hybrida (Asteraceae) imposes regulation at several anatomical levels during inflorescence development on the gene for dihydroflavonol-4-reductase. PLANT MOLECULAR BIOLOGY 1995; 28:935-941. [PMID: 7640364 DOI: 10.1007/bf00042077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the ornamental cut flower plant Gerbera hybrida the spatial distribution of regulatory molecules characteristic of differentiation of the composite inflorescence is visualized as the various patterns of anthocyanin pigmentation of different varieties. In order to identify genes that the plant can regulate according to these anatomical patterns, we have analysed gene expression affecting two enzymatic steps, chalcone synthase (CHS) and dihydroflavonol-4-reductase (DFR), in five gerbera varieties with spatially restricted anthocyanin pigmentation patterns. The dfr expression profiles vary at the levels of floral organ, flower type and region within corolla during inflorescence development according to the anthocyanin pigmentation of the cultivars. In contrast, chs expression, although regulated in a tissue-specific manner during inflorescence development, varies only occasionally. The variation in the dfr expression profiles between the varieties reveals spatially specific gene regulation that senses the differentiation events characteristic of the composite inflorescence.
Collapse
Affiliation(s)
- Y Helariutta
- Institute of Biotechology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
31
|
Tonelli C, Dolfini S, Ronchi A, Consonni G, Gavazzi G. Light inducibility and tissue specificity of theR gene family in maize. Genetica 1994. [DOI: 10.1007/bf01443436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Scheffler B, Franken P, Schütt E, Schrell A, Saedler H, Wienand U. Molecular analysis of C1 alleles in Zea mays defines regions involved in the expression of this regulatory gene. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:40-8. [PMID: 7904044 DOI: 10.1007/bf00277346] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The structure and function of several C1 alleles have been investigated molecularly and the importance of C1 promoter sequences for gene expression was studied using transient transformation assays. The C1 mutants analyzed were the overexpressing allele C1-S, the light-inducible allele c1-p, the null recessive allele c1-n, and the Ds element-induced allele c1-m1. Nucleotide sequence analysis of the alleles revealed a number of differences, predominantly located at the 3' end of the gene. The promoter sequences of the C1 alleles investigated so far (including wild-type and the dominant inhibitor C1-I allele) are almost identical except for two short footprint-like sequences (Box I and Box II) close to the putative CAAT box. Northern blot experiments and transient expression in particle gun experiments indicate that these sequences may be correlated with the different expression patterns of the alleles in the aleurone of maturing and germinating kernels.
Collapse
Affiliation(s)
- B Scheffler
- Max-Planck-Institut für Züchtungsforschung, Köln, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Martin CR. Structure, function, and regulation of the chalcone synthase. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 147:233-84. [PMID: 8225835 DOI: 10.1016/s0074-7696(08)60770-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C R Martin
- John Innes Institute, Norwich, United Kingdom
| |
Collapse
|
34
|
Radicella JP, Brown D, Tolar LA, Chandler VL. Allelic diversity of the maize B regulatory gene: different leader and promoter sequences of two B alleles determine distinct tissue specificities of anthocyanin production. Genes Dev 1992; 6:2152-64. [PMID: 1427078 DOI: 10.1101/gad.6.11.2152] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The B gene encodes a transcription factor of the basic helix-loop-helix class, which controls the synthesis of the anthocyanin pigments in maize. This gene, as well as the highly homologous R gene family, displays extensive allelic variation in that different alleles cause distinct distributions of anthocyanin pigments in different tissues and at different developmental times. The analysis of the expression of two B alleles, with distinct tissue-specific patterns of anthocyanin synthesis in plant and seed tissues, demonstrates that the amount of B transcripts correlates with the accumulation of anthocyanins in the various tissues. The comparison of the genomic clones for the two alleles reveals high sequence identity in the coding and 3'-flanking regions (98% and approximately 90%, respectively). In contrast, the most 5' region of their mRNAs and the 5'-flanking sequences share no significant sequence identity. This result suggests that the alleles diverged from each other by complex genome rearrangements rather than by simple base pair substitutions. We have used the high velocity microprojectile transformation assay to demonstrate that the differential expression of the two alleles in the seed is determined by their 5' variant sequences. Thus, the variation in tissue-specific anthocyanin synthesis in plants with these different B alleles is controlled at the level of B gene expression.
Collapse
Affiliation(s)
- J P Radicella
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | | | |
Collapse
|
35
|
Bodeau JP, Walbot V. Regulated transcription of the maize Bronze-2 promoter in electroporated protoplasts requires the C1 and R gene products. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:379-87. [PMID: 1620095 DOI: 10.1007/bf00265434] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The putative maize transcription factor genes R and C1 are required for expression of reporter genes with promoters from the Bz1 and A1 genes, which encode enzymes required for anthocyanin biosynthesis in maize. Bz2 is another anthocyanin biosynthetic gene; we show that expression of a reporter gene from the Bz2 promoter also requires R and C1 when the fusion construct is introduced into maize kernels by particle gun bombardment. When electroporated into maize protoplasts from a suspension cell line not synthesizing anthocyanins, reporter genes with Bz2, Bz1, and A1 promoters are expressed only when both R and C1 expression plasmids are co-electroporated. Electroporation of R and C1 expression plasmids also induces the endogenous genes required for anthocyanin synthesis, resulting in pink protoplasts within 24 h. RNase protection analysis demonstrates that accumulation of mRNA from the endogenous Bz1 and Bz2 genes absolutely requires introduced R and C1. In time-course experiments there is a delay of 3-6 h before the Bz2 promoter is activated, supporting the proposed role for R- and C1-encoded proteins in transcriptional control. An excess of R relative to C1 suppresses expression of A1, Bz1, and Bz2 promoters, suggesting an interaction between the R and C1 proteins.
Collapse
Affiliation(s)
- J P Bodeau
- Department of Biological Sciences, Stanford University, CA 94305
| | | |
Collapse
|
36
|
Goff SA, Cone KC, Chandler VL. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev 1992; 6:864-75. [PMID: 1577278 DOI: 10.1101/gad.6.5.864] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The B, R, C1, and Pl genes regulating the maize anthocyanin pigment biosynthetic pathway encode tissue-specific transcriptional activators. B and R are functionally duplicate genes that encode proteins with the basic-helix-loop-helix (b-HLH) motif found in Myc proteins. C1 and Pl encode functionally duplicate proteins with homology to the DNA-binding domain of Myb proteins. A member of the b-HLH family (B or R) and a member of the myb family (C1 or Pl) are both required for anthocyanin pigmentation. Transient assays in maize and yeast were used to analyze the functional domains of the B protein and its interaction with C1. The results of these studies demonstrate that the b-HLH domain of B and most of its carboxyl terminus can be deleted with only a partial loss of B-protein function. In contrast, relatively small deletions within the B amino-terminal-coding sequence resulted in no trans-activation. Analysis of fusion constructs encoding the DNA-binding domain of yeast GAL4 and portions of B failed to reveal a transcriptional activation domain in the B protein. However, an amino-terminal domain of B was found to recruit a transcriptional activation domain by an interaction with C1. Formation of this complex resulted in the activation of a synthetic promoter containing GAL4 recognition sites, demonstrating that this interaction does not require the normal target promoters for B and C1. B and C1 fusions with yeast GAL4 DNA-binding and transcriptional activation domains were also found to interact when synthesized and assayed in yeast. The domains responsible for this interaction map to a region that contains the Myb homologous repeats of the C1 protein and to the amino terminus of the B protein, which does not contain the b-HLH motif. These studies suggest that the regulation of the maize anthocyanin pigmentation pathway involves a direct interaction between members of two distinct classes of transcriptional activators.
Collapse
Affiliation(s)
- S A Goff
- Department of Biology, University of Oregon, Eugene 97403
| | | | | |
Collapse
|
37
|
Meldgaard M. Expression of chalcone synthase, dihydroflavonol reductase, and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 83:695-706. [PMID: 24202743 DOI: 10.1007/bf00226687] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/1991] [Accepted: 04/05/1991] [Indexed: 06/02/2023]
Abstract
A barley (cv Triumph) cDNA library was screened with a cDNA probe encoding flavanone-3-hydroxylase of Antirrhinum majus. A full-length clone coding for a protein of 377 amino acids (42 kDa), with an overall homology of 71% and a central domain homology of 85% to the Antirrhinum protein, was isolated. This novel barley cDNA and two previously isolated cDNAs encoding chalcone synthase and dihydroquercetin reductase, respectively, were used to study the transcription of the corresponding genes in testa pericarp tissue from ant 13 mutants of barley. No or very low levels of transcripts are found in mutants ant 13-152, ant 13-351, and ant 13-353. It is concluded that the gene Ant 13 encodes a transcription factor operating in the flavonoid biosynthesis of barley. Transcription of the gene for the flavanone-3-hydroxylase (subunit) was also studied in an ant 17 mutant of barley. Mutant ant 17-352 transcribes the gene at normal or elevated levels. The mutant is blocked in the synthesis of dihydroquercetin and accumulates derivatives of eriodictyol, the precursor of dihydroquercetin. The combined observations suggest that Ant 17 is the structural gene for a barley flavanone-3-hydroxylase subunit, and that the mutant allele is a mutation in the structural domain of the gene.
Collapse
Affiliation(s)
- M Meldgaard
- Department of Physiology, Carlsberg Laboratory, Gamle Carlsbergvej 10, DK-2500, Copenhagen Valby, Denmark
| |
Collapse
|
38
|
Kristiansen KN, Rohde W. Structure of the Hordeum vulgare gene encoding dihydroflavonol-4-reductase and molecular analysis of ant18 mutants blocked in flavonoid synthesis. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:49-59. [PMID: 1720864 DOI: 10.1007/bf00290650] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A full-length cDNA clone encoding barley dihydroflavonol-4-reductase was isolated from a kernel-specific cDNA library by screening with the cDNA of the structural gene (A1) for this enzyme from maize. Subsequently, the gene corresponding to the barley dihydroflavonol-4-reductase cDNA was cloned and sequenced. The gene contains three introns at the same positions as in the Zea mays gene, corresponding to the positions of the first three of the five introns present in the genes of Petunia hybrida and Antirrhinum majus. In vitro transcription and translation of the Hordeum vulgare cDNA clone yielded a protein which converts dihydroquercetin into 2,3-trans-3,4-cis-leucocyanidin with NADPH as cofactor. The protein has a deduced amino acid sequence of 354 residues and a molecular weight of 38,400 daltons. Dihydroflavonol reductases of barley, maize, petunia and snapdragon are highly polymorphic in the NH2- and C-terminal parts of the polypeptide chain while a central region of 324 residues contains 51% identical amino acids. This identity increases to 81% when only the barley and maize enzymes are compared. Recessive mutants in the Ant18 gene tested so far lack dihydroflavonol-4-reductase activity and accumulate small amounts of dihydroquercetin but have retained activity for at least two other enzymes in the flavonoid pathway. In testa-pericarp tissue of mutants ant18-159, ant18-162 and ant18-164, wild-type levels of steady state mRNA for dihydroflavonol reductase have been measured, while mRNA for this enzyme is not transcribed in mutant ant18-161. These data are consistent with the proposal that the Ant18 locus carries the structural gene for dihydroflavonol-4-reductase of barley.
Collapse
Affiliation(s)
- K N Kristiansen
- Department of Physiology, Carlsberg Laboratory, Copenhagen, Denmark
| | | |
Collapse
|
39
|
Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1991; 1:37-49. [PMID: 1844879 DOI: 10.1111/j.1365-313x.1991.00037.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The intensity and pattern of anthocyanin biosynthesis in Antirrhinum flowers is controlled by several genes. We have isolated six cDNA clones encoding enzymes in the pathway committed to flavonoid biosynthesis and used these to assay how the regulatory genes that modify colour pattern affect the expression of biosynthetic genes. The biosynthetic genes of the later part of the pathway appear to be co-ordinately regulated by two genes, Delila (Del), and Eluta (El), while the early steps (which also lead to flavone synthesis) are controlled differently. This division of control is not the same as control of anthocyanin biosynthesis by the regulatory genes R (S) and C1 in maize aleurone, and may result from the adaptive significance of different flavonoids in flowers and seeds, reflecting their attractiveness to insects and mammals respectively. El and del are probably involved in transcriptional control and both genes appear to be able to repress expression of some biosynthetic genes and activate expression of others.
Collapse
Affiliation(s)
- C Martin
- Department of Genetics, John Innes Institute, John Innes Centre for Plant Science Research, Norwich, UK
| | | | | | | | | |
Collapse
|
40
|
Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins. Genes Dev 1991; 5:298-309. [PMID: 1995419 DOI: 10.1101/gad.5.2.298] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genes encoding fusions between the maize regulatory protein C1 and the yeast transcriptional activator GAL4 and mutant C1 proteins were assayed for their ability to trans-activate anthocyanin biosynthetic genes in intact maize tissues. The putative DNA-binding region of C1 fused to the transcriptional activation domain of GAL4 activated transcription of anthocyanin structural gene promoters in c1 aleurones, c1 Rscm2 embryos, and c1 r embryogenic callus. Cells receiving these constructs accumulated purple anthocyanin pigments. The C1 acidic region fused to the GAL4 DNA-binding domain activated transcription of a GAL4-regulated promoter. An internal deletion of C1 also induced pigmentation; however, frameshifts in either the amino-terminal basic or carboxy-terminal acidic region blocked trans-activation, and the latter generated a dominant inhibitory protein. Fusion constructs between the wild-type C1 cDNA and the dominant inhibitor allele C1-I cDNA were used to identify the amino acid changes in C1 responsible for the C1-I inhibitory phenotype. Results from these studies establish that amino acids within the myb-homologous domain are critical for transcriptional activation.
Collapse
|
41
|
Jayaram C, Reddy AR. An En (Spm) -system insertion partly reduces the color-suppressing potency of the dominant C-I allele in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1990; 80:699-704. [PMID: 24221079 DOI: 10.1007/bf00224232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/1990] [Accepted: 06/12/1990] [Indexed: 06/02/2023]
Abstract
Two mutable C-I alleles, C-Im857059 and C-Im857062 of the Enhancer-Inhibitor (En-I) or Suppressormutator (Spm) transposable-element system, were shown to express a sectored phenotype (colorless sectors on a colored background). This sectoring is a consequence of an I receptor element at the C-I allele responding to an independently segregating, transactive En element. The I element insertion results in the partial reduction of the suppressive potency of the normal C-I alleles. A wide range of suppressive potencies of these two C-Im(r) alleles was found when tested against other C alleles, including C-S and C. Though each of the C-Im(r) alleles has a standard I element, there is a significant difference in the suppressive potencies of the two C-Im(r) alleles, which possibly indicates a different position of the I insert in the coding region affecting the C-I transcript.
Collapse
Affiliation(s)
- C Jayaram
- School of Life Sciences, University of Hyderabad, 500134, Hyderabad, India
| | | |
Collapse
|
42
|
Affiliation(s)
- S R Ludwig
- Botany Department, University of Georgia, Athens 30602
| | | |
Collapse
|
43
|
Beld M, Martin C, Huits H, Stuitje AR, Gerats AG. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. PLANT MOLECULAR BIOLOGY 1989; 13:491-502. [PMID: 2491667 DOI: 10.1007/bf00027309] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5 kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays. The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with the first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively). Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.
Collapse
Affiliation(s)
- M Beld
- Dept. of Genetics, Free University of Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
44
|
Koes RE, Spelt CE, van den Elzen PJ, Mol JN. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Gene 1989; 81:245-57. [PMID: 2806915 DOI: 10.1016/0378-1119(89)90185-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chalcone synthase-encoding genes (chs) in Petunia hybrida comprise a multigene family. Some of the chs genes have been grouped into a subfamily, based upon their strong cross-hybridization and tight genomic linkage. From genomic libraries eight 'complete' chs genes, two chs gene 5'-fragments and two chs gene 3'-fragments have been isolated. The nucleotide sequence of six complete chs genes is presented and discussed in relation to their evolutionary origin and expression in different tissues. Each member of the family consists of two exons separated by an intron of variable size and sequence, which is located at a conserved position. The chs gene fragments represent single exons. Homology between non-linked chs genes is approx. 80% at the DNA level and restricted to protein-coding sequences. Homology between subfamily members (which are tightly linked) is higher (90-99%) and extends into untranslated regions of the gene, strengthening the view that they arose by recent gene duplications. The chsD gene contains a mutated translation stop codon, suggesting that this is an inactive (pseudo)gene. None of the other members of the gene family exhibits characteristics of a pseudogene, indicating that if gene inactivation has occurred during their evolution, it must characteristics of a pseudogene, indicating that if gene inactivation has occurred during their evolution, it must have been a recent event. Homology at the protein level between some (expressed) chs genes is surprisingly low. The possibility that these genes encode proteins with slightly different enzymatic activities is discussed.
Collapse
Affiliation(s)
- R E Koes
- Department of Genetics, Free University, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
45
|
Marocco A, Wissenbach M, Becker D, Paz-Ares J, Saedler H, Salamini F, Rohde W. Multiple genes are transcribed in Hordeum vulgare and Zea mays that carry the DNA binding domain of the myb oncoproteins. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:183-7. [PMID: 2664447 DOI: 10.1007/bf00334354] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
cDNA clones were isolated from tissue specific cDNA libraries of barley and maize using as a probe the cDNA of the maize gene C1, a regulator of anthocyanin gene expression. C1-related homology for all of the four cDNAs characterized by sequence analysis is restricted to the N-terminal 120 amino acids of the putative proteins. This region shows striking homology to the N-proximal domain of the myb oncoproteins from vertebrates and invertebrates. Within the myb proto-oncogene family this part of the respective gene products functions as a DNA binding domain. Acidic domains are present in the C-proximal protein segments. Conservation of these sequences, together with the genetically defined regulator function of the C1 gene product, suggest that myb-related plant genes code for trans-acting factors which regulate gene expression in a given biosynthetic pathway.
Collapse
Affiliation(s)
- A Marocco
- Max-Planck-Institut für Züchtungsforschung, Köln, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Hardeman KJ, Chandler VL. Characterization of bz1 mutants isolated from mutator stocks with high and low numbers of Mu1 elements. DEVELOPMENTAL GENETICS 1989; 10:460-72. [PMID: 2557990 DOI: 10.1002/dvg.1020100607] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The high frequency of mutations in Mutator stocks of maize is the result of transposition of Mu elements. Nine different Mu elements that share the 220 bp Mu terminal inverted repeats have been described. Mu1 elements have been found inserted into most of the molecularly characterized mutant alleles isolated from Mutator stocks, and most Mutator stocks contain a high number of Mu1 elements (10-60). However, it is clear that additional Mu elements, which share the Mu1 termini but have unrelated internal sequences, can also transpose in Mutator stocks. We were interested in comparing the mutation frequency and type of elements that inserted into a particular locus when Mutator stocks with differing numbers of Mu1 elements were utilized. Furthermore, previous studies with Mu-induced mutations have demonstrated that the element that inserted most frequently was Mu1. Therefore, to try to obtain Mu elements different from Mu1 we utilized a stock that had a low number (3-6) of Mu1 elements as well as a Mutator stock with a more typical number of Mu1 elements (20-60). Utilizing both stocks, we isolated numerous mutants at one gene, Bronze 1 (Bz1), and compared the type of elements inserted. In this paper we report that both the high and low Mu1 stocks produced bz1 mutants at frequencies characteristic of Mutator stocks, 6.6 and 4.3 x 10(-5), respectively. We describe the isolation of 20 bz1 mutations, and the initial molecular characterization of eight unstable mutations: two from the high Mu1 stock and six from the low Mu1 stock. The six alleles isolated from the low Mu1 stock appear to contain deleted Mu1 elements, and the two alleles isolated from the high Mu1 stock contain elements very similar to Mu1. When the mutants from the low Mu1 stocks were examined, it was found that the Mu1-related elements increased from 3-6 copies to 9-20 copies in one generation. The high number of Mu1-related elements was maintained in subsequent outcrosses. This spontaneous activation and amplification of Mu1-related elements occurred in at least 1% of the low Mu1 plants.
Collapse
Affiliation(s)
- K J Hardeman
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | |
Collapse
|
47
|
Shepherd NS, Rhoades MM, Dempsey E. Genetic and molecular characterization of a-mrh-Mrh, a new mutable system of Zea mays. DEVELOPMENTAL GENETICS 1989; 10:507-19. [PMID: 2557991 DOI: 10.1002/dvg.1020100610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new allele of the maize A1 gene, a gene required for anthocyanin pigment biosynthesis, was identified in a genetic stock exhibiting a high frequency of chromosome breakage at the second microspore mitosis. This allele, a-mrh, is unstable in both somatic and germinal tissue when an independent locus, Mrh, is present in the genome. a-mrh was molecularly cloned, and a 246 bp DNA insertion with characteristics of a transposable element was identified within the fourth exon of the gene. Southern blot analysis of germinal derivatives of a-mrh suggests that the DNA insert rMrh is excised from the locus when a wild-type phenotype is restored. Genetic crosses with components of other two-element mutable systems of maize failed to induce mutability. We therefore conclude that rMrh is a member of a new, two-element transposon system of maize. The genetic and molecular characteristics of the elements involved are discussed with respect to stress-activated transposition, response of an element to developmental signals, and a possible new role of plant transposons in gene evolution.
Collapse
Affiliation(s)
- N S Shepherd
- Central Research and Development Department, E.I. du Pont de Nemours Company, Wilmington, Delaware 19880-0328
| | | | | |
Collapse
|
48
|
Furtek D, Schiefelbein JW, Johnston F, Nelson OE. Sequence comparisons of three wild-type Bronze-1 alleles from Zea mays. PLANT MOLECULAR BIOLOGY 1988; 11:473-481. [PMID: 24272404 DOI: 10.1007/bf00039028] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/1988] [Accepted: 07/14/1988] [Indexed: 06/02/2023]
Abstract
We have sequenced genomic clones of two wild-type Bronze-1 (Bz1) alleles, and a cDNA clone from a third wild-type Bz1 allele from maize. Two overlapping transcripts initiate at least 250 bp apart. The first AUG codon after the shorter and more abundant transcript cap site(s) begins the longest open reading frame. The transcript is preceded by a putative TATA box, but not a recognizable CAAT box. The bz1 gene contains a single intron, and exhibits a strong bias for codons with the highest G+C content. Sequence polymorphisms among the Bz1 alleles include deletions/additions, a transposable element insertion, and single base pair substitutions.
Collapse
Affiliation(s)
- D Furtek
- Department of Genetics, University of Wisconsin, 445 Henry Mall, 53706, Madison, WI, USA
| | | | | | | |
Collapse
|
49
|
|
50
|
Dellaporta SL, Greenblatt I, Kermicle JL, Hicks JB, Wessler SR. Molecular Cloning of the Maize R-nj Allele by Transposon Tagging with Ac. CHROMOSOME STRUCTURE AND FUNCTION 1988. [DOI: 10.1007/978-1-4613-1037-2_12] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|