1
|
Soupene E, He L, Yan D, Kustu S. Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci U S A 1998; 95:7030-4. [PMID: 9618533 PMCID: PMC22728 DOI: 10.1073/pnas.95.12.7030] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Homologues of the amtB gene of enteric bacteria exist in all three domains of life. Although their products are required for transport of the ammonium analogue methylammonium in washed cells, only in Saccharomyces cerevisiae have they been shown to be necessary for growth at low NH4+ concentrations. We now demonstrate that an amtB strain of Escherichia coli also grows slowly at low NH4+ concentrations in batch culture, but only at pH values below 7. In addition, we find that the growth defect of an S. cerevisiae triple-mutant strain lacking the function of three homologues of the ammonium/methylammonium transport B (AmtB) protein [called methylammonium/ammonium permeases (MEP)] that was observed at pH 6.1 is relieved at pH 7.1. These results provide direct evidence that AmtB participates in acquisition of NH4+/NH3 in bacteria as well as eucarya. Because NH3 is the species limiting at low pH for a given total concentration of NH4+ + NH3, results with both organisms indicate that AmtB/MEP proteins function in acquisition of the uncharged form. We confirmed that accumulation of [14C]methylammonium depends on its conversion to gamma-N-methylglutamine, an energy-requiring reaction catalyzed by glutamine synthetase, and found that at pH 7, constitutive expression of AmtB did not relieve the growth defects of a mutant strain of Salmonella typhimurium that appears to require a high internal concentration of NH4+/NH3. Hence, contrary to previous views, we propose that AmtB/MEP proteins increase the rate of equilibration of the uncharged species, NH3, across the cytoplasmic membrane rather than actively transporting-that is, concentrating-the charged species, NH4+.
Collapse
Affiliation(s)
- E Soupene
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102, USA
| | | | | | | |
Collapse
|
2
|
Klose KE, Mekalanos JJ. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol Microbiol 1998; 28:501-20. [PMID: 9632254 DOI: 10.1046/j.1365-2958.1998.00809.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vibrio cholerae, the bacterium that causes cholera, has a pathogenic cycle consisting of a free-swimming phase outside its host, and a sessile virulent phase when colonizing the human small intestine. We have cloned the V. cholerae homologue of the rpoN gene (encoding sigma54) and determined its role in the cholera pathogenic cycle by constructing an rpoN null mutant. The V. cholerae rpoN mutant is non-motile; examination of this mutant by electron microscopy revealed that it lacks a flagellum. In addition to flagellar synthesis, sigma54 is involved in glutamine synthetase expression. Moreover, the rpoN mutant is defective for colonization in an infant mouse model of cholera. We present evidence that the colonization defect is distinct from the non-motile and Gln phenotypes of the rpoN mutant, implicating multiple and distinct roles of sigma54 during the V. cholerae pathogenic cycle. RNA polymerase containing sigma54 (sigma54-holoenzyme) has an absolute requirement for an activator protein to initiate transcription. We have identified three regulatory genes, flrABC (flagellar regulatory proteins ABC) that are additionally required for flagellar synthesis. The flrA and flrC gene products are sigma54-activators and form a flagellar transcription cascade. flrA and flrC mutants are also defective for colonization; this phenotype is probably independent of non-motility. An flrC constitutive mutation (M114-->I) was isolated that is independent of its cognate kinase FlrB. Expression of the constitutive FlrCM114-->I from the cholera toxin promoter resulted in a change in cell morphology, implicating involvement of FlrC in cell division. Thus, sigma54 holoenzyme, FlrA and FlrC transcribe genes for flagellar synthesis and possibly cell division during the free-swimming phase of the V. cholerae life cycle, and some as yet unidentified gene(s) that aid colonization within the host.
Collapse
Affiliation(s)
- K E Klose
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
3
|
Klose KE, Mekalanos JJ. Differential regulation of multiple flagellins in Vibrio cholerae. J Bacteriol 1998; 180:303-16. [PMID: 9440520 PMCID: PMC106886 DOI: 10.1128/jb.180.2.303-316.1998] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/1997] [Accepted: 10/15/1997] [Indexed: 02/05/2023] Open
Abstract
Vibrio cholerae, the causative agent of the human diarrheal disease cholera, is a motile bacterium with a single polar flagellum. Motility has been implicated as a virulence determinant in some animal models of cholera, but the relationship between motility and virulence has not yet been clearly defined. We have begun to define the regulatory circuitry controlling motility. We have identified five V. cholerae flagellin genes, arranged in two chromosomal loci, flaAC and flaEDB; all five genes have their own promoters. The predicted gene products have a high degree of homology to each other. A strain containing a single mutation in flaA is nonmotile and lacks a flagellum, while strains containing multiple mutations in the other four flagellin genes, including a flaCEDB strain, remain motile. Measurement of fla promoter-lacZ fusions reveals that all five flagellin promoters are transcribed at high levels in both wild-type and flaA strains. Measurement of the flagellin promoter-lacZ fusions in Salmonella typhimurium indicates that the promoter for flaA is transcribed by the sigma54 holoenzyme form of RNA polymerase while the flaE, flaD, and flaB promoters are transcribed by the sigma28 holoenzyme. These results reveal that the V. cholerae flagellum is a complex structure with multiple flagellin subunits including FlaA, which is essential for flagellar synthesis and is differentially regulated from the other flagellins.
Collapse
Affiliation(s)
- K E Klose
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
4
|
Abstract
In response to molecular oxygen and/or fixed nitrogen, the product of the Klebsiella pneumoniae nitrogen fixation L (nifL) gene inhibits NifA-mediated transcriptional activation. Nitrogen regulation of NifL function occurs at two levels: transcription of the nifLA operon is regulated by the general Ntr system, and the activity of NifL is controlled by an unknown mechanism. We have studied the regulation of NifL activity in Escherichia coli and Salmonella typhimurium by monitoring its inhibition of NifA-mediated expression of a K. pneumoniae phi(nifH'-'lacZ) fusion. The activity of the NifL protein transcribed from the tac promoter is regulated well in response to changes of oxygen and/or nitrogen status, indicating that no nif- or K. pneumoniae-specific product is required. Unexpectedly, strains carrying ntrC (glnG) null alleles failed to release NifL inhibition, despite the fact that synthesis of NifL was no longer under Ntr control. Additional evidence indicated that it is indeed the transcriptional activation capacity of NtrC, rather than its repression capacity, that is needed, and hence it is a plausible hypothesis that NtrC activates transcription of a gene(s) whose product(s) in turn functions to relieve NifL inhibition under nitrogen-limiting conditions.
Collapse
Affiliation(s)
- L He
- Department of Plant and Microbial Biology, University of California, Berkeley 94720-3102, USA
| | | | | |
Collapse
|
5
|
Klose KE, Mekalanos JJ. Simultaneous prevention of glutamine synthesis and high-affinity transport attenuates Salmonella typhimurium virulence. Infect Immun 1997; 65:587-96. [PMID: 9009317 PMCID: PMC176100 DOI: 10.1128/iai.65.2.587-596.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Salmonella typhimurium, transcription of the glnA gene (encoding glutamine synthetase) is under the control of the nitrogen-regulatory (ntr) system comprising the alternate sigma factor sigma54 (NtrA) and the two-component sensor-transcriptional activator pair NtrB and NtrC. The glnA, ntrB, and ntrC genes form an operon. We measured the virulence of S. typhimurium strains with nitrogen-regulatory mutations after intraperitoneal (i.p.) or oral inoculations of BALB/c mice. Strains with single mutations in glnA, ntrA, ntrB, or ntrC had i.p. 50% lethal doses (LD50s) of <10 bacteria, similar to the wild-type strain. However, a strain with a delta(glnA-ntrC) operon deletion had an i.p. LD50 of >10(5) bacteria, as did delta glnA ntrA and delta glnA ntrC strains, suggesting that glnA strains require an ntr-transcribed gene for full virulence. High-level transcription of the glutamine transport operon (glnHPQ) is dependent upon both ntrA and ntrC, as determined by glnHp-lacZ fusion measurements. Moreover, delta glnA glnH and delta glnA glnQ strains are attenuated, similar to delta glnA ntrA and delta glnA ntrC strains. These results reveal that access of S. typhimurium to host glutamine depends on the ntr system, which apparently is required for the transcription of the glutamine transport genes. The delta(glnA-ntrC) strain exhibited a reduced ability to survive within the macrophage cell line J774, identifying a potential host environment with low levels of glutamine. Finally, the delta(glnA-ntrC) strain, when inoculated at doses as low as 10 organisms, provided mice with protective immunity against challenge by the wild-type strain, demonstrating its potential use as a live vaccine.
Collapse
Affiliation(s)
- K E Klose
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
6
|
Cohen-Kupiec R, Gurevitz M, Zilberstein A. Expression of glnA in the cyanobacterium Synechococcus sp. strain PCC 7942 is initiated from a single nif-like promoter under various nitrogen conditions. J Bacteriol 1993; 175:7727-31. [PMID: 7902350 PMCID: PMC206936 DOI: 10.1128/jb.175.23.7727-7731.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The glnA mRNA, encoding glutamine synthetase, is differentially accumulated in the cyanobacterium Synechococcus sp. strain PCC 7942 in media containing different nitrogen sources. With the different nitrogen compounds, transcription of glnA initiated at a single site located -146 nucleotides upstream of the translation start site of the gene. A similarity of the nif-like promoter of the glnA gene of Anabaena sp. strain PCC 7120 and a binding-site sequence for the Synechococcus sp. strain PCC 7942 transcription regulator, NtcA, were found upstream of the transcription initiation site.
Collapse
Affiliation(s)
- R Cohen-Kupiec
- Department of Botany, Tel Aviv University, Ramat-Aviv, Israel
| | | | | |
Collapse
|
7
|
|
8
|
Austin S, Henderson N, Dixon R. Requirements for transcriptional activation in vitro of the nitrogen-regulated glnA and nifLA promoters from Klebsiella pneumoniae: dependence on activator concentration. Mol Microbiol 1987; 1:92-100. [PMID: 3330758 DOI: 10.1111/j.1365-2958.1987.tb00532.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Three proteins involved in nitrogen regulation in Klebsiella pneumoniae, NTRA, NTRB and NTRC, have been purified. In a defined in vitro system all three NTR proteins are required for initiation of transcription at the ntr activatable glnA and nifLA promoters. However, in crude S-30 extracts, transcription from the glnA promoter, but not the nifLA promoter, can be activated in the absence of NTRB. A higher concentration of NTRC is required for activation of nifLA transcription than for glnA transcription. Sequences located between -227 and -158 with respect to the nifL transcription start site are required for efficient activation of the nifLA promoter in vitro.
Collapse
Affiliation(s)
- S Austin
- AFRC Unit of Nitrogen Fixation, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
9
|
Dixon R. The xylABC promoter from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1986; 203:129-36. [PMID: 3520241 DOI: 10.1007/bf00330393] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The xylABC promoter (OP1), located on the TOL plasmid of Pseudomonas putida contains sequences homologous to the conserved regions found in nitrogen fixation (nif) promoters and in other promoters subject to nitrogen control. XylA-lac fusions were constructed in order to monitor expression from the OP1 promoter in Escherichia coli. Transcription was activated in the presence of the heterologous regulatory genes ntrC or nifA from Klebsiella pneumoniae as well as by the homologous P. putida regulatory gene xylR. In all cases activation was also dependent on the ntrA gene, whose product has been implicated as a specific sigma factor for ntr activatable operons. The 5' ends of xylA mRNA, detected by S1 nuclease mapping of in vivo transcripts, were identical in strains containing xylR, ntrC or nifA as transcriptional activators. However, activation of the K. pneumoniae nifL or nifH promoters by xylR was not detected.
Collapse
|
10
|
Rocha M, Vázquez M, Garciarrubio A, Covarrubias AA. Nucleotide sequence of the glnA-glnL intercistronic region of Escherichia coli. Gene X 1985; 37:91-9. [PMID: 2865194 DOI: 10.1016/0378-1119(85)90261-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide (nt) sequence of a 682-bp fragment containing the 3' end of the glnA gene, the region between the glnA and glnL genes, and the 5' end of the glnL gene from Escherichia coli was determined. This segment contains the region coding for the last 107 amino acids (aa) of glutamine synthetase, including the adenylylation site of this enzyme. The analysis of this sequence revealed two REP sequences, a Rho-independent terminator, the putative glnL promoter and the possible binding site for the glnG product, NRI.
Collapse
|
11
|
McCarter L, Krajewska-Grynkiewicz K, Trinh D, Wei G, Kustu S. Characterization of mutations that lie in the promoter-regulatory region for glnA, the structural gene encoding glutamine synthetase. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:150-60. [PMID: 6151113 DOI: 10.1007/bf00327936] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In enteric bacteria products of nitrogen regulatory genes ntrA, ntrB and ntrC are known to regulate transcription both positively and negatively at glnA, the structural gene encoding glutamine synthetase [L-glutamate:ammonia-ligase (ADP-forming), EC 6.3.1.2]. We have characterized two types of cis-acting mutations in the glnA promoter-regulatory region. One type, which we have called promoter Up [glnAp (Up)], elevates transcription of glnA to high levels without need for ntr-mediated activation but leaves expression sensitive to ntr-mediated repression. The other type renders glnA transcription insensitive to repression but leaves it normally responsive to activation. Properties of the two types of promoter-regulatory mutations suggest that sites for ntr-mediated activation of glnA transcription are functionally distinct from sites for ntr-mediated repression.
Collapse
|