1
|
Wilhoit KT, Alexander EP, Blackmon H. Worse than nothing at all: the inequality of fusions joining autosomes to the PAR and non-PAR portions of sex chromosomes. PeerJ 2024; 12:e17740. [PMID: 39071118 PMCID: PMC11276758 DOI: 10.7717/peerj.17740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Chromosomal fusions play an integral role in genome remodeling and karyotype evolution. Fusions that join a sex chromosome to an autosome are particularly abundant across the tree of life. However, previous models on the establishment of such fusions have not accounted for the physical structure of the chromosomes. We predict a fusion joining an autosome to the pseudoautosomal region (PAR) of a sex chromosome will not remain stable, and the fusion will switch from the X to the Y chromosome each generation due to recombination. We have produced a forward-time population genetic simulation to explore the outcomes of fusions to both the PAR and non-PAR of sex chromosomes. The model can simulate the fusion of an autosome containing a sexually antagonistic locus to either the PAR or non-PAR end of a sex chromosome. Our model is diploid, two-locus, and biallelic. Our results show a clear pattern where fusions to the non-PAR are favored in the presence of sexual antagonism, whereas fusions to the PAR are disfavored in the presence of sexual antagonism.
Collapse
Affiliation(s)
- Kayla T. Wilhoit
- Biomedical Sciences Program, Texas A&M University, College Station, TX, United States of America
- Department of Biology, Texas A&M University, College Station, TX, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, NC, United States of America
| | - Emmarie P. Alexander
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States of America
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States of America
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, United States of America
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
2
|
Gil-Fernández A, Ribagorda M, Martín-Ruiz M, López-Jiménez P, Laguna T, Gómez R, Parra MT, Viera A, Veyrunes F, Page J. Meiotic Behavior of Achiasmate Sex Chromosomes in the African Pygmy Mouse Mus mattheyi Offers New Insights into the Evolution of Sex Chromosome Pairing and Segregation in Mammals. Genes (Basel) 2021; 12:1434. [PMID: 34573416 PMCID: PMC8471055 DOI: 10.3390/genes12091434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
X and Y chromosomes in mammals are different in size and gene content due to an evolutionary process of differentiation and degeneration of the Y chromosome. Nevertheless, these chromosomes usually share a small region of homology, the pseudoautosomal region (PAR), which allows them to perform a partial synapsis and undergo reciprocal recombination during meiosis, which ensures their segregation. However, in some mammalian species the PAR has been lost, which challenges the pairing and segregation of sex chromosomes in meiosis. The African pygmy mouse Mus mattheyi shows completely differentiated sex chromosomes, representing an uncommon evolutionary situation among mouse species. We have performed a detailed analysis of the location of proteins involved in synaptonemal complex assembly (SYCP3), recombination (RPA, RAD51 and MLH1) and sex chromosome inactivation (γH2AX) in this species. We found that neither synapsis nor chiasmata are found between sex chromosomes and their pairing is notably delayed compared to autosomes. Interestingly, the Y chromosome only incorporates RPA and RAD51 in a reduced fraction of spermatocytes, indicating a particular DNA repair dynamic on this chromosome. The analysis of segregation revealed that sex chromosomes are associated until metaphase-I just by a chromatin contact. Unexpectedly, both sex chromosomes remain labelled with γH2AX during first meiotic division. This chromatin contact is probably enough to maintain sex chromosome association up to anaphase-I and, therefore, could be relevant to ensure their reductional segregation. The results presented suggest that the regulation of both DNA repair and epigenetic modifications in the sex chromosomes can have a great impact on the divergence of sex chromosomes and their proper transmission, widening our understanding on the relationship between meiosis and the evolution of sex chromosomes in mammals.
Collapse
Affiliation(s)
- Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Tamara Laguna
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Frederic Veyrunes
- Institut des Sciences de l’Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| |
Collapse
|
3
|
Gil-Fernández A, Saunders PA, Martín-Ruiz M, Ribagorda M, López-Jiménez P, Jeffries DL, Parra MT, Viera A, Rufas JS, Perrin N, Veyrunes F, Page J. Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genet 2020; 16:e1008959. [PMID: 33180767 PMCID: PMC7685469 DOI: 10.1371/journal.pgen.1008959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/24/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
Sex chromosomes of eutherian mammals are highly different in size and gene content, and share only a small region of homology (pseudoautosomal region, PAR). They are thought to have evolved through an addition-attrition cycle involving the addition of autosomal segments to sex chromosomes and their subsequent differentiation. The events that drive this process are difficult to investigate because sex chromosomes in almost all mammals are at a very advanced stage of differentiation. Here, we have taken advantage of a recent translocation of an autosome to both sex chromosomes in the African pygmy mouse Mus minutoides, which has restored a large segment of homology (neo-PAR). By studying meiotic sex chromosome behavior and identifying fully sex-linked genetic markers in the neo-PAR, we demonstrate that this region shows unequivocal signs of early sex-differentiation. First, synapsis and resolution of DNA damage intermediates are delayed in the neo-PAR during meiosis. Second, recombination is suppressed or largely reduced in a large portion of the neo-PAR. However, the inactivation process that characterizes sex chromosomes during meiosis does not extend to this region. Finally, the sex chromosomes show a dual mechanism of association at metaphase-I that involves the formation of a chiasma in the neo-PAR and the preservation of an ancestral achiasmate mode of association in the non-homologous segments. We show that the study of meiosis is crucial to apprehend the onset of sex chromosome differentiation, as it introduces structural and functional constrains to sex chromosome evolution. Synapsis and DNA repair dynamics are the first processes affected in the incipient differentiation of X and Y chromosomes, and they may be involved in accelerating their evolution. This provides one of the very first reports of early steps in neo-sex chromosome differentiation in mammals, and for the first time a cellular framework for the addition-attrition model of sex chromosome evolution. Sex chromosomes seem to evolve and differentiate at different rates in different taxa. The reasons for this variability are still debated. It is well established that recombination suppression around the sex-determining region triggers differentiation, and several studies have investigated this process from a genetic point of view. However, the cellular context in which recombination arrest occurs has received little attention so far. In this report, we show that meiosis, the cellular division in which pairing and recombination between chromosomes takes place, can affect the incipient differentiation of X and Y chromosomes. Combining cytogenetic and genomic approaches, we found that in the African pygmy mouse Mus minutoides, which has recently undergone sex chromosome-autosome fusions, synapsis and DNA repair dynamics are disturbed along the newly added region of the sex chromosomes. We argue that these alterations are a by-product of the fusion itself, and cause recombination suppression across a large region of the neo-sex chromosome pair. Therefore, we propose that the meiotic context in which sex or neo-sex chromosomes arise is crucial to understand the very early stages of their differentiation, as it could promote or hinder recombination suppression, and therefore impact the rate at which these chromosomes differentiate.
Collapse
Affiliation(s)
- Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paul A. Saunders
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), Montpellier, France
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio S. Rufas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frederic Veyrunes
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), Montpellier, France
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
4
|
Morgan AP, Bell TA, Crowley JJ, Pardo-Manuel de Villena F. Instability of the Pseudoautosomal Boundary in House Mice. Genetics 2019; 212:469-487. [PMID: 31028113 PMCID: PMC6553833 DOI: 10.1534/genetics.119.302232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Faithful segregation of homologous chromosomes at meiosis requires pairing and recombination. In taxa with dimorphic sex chromosomes, pairing between them in the heterogametic sex is limited to a narrow interval of residual sequence homology known as the pseudoautosomal region (PAR). Failure to form the obligate crossover in the PAR is associated with male infertility in house mice (Mus musculus) and humans. Yet despite this apparent functional constraint, the boundary and organization of the PAR is highly variable in mammals, and even between subspecies of mice. Here, we estimate the genetic map in a previously documented expansion of the PAR in the M. musculus castaneus subspecies and show that the local recombination rate is 100-fold higher than the autosomal background. We identify an independent shift in the PAR boundary in the M. musculus musculus subspecies and show that it involves a complex rearrangement, but still recombines in heterozygous males. Finally, we demonstrate pervasive copy-number variation at the PAR boundary in wild populations of M. m. domesticus, M. m. musculus, and M. m. castaneus Our results suggest that the intensity of recombination activity in the PAR, coupled with relatively weak constraints on its sequence, permit the generation and maintenance of unusual levels of polymorphism in the population of unknown functional significance.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27514
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| |
Collapse
|
5
|
Gómez R, Viera A, Berenguer I, Llano E, Pendás AM, Barbero JL, Kikuchi A, Suja JA. Cohesin removal precedes topoisomerase IIα-dependent decatenation at centromeres in male mammalian meiosis II. Chromosoma 2014; 123:129-46. [PMID: 24013524 DOI: 10.1007/s00412-013-0434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/11/2013] [Accepted: 08/13/2013] [Indexed: 12/26/2022]
Abstract
Sister chromatid cohesion is regulated by cohesin complexes and topoisomerase IIα. Although relevant studies have shed some light on the relationship between these two mechanisms of cohesion during mammalian mitosis, their interplay during mammalian meiosis remains unknown. In the present study, we have studied the dynamics of topoisomerase IIα in relation to that of the cohesin subunits RAD21 and REC8, the shugoshin-like 2 (Schizosaccharomyces pombe) (SGOL2) and the polo-like kinase 1-interacting checkpoint helicase (PICH), during both male mouse meiotic divisions. Our results strikingly show that topoisomerase IIα appears at stretched strands connecting the sister kinetochores of segregating early anaphase II chromatids, once the cohesin complexes have been removed from the centromeres. Moreover, the number and length of these topoisomerase IIα-connecting strands increase between lagging chromatids at anaphase II after the chemical inhibition of the enzymatic activity of topoisomerase IIα by etoposide. Our results also show that the etoposide-induced inhibition of topoisomerase IIα is not able to rescue the loss of centromere cohesion promoted by the absence of the shugoshin SGOL2 during anaphase I. Taking into account our results, we propose a two-step model for the sequential release of centromeric cohesion during male mammalian meiosis II. We suggest that the cohesin removal is a prerequisite for the posterior topoisomerase IIα-mediated resolution of persisting catenations between segregating chromatids during anaphase II.
Collapse
Affiliation(s)
- Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Giant sex chromosomes retained within the Portuguese lineage of the field vole (Microtus agrestis). ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13364-012-0087-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
de la Fuente R, Sánchez A, Marchal JA, Viera A, Parra MT, Rufas JS, Page J. A synaptonemal complex-derived mechanism for meiotic segregation precedes the evolutionary loss of homology between sex chromosomes in arvicolid mammals. Chromosoma 2012; 121:433-46. [PMID: 22552439 DOI: 10.1007/s00412-012-0374-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022]
Abstract
Synapsis and reciprocal recombination between sex chromosomes are restricted to the pseudoautosomal region. In some animal species, sex chromosomes do not present this region, although they utilize alternative mechanisms that ensure meiotic pairing and segregation. The subfamily Arvicolinae (Rodentia, Cricetidae) includes numerous species with achiasmate sex chromosomes. In order to know whether the mechanism involved in achiasmate segregation is an ancient feature in arvicolid species, we have compared the sex chromosomes of both the Mediterranean vole (Microtus duodecimcostatus) and the water vole (Arvicola terrestris). By means of immunofluorescence, we have found that sex chromosomes in M. duodecimcostatus are asynaptic and develop a synaptonemal complex-derived structure that mediates pairing and facilitates segregation. In A. terrestris, sex chromosomes are synaptic and chiasmate but also exhibit a synaptonemal complex-derived filament during anaphase I. Since phylogenetic relationships indicate that the synaptic condition is ancestral in arvicolids, this finding indicates that the mechanism for achiasmate sex chromosome segregation precedes the switching to the asynaptic condition. We discuss the origin of this synaptonemal complex-derived mechanism that, in turn, could counterbalance the disruption of homology in the sex chromosomes of those species.
Collapse
Affiliation(s)
- Roberto de la Fuente
- Unidad de Biología Celular, Departamento de Biología, Edificio de Ciencias Biológicas, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, Madrid, 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Borodin PM, Basheva EA, Torgasheva AA, Dashkevich OA, Golenishchev FN, Kartavtseva IV, Mekada K, Dumont BL. Multiple independent evolutionary losses of XY pairing at meiosis in the grey voles. Chromosome Res 2011; 20:259-68. [PMID: 22161017 DOI: 10.1007/s10577-011-9261-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/27/2022]
Abstract
In many eutherian mammals, X-Y chromosome pairing and recombination is required for meiotic progression and correct sex chromosome disjunction. Arvicoline rodents present a notable exception to this meiotic rule, with multiple species possessing asynaptic sex chromosomes. Most asynaptic vole species belong to the genus Microtus sensu lato. However, many of the species both inside and outside the genus Microtus display normal X-Y synapsis at meiosis. These observations suggest that the synaptic condition was present in the common ancestor of all voles, but gaps in current taxonomic sampling across the arvicoline phylogeny prevent identification of the lineage(s) along which the asynaptic state arose. In this study, we use electron and immunofluorescent microscopy to assess heterogametic sex chromosome pairing in 12 additional arvicoline species. Our sample includes ten species of the tribe Microtini and two species of the tribe Lagurini. This increased breadth of sampling allowed us to identify asynaptic species in each major Microtine lineage. Evidently, the ability of the sex chromosomes to pair and recombine in male meiosis has been independently lost at least three times during the evolution of Microtine rodents. These results suggest a lack of evolutionary constraint on X-Y synapsis in Microtini, hinting at the presence of alternative molecular mechanisms for sex chromosome segregation in this large mammalian tribe.
Collapse
Affiliation(s)
- Pavel M Borodin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia,
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rovatsos MT, Mitsainas GP, Paspali G, Oruci S, Giagia-Athanasopoulou EB. Geographical distribution and chromosomal study of the underground vole Microtus thomasi in Albania and Montenegro. Mamm Biol 2011. [DOI: 10.1016/j.mambio.2010.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Mitsainas GP, Rovatsos MT, Giagia-Athanasopoulou EB. Heterochromatin study and geographical distribution of Microtus species (Rodentia, Arvicolinae) from Greece. Mamm Biol 2010. [DOI: 10.1016/j.mambio.2008.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
MITSAINAS GEORGEP, ROVATSOS MICHAILTH, RIZOU ELENII, GIAGIA-ATHANASOPOULOU EVAB. Sex chromosome variability outlines the pathway to the chromosomal evolution in Microtus thomasi (Rodentia, Arvicolinae). Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2008.01161.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Rovatsos MT, Mitsainas GP, Stamatopoulos C, Giagia-Athanasopoulou EB. First reports of XXY aneuploidy in natural populations of Thomas’ pine vole Microtus thomasi (Rodentia: Arvicolidae) from Greece. Mamm Biol 2008. [DOI: 10.1016/j.mambio.2007.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Ashley T, Jaarola M, Fredga K. Absence of synapsis during pachynema of the normal sized sex chromosomes of Microtus arvalis. Hereditas 2008; 111:295-304. [PMID: 2698872 DOI: 10.1111/j.1601-5223.1990.tb00408.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pachytene behavior of the chromosomes of males of Microtus arvalis (Pall.) (Rodentia, Arvicolidae) was examined by electron microscopy in microspread preparations of spermatocytes. There was no synapsis between the axes of these two chromosomes during this period. Since synapsis is universally considered a prerequisite for crossing over and chiasmata formation, disjunction of the sex chromosomes in this species prerequisite for crossing over and chiasmata formation, disjunction of the sex chromosomes in this species must be presumed to be achiasmatic. Unlike previously examined species with no synapsis or crossing over between the X and Y, the sex chromosomes of M. arvalis are of normal size: the X chromosome is of an "original" X size and the Y is a small acrocentric. C-band studies of M. arvalis mitotic metaphase reveal no blocks of heterochromatin on the sex chromosomes. The implications of these findings are discussed.
Collapse
|
14
|
Ashley T, Jaarola M, Fredga K. The behavior during pachynema of a normal and an inverted Y chromosome in Microtus agrestis. Hereditas 2008; 111:281-94. [PMID: 2698871 DOI: 10.1111/j.1601-5223.1990.tb00407.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pachytene behavior of the chromosomes of Microtus agrestis (L.) (Rodentia, Arvicolidae) males carrying either the standard, or the pericentrically inverted Lund Y chromosome have been examined by electron microscopy of microspread spermatocytes. There is no synapsis between the X and either the standard or the Lund Y chromosomes during any substage of pachynema. Since synapsis is generally considered a prerequisite for crossing over, there appears to be no opportunity for crossover or chiasma formation between the X and Y in this species. The G-, C- and NOR-banded mitotic karyotypes of animals carrying the standard and Lund Y are also presented.
Collapse
|
15
|
Page J, Viera A, Parra MT, de la Fuente R, Suja JA, Prieto I, Barbero JL, Rufas JS, Berríos S, Fernández-Donoso R. Involvement of synaptonemal complex proteins in sex chromosome segregation during marsupial male meiosis. PLoS Genet 2006; 2:e136. [PMID: 16934004 PMCID: PMC1557784 DOI: 10.1371/journal.pgen.0020136] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/17/2006] [Indexed: 11/19/2022] Open
Abstract
Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.
Collapse
Affiliation(s)
- Jesús Page
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Page J, de la Fuente R, Gómez R, Calvente A, Viera A, Parra MT, Santos JL, Berríos S, Fernández-Donoso R, Suja JA, Rufas JS. Sex chromosomes, synapsis, and cohesins: a complex affair. Chromosoma 2006; 115:250-9. [PMID: 16544151 DOI: 10.1007/s00412-006-0059-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
During first meiotic prophase, homologous chromosomes are held together by the synaptonemal complex, a tripartite proteinaceous structure that extends along the entire length of meiotic bivalents. While this feature is applicable for autosomes, sex chromosomes often escape from this rule. Many species present sex chromosomes that differ between them in their morphology, length, and gene content. Moreover, in some species, sex chromosomes appear in a single dose in one of the sexes. In all of these cases, the behavior of sex chromosomes during meiosis is conspicuously affected, and this includes the assembly and dynamics of the synaptonemal complex. We review in this study the structure of the synaptonemal complex in the sex chromosomes of three groups of organisms, namely: mammals, orthopterans, and hemipterans, which present different patterns of sex chromosome structure and behavior. Of special interest is the analysis of the organization of the axial/lateral elements of the synaptonemal complex in relation to other axial structures organized along meiotic chromosomes, mainly the cohesin axis. The differences found in the behavior of both axial structures reveal that while the organization of a cohesin axis along sex chromosomes is a conserved feature in most organisms and it shows very little morphological variations, the axial/lateral elements of the synaptonemal complex present a wide range of structural modifications on these chromosomes.
Collapse
Affiliation(s)
- Jesús Page
- Departamento de Biología, Edificio de Ciencias Biológicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ashley T, Fredga K. The curious normality of the synaptic association between the sex chromosomes of two arvicoline rodents: Microtus oeconomus and Clethrionomys glareolus. Hereditas 2004; 120:105-11. [PMID: 8083057 DOI: 10.1111/j.1601-5223.1994.00105.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In all eight species of arvicoline (microtine) rodents previously described, the X and Y chromosomes have remained asynaptic throughout pachynema. Since synapsis is presumed to be a prerequisite for crossing over, it has been concluded that the sex chromosomes in these species are also achiasmatic, but the mechanism(s) of their disjunction remains an enigma. Their asynaptic, achiasmatic condition has been attributed to loss of the pseudoautosomal region (Borodin et al. 1991; Carnero et al. 1991; Jiménez et al. 1991). This loss has been postulated to include all arvicoline rodents. We describe here the sex chromosome behavior during meiotic prophase of two additional species in this group: Microtus oeconomus and Clethrionomys glareolus. In both species there is extensive synapsis between the X and Y, providing the usual opportunity for XY recombination. These findings challenge the concept of the pseudoautosomal region as an evolutionarily conserved region of homology, at least within the arvicoline rodents. The unexpected finding of synapsis in two very different species, one with a derived and one with a primitive karyotype is discussed within its phylogenetic context.
Collapse
Affiliation(s)
- T Ashley
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
18
|
Abstract
Pairing of X and Y chromosomes at meiotic prophase in 14 species of the subfamily Microtinae (Clethrionomys rufocanus, C. rutilus, C. glareolus, Arvicola terrestris, Microtus guentheri, M. socialis, M. afghanus, M. bucharicus, M. oeconomus, M. arvalis, M. rossiaemeridionalis, M. kirgisorum, M. transcaspicus, M. (Pitymys) majori) was analysed in relation to their taxonomic position and variation in the morphology of their sex chromosomes. The sex chromosomes formed a synaptonemal complex (SC) at pachytene in all Clethrionomys species, Arvicola terrestris, and M. oeconomus, while they did not pair at all in M. (Pitymys) majori, Microtus socialis, M. guentheri, M. afghanus, M. bucharicus, M. arvalis, M. rossiaemeridionalis, M. kirgisorum, and M. transcaspicus. The X chromosome of these species varied in centromere position independently of pairing pattern. Insertion of heterochromatin of different size and location was found in some, but not in all species with asynaptic sex chromosomes. It is suggested that the sex chromosomes lost their ability to pair at male meiosis in the common ancestor of palearctic species of the genus Microtus. This event was not caused by a gross chromosomal rearrangement.
Collapse
Affiliation(s)
- P M Borodin
- Institute of Cytology and Genetics, Novosibirsk, Russia
| | | | | |
Collapse
|
19
|
Megías-Nogales B, Marchal JA, Acosta MJ, Bullejos M, Díaz de la Guardia R, Sánchez A. Sex chromosomes pairing in two Arvicolidae species: Microtus nivalis and Arvicola sapidus. Hereditas 2004; 138:114-21. [PMID: 12921162 DOI: 10.1034/j.1601-5223.2003.01717.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Arvicolid rodents present both synaptic and asynaptic sex chromosomes. We analyzed the pairing behaviour of sex chromosomes in two species belonging to this rodent group (Microtus nivalis and Arvicola sapidus). At pachynema, the sex chromosomes of both species paired in a small region while the rest remain unsynapsed. Consequently at metaphase I, sex chromosomes present end-to-end association. Thus, the pairing behaviour of sex chromosomes in these species is very similar to that previously described for other arvicolid rodents and for most mammals. According to this, we propose that synaptic sex chromosomes were the ancestral condition in the family Arvicolidae, including the genus Microtus. The phylogenetic origin of the asynaptic sex chromosomes in the genus Microtus would have arisen once in the lineage that originated the species M. arvalis/agrestis and related species, while the lineage that originated the species M. oeconomous and related species conserved synaptic chromosomes. Furthermore, the phylogenetic relationships between the genus Microtus, Chionomys and Pitymys are discussed in relation to the synaptic behaviour of sex chromosomes.
Collapse
Affiliation(s)
- Belen Megías-Nogales
- Departamento de Genètica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Fernández R, Barragán MJ, Bullejos M, Marchal JA, Martínez S, Díaz de la Guardia R, Sánchez A. Molecular and cytogenetic characterization of highly repeated DNA sequences in the vole Microtus cabrerae. Heredity (Edinb) 2001; 87:637-46. [PMID: 11903559 DOI: 10.1046/j.1365-2540.2001.00959.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Microtus presents several species with extremely large sex chromosomes that contain large blocks of constitutive heterochromatin. Several cytogenetic and molecular studies of the repetitive sequences in species of the genus Microtus have demonstrated that the heterochromatin is highly heterogeneous. We have cloned and characterized a family of repetitive DNA sequences from M. cabrerae, a species with large heterochromatic blocks on the giant sex chromosomes. These repetitive sequences are 65.84% A-T rich, organized in tandem, with a 161-bp unit and are located on the centromeric region of autosomes and the X chromosome. In addition, this repetitive DNA is located throughout the entire heterochromatic block of the X chromosome and on three interstitial bands in the heterochromatic block of the Y chromosome. Comparative analysis of this family of repetitive sequences from three Microtus species revealed that the development of these sequences has occurred by concerted evolution. Our results support the hypothesis that the heterochromatic blocks from the sex chromosomes of different species are evolving independently and they probably have the genetic capacity to amplify and retain different satellite DNAs. For a topic related to the location of these repetitive DNA sequences on the Y chromosome of M. cabrerae, we propose a model to explain the origin of a length polymorphism previously described for this chromosome.
Collapse
Affiliation(s)
- R Fernández
- Departamento de Psicobiología, Facultad Ciencias de la Educación, Universidad de A Coruña, E-15071 A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Mekada K, Harada M, Lin LK, Koyasu K, Borodin PM, Oda SI. Pattern of X-Y chromosome pairing in the Taiwan vole, Microtus kikuchii. Genome 2001. [DOI: 10.1139/g00-091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pairing of X and Y chromosomes at meiotic prophase and the G- and C-banding patterns and nucleolar organizer region (NOR) distribution were analyzed in Microtus kikuchii. M. kikuchii is closely related to M. oeconomus and M. montebelli, karyologically and systematically. The formation of a synaptonemal complex between the X and Y chromosomes at pachytene and end-to-end association at diakinesis metaphase I are only observed in three species in the genus Microtus; M. kikuchii, M. oeconomus, and M. montebelli. All the other species that have been studied so far have had asynaptic XY chromosomes. These data confirm that M. kikuchii, M. oeconomus, and M. montebelli are very closely related, and support the separation of asynaptic and synaptic groups on the phylogenetic tree.Key words: Microtus kikuchii, Microtus phylogeny, karyotype, synaptic sex chromosomes, synaptonemal complex.
Collapse
|
23
|
Borodin PM, Rogatcheva MB, Koyasu K, Fukuta K, Mekada K, Oda SI. Pattern of X-Y chromosome pairing in the Japanese field vole, Microtus montebelli. Genome 1997; 40:829-33. [PMID: 9449794 DOI: 10.1139/g97-807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pairing of X and Y chromosomes at meiotic prophase in males of Microtus montebelli was analyzed. The sex chromosomes form a synaptonemal complex at pachytene and end-to-end association at diakinesis-metaphase I in two species of the genus Microtus (M. montebelli and M. oeconomus) only, while they do not pair at all in the other species of this genus that have been studied so far. These data confirm that M. montebelli and M. oeconomus are very closely related in their origin. It is suggested that the sex chromosomes of M. montebelli and M. oeconomus display the ancestral type of X-Y pairing. The lack of X-Y pairing in most species of Microtus appeared after the split in lineage that led to M. oeconomus and M. montebelli on the one hand and the remaining species on the other.
Collapse
Affiliation(s)
- P M Borodin
- Institute of Cytology and Genetics, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
24
|
Nokkala S, Nokkala C. The absence of chiasma terminalization and inverted meiosis in males and females of Myrmus miriformis Fn. (Corizidae, Heteroptera). Heredity (Edinb) 1997. [DOI: 10.1038/hdy.1997.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
25
|
Wada MY, Imai HT. Theoretical analyses of chiasmata using a novel chiasma graph method applied to Chinese hamsters, mice, and dog. IDENGAKU ZASSHI 1995; 70:233-65. [PMID: 7605675 DOI: 10.1266/jjg.70.233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Some basic concepts of chiasma (including chiasma distribution, chiasma frequency, interstitial and terminal chiasmata, and chiasma interference) are reexamined theoretically in the light of gene shuffling, and a new method for chiasma analysis termed the chiasma graph is proposed. Chiasma graphs are developed for three mammals with greatly different chromosome numbers: Chinese hamster (with n = 11), mice (n = 20), and a dog (n = 39). The results demonstrate that interstitial chiasmata can contribute both to gene shuffling and to the binding of bivalents, but that so-called terminal chiasmata are in fact mostly achiasmatic terminal associations, the main function of which is to bind bivalents. For this reason, terminal chiasmata should be excluded when chiasma frequency is estimated. It is also demonstrated that interstitial chiasmata distribute on bivalents randomly and uniformly, except at the centromere and telomere. Interference distance fluctuates almost randomly above a minimum value equivalent to about 1.8% of total bivalent length at diakinesis. These results indicate that chiasma formation in mammals is principally a random event. The demonstrated minimum interference distance seems consistent with the polymerization model for chiasma formation. Some cytological aspects of crossing-over are discussed with reference to the minimum interaction theory for eukaryotic chromosome evolution.
Collapse
Affiliation(s)
- M Y Wada
- National Institute of Genetics, Shizuoka-ken, Japan
| | | |
Collapse
|
26
|
Abstract
The paper discusses certain dynamic processes leading to meiotic (haploid) partition of chromatids via the chiasmatic mode in mammalian spermatic cells. The achiasmatic case is also reviewed briefly and only in the context of homologs with centromeric braids arrayed in the Para configuration.
Collapse
|
27
|
Abstract
The chromosomes which segregate in anaphase I of meiosis are usually physically bound together through chiasmata. This association is necessary for proper segregation, since univalents sort independently from one another in the first meiotic division and this frequently leads to genetically unbalanced offspring. There are, however, a number of species where genetic exchanges in the form of meiotic cross-overs, the prerequisite of the formation of chiasmata, are routinely missing in one sex or between specific chromosomes. These species nevertheless manage to segregate these non-exchange chromosomes. There are four direct modes for associating achiasmatic chromosomes: (a) modified SC, (b) adhesion of chromatids comparable to somatic pairing, (c) 'stickiness' of heterochromatin or (d) specific 'segregation bodies', consisting of material structurally different from chromatin. There is also the possibility that the spindle-possibly joining forces with the kinetochores--carries out the faithful segregation of univalents which are not directly physically attached to one another. Finally, amphitelic orientation of univalents in metaphase I and pairing of the chromatids in meiosis II appear to ensure correct segregation as well.
Collapse
Affiliation(s)
- K W Wolf
- Institut für Biologie der Medizinischen Universität zu Lübeck, Deutschland
| |
Collapse
|
28
|
Modi WS. Rapid, localized amplification of a unique satellite DNA family in the rodent Microtus chrotorrhinus. Chromosoma 1993; 102:484-90. [PMID: 8375217 DOI: 10.1007/bf00357104] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A novel satellite DNA family (called MSAT-2570) was isolated and characterized from the rodent Microtus chrotorrhinus. With a length of 2,570 bp the repeat unit is among the largest yet reported in mammals and comprises a series of short direct and inverted repeats. These repeat motifs may prevent nucleosome formation or represent an endless source of genetic variation. Restriction enzyme digestion using the two pairs of isoschizomers HpaII/MspI and MboI/Sau3AI demonstrated tissue specific differences in satellite DNA methylation that may reflect variable chromatin conformation or differences in patterns of gene expression. The sex chromosomes of M. chrotorrhinus are usually large in size among mammals, comprising 15%-20% of the karyotype and containing large blocks of heterochromatin. In situ hybridization of the satellite DNA revealed chromosomal localization predominantly to sex chromosome heterochromatin. A survey of related rodents including three congeneric species also with giant sized sex chromosomes demonstrated that MSAT-2570 is present only in the genome of M. chrotorrhinus. However, another previously reported satellite DNA also isolated from M. chrotorrhinus has been shown to reside on sex chromosome heterochromatin in one of the other three species, indicating that these giant blocks of heterochromatin are complex in structure and comprise multiple, unrelated satellite DNA families.
Collapse
Affiliation(s)
- W S Modi
- Program Resources Inc./DynCorp, Frederick Cancer Research and Development Center, MD 21702-1201
| |
Collapse
|
29
|
Schultz MC. Three structures associated with the nucleolus in male rat germinal cells: round body, coiled body, and "nubecula" and general presence of round body at male meiosis. THE AMERICAN JOURNAL OF ANATOMY 1990; 189:11-23. [PMID: 1700593 DOI: 10.1002/aja.1001890103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In addition to chromosomes and nucleoli, three structures, i.e., round body, coiled body, and nubecula, are encountered in the nucleus during the meiotic prophase in male rats. These structures have been examined by electron microscopy in random and serial sections. The round body is a finely fibrillar, proteinaceous structure closely associated with the granular component of a nucleolus in rat spermatocytes and young spermatids. A similar structure has been observed in man, the monkey Macaca mulatta, the gastropod Achatina fulica, and the insect Locusta migratoria. Together with evidence from the literature, these results support the view that the round body is of general occurrence in the male meiocytes of eukaryotes and may, therefore, play a role in meiosis. The coiled body is a group of electron-dense elements called "coils", which average 35 nm in width, except after mid-pachytene when their size almost doubles. The coils are composed of 2-nm-wide filaments and 8 to 10-nm-wide granules, both of which are ribonucleoprotein. The coiled bodies are interpreted to be groups of "spliceosomes", that is, structures containing heterogeneous RNA and small nuclear RNA. A remarkable feature of the coiled body is its temporary disappearance at early pachytene and its reappearance at late pachytene, possibly due to drastic changes in the turnover rate of its component RNAs. The nubecula is a newly identified nuclear inclusion, composed of weakly staining threads loosely organized into a 560 nm-wide spheroid. It has been observed only in early pachytene nuclei.
Collapse
Affiliation(s)
- M C Schultz
- Department of Anatomy, McGill University, Montreal, Quebec, Canada
| |
Collapse
|