1
|
Armengod ME, Meseguer S, Villarroya M, Prado S, Moukadiri I, Ruiz-Partida R, Garzón MJ, Navarro-González C, Martínez-Zamora A. Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes. RNA Biol 2015; 11:1495-507. [PMID: 25607529 DOI: 10.4161/15476286.2014.992269] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Posttranscriptional modification of the uridine located at the wobble position (U34) of tRNAs is crucial for optimization of translation. Defects in the U34 modification of mitochondrial-tRNAs are associated with a group of rare diseases collectively characterized by the impairment of the oxidative phosphorylation system. Retrograde signaling pathways from mitochondria to nucleus are involved in the pathophysiology of these diseases. These pathways may be triggered by not only the disturbance of the mitochondrial (mt) translation caused by hypomodification of tRNAs, but also as a result of nonconventional roles of mt-tRNAs and mt-tRNA-modifying enzymes. The evolutionary conservation of these enzymes supports their importance for cell and organismal functions. Interestingly, bacterial and eukaryotic cells respond to stress by altering the expression or activity of these tRNA-modifying enzymes, which leads to changes in the modification status of tRNAs. This review summarizes recent findings about these enzymes and sets them within the previous data context.
Collapse
Affiliation(s)
- M Eugenia Armengod
- a Laboratory of RNA Modification and Mitochondrial Diseases ; Centro de Investigación Príncipe Felipe ; Valencia , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
3
|
Tischner C, Hofer A, Wulff V, Stepek J, Dumitru I, Becker L, Haack T, Kremer L, Datta AN, Sperl W, Floss T, Wurst W, Chrzanowska-Lightowlers Z, De Angelis MH, Klopstock T, Prokisch H, Wenz T. MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention. Hum Mol Genet 2015; 24:2247-66. [PMID: 25552653 PMCID: PMC4380071 DOI: 10.1093/hmg/ddu743] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/12/2014] [Accepted: 12/22/2014] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant translation products, as well as defects in OXPHOS complex assembly observed in MTO1 deficient mice further imply that MTO1 impacts translation fidelity. In our mouse model, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet. This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of mitochondrial and cellular secondary stress responses. Our results thereby establish mammalian MTO1 as a novel factor in the tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy.
Collapse
Affiliation(s)
- Christin Tischner
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Annette Hofer
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Veronika Wulff
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Joanna Stepek
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Iulia Dumitru
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Lore Becker
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich 80336, Germany, German Mouse Clinic, Institute of Experimental Genetics
| | - Tobias Haack
- Institute of Human Genetics, German Network for Mitochondrial Disorders (mitoNET), Germany
| | - Laura Kremer
- Institute of Human Genetics, German Network for Mitochondrial Disorders (mitoNET), Germany
| | - Alexandre N Datta
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel (UKBB), University of Basel, Basel 4031, Switzerland
| | - Wolfgang Sperl
- German Network for Mitochondrial Disorders (mitoNET), Germany, Department of Pediatrics, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Thomas Floss
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), Neuherberg 85764, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), Neuherberg 85764, Germany, Technical University Munich, Helmholtz Zentrum München, Neuherberg 85764, Germany, DZNE-German Center for Neurodegenerative Diseases, Munich, Germany, Max Planck Institute of Psychiatry, Munich 80804, Germany, German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Zofia Chrzanowska-Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Hrabe De Angelis
- German Mouse Clinic, Institute of Experimental Genetics, German Center for Vertigo and Balance Disorders, Munich, Germany, Center of Life and Food Sciences Weihenstephan, Technische Universitat München, Freising 85350, Germany, German Center for Diabetes Research (DZD), Neuherberg 85764, Germany and Technische Universität München, Freising-Weihenstephan 85354, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich 80336, Germany, German Mouse Clinic, Institute of Experimental Genetics, German Network for Mitochondrial Disorders (mitoNET), Germany, DZNE-German Center for Neurodegenerative Diseases, Munich, Germany, German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), Neuherberg 85764, Germany
| | - Tina Wenz
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany, German Network for Mitochondrial Disorders (mitoNET), Germany,
| |
Collapse
|
4
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
5
|
Moukadiri I, Garzón MJ, Björk GR, Armengod ME. The output of the tRNA modification pathways controlled by the Escherichia coli MnmEG and MnmC enzymes depends on the growth conditions and the tRNA species. Nucleic Acids Res 2013; 42:2602-23. [PMID: 24293650 PMCID: PMC3936742 DOI: 10.1093/nar/gkt1228] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Escherichia coli, the MnmEG complex modifies transfer RNAs (tRNAs) decoding NNA/NNG codons. MnmEG catalyzes two different modification reactions, which add an aminomethyl (nm) or carboxymethylaminomethyl (cmnm) group to position 5 of the anticodon wobble uridine using ammonium or glycine, respectively. In and , however, cmnm5 appears as the final modification, whereas in the remaining tRNAs, the MnmEG products are converted into 5-methylaminomethyl (mnm5) through the two-domain, bi-functional enzyme MnmC. MnmC(o) transforms cmnm5 into nm5, whereas MnmC(m) converts nm5 into mnm5, thus producing an atypical network of modification pathways. We investigate the activities and tRNA specificity of MnmEG and the MnmC domains, the ability of tRNAs to follow the ammonium or glycine pathway and the effect of mnmC mutations on growth. We demonstrate that the two MnmC domains function independently of each other and that and are substrates for MnmC(m), but not MnmC(o). Synthesis of mnm5s2U by MnmEG-MnmC in vivo avoids build-up of intermediates in . We also show that MnmEG can modify all the tRNAs via the ammonium pathway. Strikingly, the net output of the MnmEG pathways in vivo depends on growth conditions and tRNA species. Loss of any MnmC activity has a biological cost under specific conditions.
Collapse
Affiliation(s)
- Ismaïl Moukadiri
- Laboratory of RNA Modification and Mitochondrial Diseases, Príncipe Felipe Research Center, 46012-Valencia, Spain, Department of Molecular Biology, Umeå University, S90187, Sweden and Biomedical Research Networking Centre for Rare Diseases (CIBERER) (node U721), Spain
| | | | | | | |
Collapse
|
6
|
Armengod ME, Moukadiri I, Prado S, Ruiz-Partida R, Benítez-Páez A, Villarroya M, Lomas R, Garzón MJ, Martínez-Zamora A, Meseguer S, Navarro-González C. Enzymology of tRNA modification in the bacterial MnmEG pathway. Biochimie 2012; 94:1510-20. [PMID: 22386868 DOI: 10.1016/j.biochi.2012.02.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Among all RNAs, tRNA exhibits the largest number and the widest variety of post-transcriptional modifications. Modifications within the anticodon stem loop, mainly at the wobble position and purine-37, collectively contribute to stabilize the codon-anticodon pairing, maintain the translational reading frame, facilitate the engagement of the ribosomal decoding site and enable translocation of tRNA from the A-site to the P-site of the ribosome. Modifications at the wobble uridine (U34) of tRNAs reading two degenerate codons ending in purine are complex and result from the activity of two multi-enzyme pathways, the IscS-MnmA and MnmEG pathways, which independently work on positions 2 and 5 of the U34 pyrimidine ring, respectively, and from a third pathway, controlled by TrmL (YibK), that modifies the 2'-hydroxyl group of the ribose. MnmEG is the only common pathway to all the mentioned tRNAs, and involves the GTP- and FAD-dependent activity of the MnmEG complex and, in some cases, the activity of the bifunctional enzyme MnmC. The Escherichia coli MnmEG complex catalyzes the incorporation of an aminomethyl group into the C5 atom of U34 using methylene-tetrahydrofolate and glycine or ammonium as donors. The reaction requires GTP hydrolysis, probably to assemble the active site of the enzyme or to carry out substrate recognition. Inactivation of the evolutionarily conserved MnmEG pathway produces a pleiotropic phenotype in bacteria and mitochondrial dysfunction in human cell lines. While the IscS-MnmA pathway and the MnmA-mediated thiouridylation reaction are relatively well understood, we have limited information on the reactions mediated by the MnmEG, MnmC and TrmL enzymes and on the precise role of proteins MnmE and MnmG in the MnmEG complex activity. This review summarizes the present state of knowledge on these pathways and what we still need to know, with special emphasis on the MnmEG pathway.
Collapse
Affiliation(s)
- M-Eugenia Armengod
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, Molecular Genetics, Avenida Autopista del Saler, 16-3, 46012-Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang X, Yan Q, Guan MX. Combination of the loss of cmnm5U34 with the lack of s2U34 modifications of tRNALys, tRNAGlu, and tRNAGln altered mitochondrial biogenesis and respiration. J Mol Biol 2010; 395:1038-48. [PMID: 20004207 PMCID: PMC2818684 DOI: 10.1016/j.jmb.2009.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 11/23/2022]
Abstract
Yeast Saccharomyces cerevisiae MTO2, MTO1, and MSS1 genes encoded highly conserved tRNA modifying enzymes for the biosynthesis of carboxymethylaminomethyl (cmnm)(5)s(2)U(34) in mitochondrial tRNA(Lys), tRNA(Glu), and tRNA(Gln). In fact, Mto1p and Mss1p are involved in the biosynthesis of the cmnm(5) group (cmnm(5)U(34)), while Mto2p is responsible for the 2-thiouridylation (s(2)U(34)) of these tRNAs. Previous studies showed that partial modifications at U(34) in mitochondrial tRNA enabled mto1, mto2, and mss1 strains to respire. In this report, we investigated the functional interaction between MTO2, MTO1, and MSS1 genes by using the mto2, mto1, and mss1 single, double, and triple mutants. Strikingly, the deletion of MTO2 was synthetically lethal with a mutation of MSS1 or deletion of MTO1 on medium containing glycerol but not on medium containing glucose. Interestingly, there were no detectable levels of nine tRNAs including tRNA(Lys), tRNA(Glu), and tRNA(Gln) in mto2/mss1, mto2/mto1, and mto2/mto1/mss1 strains. Furthermore, mto2/mss1, mto2/mto1, and mto2/mto1/mss1 mutants exhibited extremely low levels of COX1 and CYTB mRNA and 15S and 21S rRNA as well as the complete loss of mitochondrial protein synthesis. The synthetic enhancement combinations likely resulted from the completely abolished modification at U(34) of tRNA(Lys), tRNA(Glu), and tRNA(Gln), caused by the combination of eliminating the 2-thiouridylation by the mto2 mutation with the absence of the cmnm(5)U(34) by the mto1 or mss1 mutation. The complete loss of modifications at U(34) of tRNAs altered mitochondrial RNA metabolisms, causing a degradation of mitochondrial tRNA, mRNA, and rRNAs. As a result, failures in mitochondrial RNA metabolisms were responsible for the complete loss of mitochondrial translation. Consequently, defects in mitochondrial protein synthesis caused the instability of their mitochondrial genomes, thus producing the respiratory-deficient phenotypes. Therefore, our findings demonstrated a critical role of modifications at U(34) of tRNA(Lys), tRNA(Glu), and tRNA(Gln) in maintenance of mitochondrial genome, mitochondrial RNA stability, translation, and respiratory function.
Collapse
MESH Headings
- Alleles
- Base Sequence
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Genes, Fungal
- Genome, Mitochondrial
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutation
- Oxygen Consumption
- Phenotype
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Mitochondrial
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Xinjian Wang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Qingfeng Yan
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| |
Collapse
|
8
|
Raymond A, Lovell S, Lorimer D, Walchli J, Mixon M, Wallace E, Thompkins K, Archer K, Burgin A, Stewart L. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer. BMC Biotechnol 2009; 9:37. [PMID: 19383143 PMCID: PMC2680836 DOI: 10.1186/1472-6750-9-37] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 04/21/2009] [Indexed: 01/29/2023] Open
Abstract
Background With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. Results In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38α), viral polymerase (HCV NS5B), and bacterial structural protein (FtsZ) were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. Conclusion The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.
Collapse
Affiliation(s)
- Amy Raymond
- deCODE biostructures Inc, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang X, Yan Q, Guan MX. Mutation in MTO1 involved in tRNA modification impairs mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. Mitochondrion 2009; 9:180-5. [PMID: 19460296 DOI: 10.1016/j.mito.2009.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 01/06/2009] [Accepted: 01/21/2009] [Indexed: 11/17/2022]
Abstract
The yeast MTO1 gene encodes an evolutionarily conserved protein for the biosynthesis of the 5-carboxymethylaminomethyl group of cmnm(5)s(2)U in the wobble position of mitochondrial tRNA. However, mto1 null mutant expressed the respiratory deficient phenotype only when coupled with the C1409G mutation of mitochondrial 15S rRNA. To further understand the role of MTO1 in mitochondrial RNA metabolism, the yeast mto1 null mutants carrying either wild-type (P(S)) or 15S rRNA C1409G allele (P(R)) have been characterized by examining the steady-state levels, aminoacylation capacity of mitochondrial tRNA, mitochondrial gene expression and petite formation. The steady-state levels of tRNA(Lys), tRNA(Glu), tRNA(Gln), tRNA(Leu), tRNA(Gly), tRNA(Arg) and tRNA(Phe) were decreased significantly while those of tRNA(Met) and tRNA(His) were not affected in the mto1 strains carrying the P(S) allele. Strikingly, the combination of the mto1 and C1409G mutations gave rise to the synthetic phenotype for some of the tRNAs, especially in tRNA(Lys), tRNA(Met) and tRNA(Phe). Furthermore, the mto1 strains exhibited a marked reduction in the aminoacylation levels of mitochondrial tRNA(Lys), tRNA(Leu), tRNA(Arg) but almost no effect in those of tRNA(His). In addition, the steady-state levels of mitochondrial COX1, COX2, COX3, ATP6 and ATP9 mRNA were markedly decreased in mto1 strains. These data strongly indicate that unmodified tRNA caused by the deletion of MTO1 gene caused the instability of mitochondrial tRNAs and mRNAs and an impairment of aminoacylation of mitochondrial tRNAs. Consequently, the deletion of MTO1 gene acts in synergy with the 15S rRNA C1409G mutation, leading to the loss of COX1 synthesis and subsequent respiratory deficient phenotype.
Collapse
Affiliation(s)
- Xinjian Wang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7016, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
10
|
Hypomodification of the wobble base in tRNAGlu, tRNALys, and tRNAGln suppresses the temperature-sensitive phenotype caused by mutant release factor 1. J Bacteriol 2008; 191:1604-9. [PMID: 19103926 DOI: 10.1128/jb.01485-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, release factor 1 (RF1) is one of two RFs that mediate termination; it specifically recognizes UAA and UAG stop codons. A mutant allele, prfA1, coding for an RF1 that causes temperature-sensitive (Ts) growth at 42 degrees C, was used to select for temperature-resistant (Ts(+)) suppressors. This study describes one such suppressor that is the result of an IS10 insertion into the cysB gene, giving a Cys(-) phenotype. CysB is a transcription factor regulating the cys regulon, mainly as an activator, which explains the Cys(-) phenotype. We have found that suppression is a consequence of the lost ability to donate sulfur to enzymes involved in the synthesis of thiolated nucleosides. From genetic analyses we conclude that it is the lack of the 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) modification of the wobble base of tRNA(Glu), tRNA(Lys), and/or tRNA(Gln) that causes the suppressor phenotype.
Collapse
|
11
|
Wang X, Yan Q, Guan MX. Deletion of the MTO2 gene related to tRNA modification causes a failure in mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. FEBS Lett 2007; 581:4228-34. [PMID: 17706197 DOI: 10.1016/j.febslet.2007.07.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 07/17/2007] [Accepted: 07/26/2007] [Indexed: 11/25/2022]
Abstract
We report here the characterization of the yeast mto2 null mutants carrying wild-type mitochondrial DNA or 15S rRNA C1049G allele. The amounts of mitochondrial tRNA(Lys), tRNA(Glu), tRNA(Gln), tRNA(Leu), tRNA(Gly) and tRNA(Met) were markedly decreased but those of tRNA(Arg) and tRNA(His) were not affected in mto2 strains. The mto2 strains exhibited significant reduction in the aminoacylation of tRNA(Lys), tRNA(Leu) but almost no effect in those of tRNA(His). Interestingly, the strain carrying the C1049G allele exhibited an impairment of aminoacylation of those tRNAs. Furthermore, the steady-state levels of mitochondrial mRNA CYTB, COX1, COX2, COX3, and ATP6 were markedly decreased in mto2 strains. These data strongly indicate that unmodified tRNA caused by the deletion of MTO2 caused the instability of mitochondrial tRNAs and mRNAs and impairment of aminoacylation of tRNAs.
Collapse
Affiliation(s)
- Xinjian Wang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
12
|
Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 2006; 7:285. [PMID: 16756672 PMCID: PMC1523223 DOI: 10.1186/1471-2105-7-285] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 06/06/2006] [Indexed: 12/02/2022] Open
Abstract
Background Direct synthesis of genes is rapidly becoming the most efficient way to make functional genetic constructs and enables applications such as codon optimization, RNAi resistant genes and protein engineering. Here we introduce a software tool that drastically facilitates the design of synthetic genes. Results Gene Designer is a stand-alone software for fast and easy design of synthetic DNA segments. Users can easily add, edit and combine genetic elements such as promoters, open reading frames and tags through an intuitive drag-and-drop graphic interface and a hierarchical DNA/Protein object map. Using advanced optimization algorithms, open reading frames within the DNA construct can readily be codon optimized for protein expression in any host organism. Gene Designer also includes features such as a real-time sliding calculator of oligonucleotide annealing temperatures, sequencing primer generator, tools for avoidance or inclusion of restriction sites, and options to maximize or minimize sequence identity to a reference. Conclusion Gene Designer is an expandable Synthetic Biology workbench suitable for molecular biologists interested in the de novo creation of genetic constructs.
Collapse
Affiliation(s)
- Alan Villalobos
- DNA 2.0, Inc. 1430 O'Brien Drive Suite E, Menlo Park, CA 94025, USA
| | - Jon E Ness
- DNA 2.0, Inc. 1430 O'Brien Drive Suite E, Menlo Park, CA 94025, USA
| | - Claes Gustafsson
- DNA 2.0, Inc. 1430 O'Brien Drive Suite E, Menlo Park, CA 94025, USA
| | - Jeremy Minshull
- DNA 2.0, Inc. 1430 O'Brien Drive Suite E, Menlo Park, CA 94025, USA
| | | |
Collapse
|
13
|
Li X, Guan MX. Identification and characterization of mouse GTPBP3 gene encoding a mitochondrial GTP-binding protein involved in tRNA modification. Biochem Biophys Res Commun 2004; 312:747-54. [PMID: 14680828 DOI: 10.1016/j.bbrc.2003.10.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Indexed: 11/26/2022]
Abstract
We report here the identification and characterization of mouse GTPBP3 encoding a mitochondrial GTPase. A full-length GTPBP3 cDNA has been isolated and the genomic organization of GTPBP3 has been elucidated. The mouse GTPBP3 gene containing 9 exons encodes a 486 residue protein with a strong homology to the GTPBP3-like proteins of bacteria, yeast, and other homologs, related to tRNA modification. The mouse GTPBP3 is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, and brain. Surprisingly, this gene, unlike its human homolog, exhibited a low expression in skeletal muscle. Furthermore, immunofluorescence analysis of NIH3T3 cells expressing GTPBP3-GFP fusion protein demonstrated that the mouse Gtpbp3 localizes in mitochondrion. These observations suggest that the mouse Gtpbp3 is an evolutionarily conserved mitochondrial GTP-binding protein involved in the tRNA modification. Thus, it may modulate the translational efficiency and accuracy of codon-anticodon base pairings on the decoding region of mitochondrial ribosomes.
Collapse
Affiliation(s)
- Xiaoming Li
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
14
|
Yan Q, Guan MX. Identification and characterization of mouse TRMU gene encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase. ACTA ACUST UNITED AC 2004; 1676:119-26. [PMID: 14746906 DOI: 10.1016/j.bbaexp.2003.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleotide modification in tRNA plays a pivotal role in the fidelity of translational process. The mutated mitochondrial tRNA (mt tRNA) associated with human diseases often exhibited a defect in nucleotide modification at wobble position of anticodons. Recently, the product of trmU, 5-methylaminomethyl-2-thiouridylate-methyltransferase, has been shown to be one component of enzyme complex for the biosynthesis of mnm5s2U in the wobble position of the bacterial tRNAs. Here we report the identification and characterization of mouse TRMU homolog. A 1532 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The mouse TRMU gene containing 11 exons encodes a 417 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs related to tRNA modification. The mouse TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver and brain. Furthermore, immunofluorescence analysis of NIH3T3 cells expressing TRMU-GFP fusion protein demonstrated that the mouse Trmu localizes in mitochondria. These observations suggest that the mouse TRMU is a structural and functional homolog of bacterial TrmU, thereby playing a role in the mt tRNA modification and protein synthesis.
Collapse
Affiliation(s)
- Qingfeng Yan
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
15
|
Ozawa Y, Saito R, Washio T, Tomita M. Comparative study of translation termination sites and release factors (RF1 and RF2) in procaryotes. J Mol Evol 2003; 56:665-72. [PMID: 12911030 DOI: 10.1007/s00239-002-2435-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Translation termination is catalyzed by release factors that recognize stop codons. However, previous works have shown that in some bacteria, the termination process also involves bases around stop codons. Recently, Ito et al. analyzed release factors and identified the amino acids therein that recognize stop codons. However, the amino acids that recognize bases around stop codons remain unclear. To identify the candidate amino acids that recognize the bases around stop codons, we aligned the protein sequences of the release factors of various bacteria and searched for amino acids that were conserved specifically in the sequence of bacteria that seemed to regulate translation termination by bases around stop codons. As a result, species having several highly conserved residues in RF1 and RF2 showed positive correlations between their codon usage bias and conservation of the bases around the stop codons. In addition, some of the residues were located very close to the SPF motif, which deciphers stop codons. These results suggest that these conserved amino acids enable the release factors to recognize the bases around the stop codons.
Collapse
Affiliation(s)
- Y Ozawa
- Institute for Advanced Bioscience, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-8520, Japan
| | | | | | | |
Collapse
|
16
|
Li X, Guan MX. A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation. Mol Cell Biol 2002; 22:7701-11. [PMID: 12370316 PMCID: PMC135671 DOI: 10.1128/mcb.22.21.7701-7711.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human mitochondrial 12S rRNA A1555G mutation has been found to be associated with deafness. However, putative nuclear modifier gene(s) has been proposed to regulate the phenotypic expression of this mutation. In yeast cells, mutant alleles of MSS1, encoding a mitochondrial GTP-binding protein, manifest a respiratory-deficient phenotype only when coupled with mitochondrial 15S rRNA P(R)(454) mutation corresponding to human A1555G mutation. This suggests that an MSS1-like modifier gene may influence the phenotypic expression of the A1555G mutation. We report here the identification and characterization of human MSS1 homolog, GTPBP3, the first identified vertebrate gene related to mitochondrial tRNA modification. The Gtpbp3 is the mitochondrial GTPase evolutionarily conserved from bacteria to mammals. Functional conservation of this protein is supported by the observation that isolated human GTPBP3 cDNA can complement the respiratory-deficient phenotype of yeast mss1 cells carrying P(R)(454) mutation. GTPBP3 is ubiquitously expressed in various tissues as multiple transcripts, but with a markedly elevated expression in tissues of high metabolic rates. We showed that Gtpbp3 localizes in mitochondrion. These observations suggest that the human GTPBP3 is a structural and functional homolog of yeast MSS1. Thus, allelic variants in GTPBP3 could, if they exist, modulate the phenotypic manifestation of human mitochondrial A1555G mutation.
Collapse
Affiliation(s)
- Xiaoming Li
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
17
|
Li X, Li R, Lin X, Guan MX. Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation. J Biol Chem 2002; 277:27256-64. [PMID: 12011058 DOI: 10.1074/jbc.m203267200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human mitochondrial 12 S rRNA A1555G mutation has been found to be associated with aminoglycoside-induced and non-syndromic deafness. However, putative nuclear modifier gene(s) have been proposed to regulate the phenotypic expression of this mutation. In yeast, the mutant alleles of MTO1, encoding a mitochondrial protein, manifest respiratory-deficient phenotype only when coupled with the mitochondrial 15 S rRNA P(R)454 mutation corresponding to human A1555G mutation. This suggests that the MTO1-like modifier gene may influence the phenotypic expression of human A1555G mutation. Here we report the identification of full-length cDNA and elucidation of genomic organization of the human MTO1 homolog. Human Mto1 is an evolutionarily conserved protein that implicates a role in the mitochondrial tRNA modification. Functional conservation of this protein is supported by the observation that isolated human MTO1 cDNA can complement the respiratory deficient phenotype of yeast mto1 cells carrying P(R)454 mutation. MTO1 is ubiquitously expressed in various tissues, but with a markedly elevated expression in tissues of high metabolic rates including cochlea. These observations suggest that human MTO1 is a structural and functional homolog of yeast MTO1. Thus, it may play an important role in the pathogenesis of deafness-associated A1555G mutation in 12 S rRNA gene or mutations in tRNA genes.
Collapse
Affiliation(s)
- Xiaoming Li
- Division of Human Genetics, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
18
|
Krüger MK, Pedersen S, Hagervall TG, Sørensen MA. The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J Mol Biol 1998; 284:621-31. [PMID: 9826503 DOI: 10.1006/jmbi.1998.2196] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Escherichia coli, uridine in the wobble position of tRNAGlu and tRNALys is modified to mnm5s2U34. This modification is believed to restrict the base-pairing capability, i.e. to prevent misreading of near-cognate codons and reduce the efficiency of cognate codon reading, especially of codons ending in G. We have determined the influence of the 5-methylaminomethyl and the 2-thio modifications of mnm5s2U34 in tRNAGlu on the translation rate of the glutamate codons GAA and GAG in vivo. In wild-type cells, GAG is translated slower (7. 7 codons/second) and GAA faster (18 codons/second) than the average codon (13 codons/second). Surprisingly, tRNAGlu lacking the 5-methylaminomethyl group, thus containing s2U34, translated GAA twofold faster (47 codons/second) and GAG fourfold slower (1.9 codons/second) than fully modified tRNAGlu. In contrast, tRNAGlu that contains mnm5U34 instead of mnm5s2U34 translated GAA fourfold slower (4.5 codons/second) and GAG only 20% slower (6.2 codons/second). Clearly, the 5-methylaminomethyl group of mnm5s2U34 facilitates base-pairing with G while decreasing base-pairing with A, resulting in rates of translation of GAG and GAA that approach that of the average codon. The 2-thio group increases the recognition of GAA and has only a minor effect on the decoding of GAG. Furthermore, the 2-thio group is important for aminoacylation (see the accompanying paper). These data imply that the function of mnm5s2U34 may be different from what has been suggested previously.
Collapse
Affiliation(s)
- M K Krüger
- Department of Molecular Cell Biology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
19
|
Abstract
The highly specific interaction of each aminoacyl-tRNA synthetase and its substrate tRNAs constitutes an intriguing problem in protein-RNA recognition. All tRNAs have the same overall three-dimensional structure in order to fit interchangeably into the translational apparatus. Thus, the recognition by aminoacyl-tRNA synthetase must be more or less limited to discrimination between bases at specific positions within the tRNA. The hypermodified nucleotide 5-methylaminomethyl-2-thiouridine (mnm5s2U) present at the wobble position of bacterial tRNAs specific for glutamic acid, lysine and possibly glutamine has been shown to be important in the recognition of these tRNAs by their synthetases in vitro. Here, we have determined the aminoacylation level in vivo of tRNAGlu, tRNALys, and tRNA1GIn in Escherichia coli strains containing undermodified derivatives of mnm5s2U34. Lack of the 5-methylaminomethyl group did not reduce charging levels for any of the three tRNAs. Lack of the s2U34 modification caused a 40% reduction in the charging level of tRNAGlu. Charging of tRNALys and tRNA1Gln were less affected. There was no compensating regulation of expression of glutamyl-tRNA synthetase because the relative synthesis rate was the same in the wild-type and mutant strains. These results indicate that the mnm5U34 modification is not an important recognition element in vivo for the glutamyl-tRNA synthetase. In contrast, lack of the s2U34 modification reduced the efficiency of charging by at least 40%. This is the minimal estimate because the turn-over rate of Glu-tRNAGlu was also reduced in the absence of the 2-thio group. Lack of either modification did not affect mischarging or mistranslation.
Collapse
Affiliation(s)
- M K Krüger
- Department of Molecular Cell Biology, University of Copenhagen, Denmark
| | | |
Collapse
|
20
|
Hagervall TG, Pomerantz SC, McCloskey JA. Reduced misreading of asparagine codons by Escherichia coli tRNALys with hypomodified derivatives of 5-methylaminomethyl-2-thiouridine in the wobble position. J Mol Biol 1998; 284:33-42. [PMID: 9811540 DOI: 10.1006/jmbi.1998.2162] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that modified nucleosides of the xm5(s2)U(m)34-type restrict the wobble capacity of the base, and that their function is to prevent misreading in the third position of the codon in mixed codon family boxes that encode two different amino acids. In this study in Escherichia coli, the misreading in vivo of asparagine codons in bacteriophage MS2 mRNA by different hypomodified derivatives of tRNALys, normally containing 5-methylaminomethyl-2-thiouridine (mnm5s2U34) in the wobble position, has been analysed. Contrary to what would be predicted from the general hypothesis for the function of mnm5s2U, it was found that the misreading of asparagine codons by tRNALys was greatly reduced in the mnmA (formerly asuE or trmU) and mnmE (formerly trmE) mutants which contain the hypomodified mnm5U34 and s2U34, respectively, instead of the fully modified mnm5s2U34. In addition, it was found that these hypomodified tRNAs were efficiently charged with lysine in vivo, under the growth conditions employed. The latter result is at variance with results obtained in vitro. The results are discussed in relation to the postulated function for modified nucleosides of the xm5s2U type.
Collapse
Affiliation(s)
- T G Hagervall
- Department of Microbiology, Umeå University, Umeå, S-901 87, Sweden.
| | | | | |
Collapse
|
21
|
Li JN, Björk GR. 1-Methylguanosine deficiency of tRNA influences cognate codon interaction and metabolism in Salmonella typhimurium. J Bacteriol 1995; 177:6593-600. [PMID: 7592438 PMCID: PMC177513 DOI: 10.1128/jb.177.22.6593-6600.1995] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1-Methylguanosine (m1G) is present next to the 3' end of the anticodon (position 37) in tRNA(1,2,3,Leu), tRNA(1,2,3,Pro), and tRNA(3Arg). A mutant of Salmonella typhimurium lacks m1G in these seven tRNAs when grown at or above 37 degrees C, as a result of a mutation (trmD3) in the structural gene (trmD) for the tRNA(m1G37)methyltransferase. The m1G deficiency induced 24 and 26% reductions in the growth rate and polypeptide chain elongation rate, respectively, in morpholinepropanesulfonic acid (MOPS)-glucose minimal medium at 37 degrees C. The expression of the leuABCD operon is controlled by the rate with which tRNA(2Leu) and tRNA(3Leu) read four leucine codons in the leu-leader mRNA. Lack of m1G in these tRNAs did not influence the expression of this operon, suggesting that m1G did not influence the efficiency of tRNA(2,3Leu). Since the average step time of the m1G-deficient tRNAs was increased 3.3-fold, the results suggest that the impact of m1G in decoding cognate codons may be tRNA dependent. The trmD3 mutation rendered the cell more resistant or sensitive to several amino acid analogs. 3-Nitro-L-tyrosine (NT), to which the trmD3 mutant is sensitive, was shown to be transported by the tryptophan-specific permease, and mutations in this gene (mtr) render the cell resistant to NT. Since the trmD3 mutation did not affect the activity of the permease, some internal metabolic step(s), but not the uptake of the analog per se, is affected. We suggest that the trmD3-mediated NT sensitivity is by an abnormal translation of some mRNA(s) whose product(s) is involved in the metabolic reactions affected by the analog. Our results also suggest that tRNA modification may be a regulatory device for gene expression.
Collapse
Affiliation(s)
- J N Li
- Department of Microbiology, Umeå University, Sweden
| | | |
Collapse
|
22
|
Emilsson V, Näslund AK, Kurland CG. Thiolation of transfer RNA in Escherichia coli varies with growth rate. Nucleic Acids Res 1992; 20:4499-505. [PMID: 1383926 PMCID: PMC334177 DOI: 10.1093/nar/20.17.4499] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have used an affinity electrophoresis assay which when combined with Northern hybridization techniques permits us to estimate the degree of thiolation of individual tRNA species in Escherichia coli. We observe that the levels of 4-thio 2'(3')-uridine (4-thioU) in many but not all tRNAs varies dramatically at different bacterial growth rates: Five tRNAs are completely thiolated at all growth rates, while another eight tRNAs are incompletely thiolated and the fraction of the unthiolated form of these tRNA species increases as the growth rates increase. Transfer RNA(2Glu) contains 4-thioU as well as (methylamino)methyl-2-thio uridine (mnm(5)2-thioU). The level of mnm(5)2-thioU of tRNA(2Glu) is invariant with growth rate. Surprisingly, none of the thirteen tRNA species that we have studied is completely unmodified in all growth media. In particular, at the slowest growth rates every tRNA class that we have studied contains a form that has 4-thioU residues.
Collapse
Affiliation(s)
- V Emilsson
- Department of Molecular Biology, Uppsala University, Sweden
| | | | | |
Collapse
|
23
|
Brown CM, Stockwell PA, Trotman CN, Tate WP. The signal for the termination of protein synthesis in procaryotes. Nucleic Acids Res 1990; 18:2079-86. [PMID: 2186375 PMCID: PMC330686 DOI: 10.1093/nar/18.8.2079] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The sequences around the stop codons of 862 Escherichia coli genes have been analysed to identify any additional features which contribute to the signal for the termination of protein synthesis. Highly significant deviations from the expected nucleotide distribution were observed, both before and after the stop codon. Immediately prior to UAA stop codons in E. coli there is a preference for codons of the form NAR (any base, adenine, purine), and in particular those that code for glutamine or the basic amino acids. In contrast, codons for threonine or branched nonpolar amino acids were under-represented. Uridine was over-represented in the nucleotide position immediately following all three stop codons, whereas adenine and cytosine were under-represented. This pattern is accentuated in highly expressed genes, but is not as marked in either lowly expressed genes or those that terminate in UAG, the codon specifically recognised by polypeptide chain release factor-1. These observations suggest that for the efficient termination of protein synthesis in E. coli, the 'stop signal' may be a tetranucleotide, rather than simply a tri-nucleotide codon, and that polypeptide chain release factor-2 recognises this extended signal. The sequence following stop codons was analysed in genes from several other procaryotes and bacteriophages. Salmonella typhimurium, Bacillus subtilis, bacteriophages and the methanogenic archaebacteria showed a similar bias to E. coli.
Collapse
Affiliation(s)
- C M Brown
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
24
|
Chapter 1 Synthesis and Function of Modified Nucleosides in tRNA. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0301-4770(08)61487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Abstract
Salmonella typhimurium miaA mutants lacking the tRNA base modification cis-2-methylthioribosylzeatin (ms2io6A) were examined and found to be sensitive to a variety of chemical oxidants and unable to grow aerobically at 42 degrees C in a defined medium. Leucine supplementation suppressed both of these phenotypes, suggesting that leucine synthesis was defective. Intracellular levels of leucine decreased 40-fold in mutant strains after a shift from 30 to 42 degrees C during growth, and expression of a leu-lacZ transcriptional fusion ceased. Steady-state levels of leu mRNA were also significantly reduced during growth at elevated temperatures. Failure of miaA mutant leu-lacZ expression to be fully derepressed during L-leucine limitation at 30 degrees C and suppression of the miaA mutation by a mutation in the S. typhimurium leu attenuator suggests that translational control of the transcription termination mechanism regulating leu expression is defective. Since the S. typhimurium miaA mutation was also suppressed by the Escherichia coli leu operon in trans, phenotypic differences between E. coli and S. typhimurium miaA mutants may result from a difference between their respective leu operons.
Collapse
Affiliation(s)
- P H Blum
- Department of Biochemistry, University of California, Berkeley 94720
| |
Collapse
|
26
|
Modifiers of ochre suppressors in Saccharomyces cerevisiae that exhibit ochre suppressor-dependent amber suppression. Curr Genet 1988. [DOI: 10.1007/bf00419992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Eggertsson G, Söll D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol Rev 1988; 52:354-74. [PMID: 3054467 PMCID: PMC373150 DOI: 10.1128/mr.52.3.354-374.1988] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Kramer GF, Ames BN. Isolation and characterization of a selenium metabolism mutant of Salmonella typhimurium. J Bacteriol 1988; 170:736-43. [PMID: 2448290 PMCID: PMC210716 DOI: 10.1128/jb.170.2.736-743.1988] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Selenium is a constituent in Escherichia coli of the anaerobic enzyme formate dehydrogenase in the form of selenocysteine. Selenium is also present in the tRNA of E. coli in the modified base 5-methylaminomethyl-2-selenouracil (mnm5Se2U). The pathways of bacterial selenium metabolism are largely uncharacterized, and it is unclear whether nonspecific reactions in the sulfur metabolic pathways may be involved. We demonstrated that sulfur metabolic pathway mutants retain a wild-type pattern of selenium incorporation, indicating that selenite (SeO32-) is metabolized entirely via selenium-specific pathways. To investigate the function of mnm5Se2U, we isolated a mutant which is unable to incorporate selenium into tRNA. This strain was obtained by isolating mutants lacking formate dehydrogenase activity and then screening for the inability to metabolize selenium. This phenotype is the result of a recessive mutation which appears to map in the general region of 21 min on the Salmonella typhimurium chromosome. A mutation in this gene, selA, thus has a pleiotropic effect of eliminating selenium incorporation into both protein and tRNA. The selA mutant appears to be blocked in a step of selenium metabolism after reduction, such as in the actual selenium insertion process. We showed that the absence of selenium incorporation into suppressor tRNA reduces the efficiency of suppression of nonsense codons in certain contexts and when wobble base pairing is required. Thus, one function of mnm5Se2U in tRNA may be in codon-anticodon interactions.
Collapse
Affiliation(s)
- G F Kramer
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
29
|
Hagervall TG, Edmonds CG, McCloskey JA, Björk GR. Transfer RNA(5-methylaminomethyl-2-thiouridine)-methyltransferase from Escherichia coli K-12 has two enzymatic activities. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47440-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Smith DW, Hatfield DL. Effects of post-transcriptional base modifications on the site-specific function of transfer RNA in eukaryote translation. J Mol Biol 1986; 189:663-71. [PMID: 3783686 DOI: 10.1016/0022-2836(86)90496-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The site-specific function in translation of several naturally occurring mammalian transfer RNAs has been studied in a series of investigations with some similarities to studies in other laboratories of tRNAs in suppression. Equal amounts of aminoacyl-tRNA isoacceptors with contrasting isotopes were added in pairs to reticulocyte lysates and allowed to incorporate their amino acids into rabbit globin. Rates of incorporation from unlimiting amounts of each isoacceptor into the corresponding amino-acid-containing sites were determined. The tRNAs of each isoacceptor pair differed as to post-transcriptional base modifications. The natural occurrence of these isoacceptors can be correlated with rates of cellular division, with more rapidly dividing and neoplastic cells containing hypomodified tRNA. The overall incorporation of lysine into globin from a fully modified tRNALys that decodes AAG is faster by 25 to 30% than from the corresponding hypomodified tRNALys. There is considerable scatter in values for incorporation ratios at different lysine-containing sites, with the hypomodified isoacceptor even being preferred at one site. The AAG decoding isoacceptors are capable of translating AAA although much more slowly than AAG. In translating AAA, in contrast to translating AAG, the hypomodified tRNALys isoacceptor is preferred. A Y base-deficient hypomodified tRNAPhe isoacceptor found only in some kinds of rapidly dividing tumor cells donates its phenylalanine preferentially to globin in competition with the fully modified Y-containing tRNAPhe of liver by 15 to 17%. There is a considerable range of incorporation ratios at the different phenylalanine-containing sites of the globin subunits. No correlation can be made between the isoacceptor preferred and the phenylalanine codon being translated. The incorporation of histidine from a fully modified tRNAHis-containing Q base in its anticodon, compared with that from the hypomodified counterpart isoacceptor that lacks Q base and that occurs in rapidly dividing cells, showed no difference in their ability to incorporate overall or into individual histidine-containing sites. There is little evidence that adjacent bases or codons in messenger RNA affect the tRNAs preferred in the translation of most sites. A striking pattern of tRNA preference was observed in three cases in which there are tandem codons, with the same codon appearing twice in succession.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
31
|
Bouadloun F, Srichaiyo T, Isaksson LA, Björk GR. Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J Bacteriol 1986; 166:1022-7. [PMID: 3086285 PMCID: PMC215227 DOI: 10.1128/jb.166.3.1022-1027.1986] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Effects on translation in vivo by modification deficiencies for 2-methylthio-N6-isopentenyladenosine (ms2i6A) (Escherichia coli) or 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine (ms2io6A) (Salmonella typhimurium) in tRNA were studied in mutant strains. These hypermodified nucleosides are present on the 3' side of the anticodon (position 37) in tRNA reading codons starting with uridine. In E. coli, translational error caused by tRNA was strongly reduced in the case of third-position misreading of a tryptophan codon (UGG) in a particular codon context but was not affected in the case of first-position misreading of an arginine codon (CGU) in another codon context. Misreading of UGA nonsense codons at two different positions was codon context dependent. The efficiencies of some tRNA nonsense suppressors were decreased in a tRNA-dependent manner. Suppressor tRNA which lacks ms2i6A-ms2io6A becomes more sensitive to codon context. Our results therefore indicate that, besides improving translational efficiency, ms2i6A37 and ms2io6A37 modifications in tRNA are also involved in decreasing the intrinsic codon reading context sensitivity of tRNA. Possible consequences for regulation of gene expression are discussed.
Collapse
|
32
|
Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2. J Bacteriol 1986; 166:1013-21. [PMID: 2423501 PMCID: PMC215226 DOI: 10.1128/jb.166.3.1013-1021.1986] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A strain of Salmonella typhimurium LT2 was isolated, which harbors a mutation acting as an antisuppressor toward an amber suppressor derivative, supF30, of tRNATyr1. The mutant is deficient in cis-2-methylthioribosylzeatin[N6-(4-hydroxyisopentenyl)-2-me thylthioadenosine, ms2io6A], which is a modification normally present next to the anticodon (position 37) in tRNA reading codons starting with uridine. The gene miaA, defective in the mutant, is located close to and counterclockwise of the purA gene at 96 min on the chromosomal map of S. typhimurium with the gene order mutL miaA purA. Growth rate of the mutant was reduced 20 to 50%, and the effect was more pronounced in media supporting fast growth. Translational chain elongation rate at 37 degrees C was reduced from 16 amino acids per s in the wild-type cell to 11 amino acids per s in the miaA1 mutant in the four different growth media tested. The cellular yield in limiting glucose, glycerol, or succinate medium was reduced for the miaAI mutant compared with wild-type cells, with 49, 41, and 57% reductions, respectively. The miaAI mutation renders the cell more sensitive or resistant toward several amino acid analogs, suggesting that the deficiency in ms2io6A influences the regulation of several amino acid biosynthetic operons. We suggest that tRNAPhe, lacking ms2io6A, translates a UUU codon in the early histidine leader sequence with lowered efficiency, leading to repression of the his operon.
Collapse
|
33
|
|
34
|
Hagervall TG, Björk GR. Genetic mapping and cloning of the gene (trmC) responsible for the synthesis of tRNA (mnm5s2U)methyltransferase in Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1984; 196:201-7. [PMID: 6387395 DOI: 10.1007/bf00328051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The trmC gene, responsible for the formation of 5-methylaminomethyl-2-thiouridine (mnm5s2U) from 2-thiouridine, present in the first position in the anticodon of some tRNAs, has been located at 50.5 min on the Escherichia coli K12 chromosome. Results from transductional mapping suggest that the trmC gene is located counter-clockwise of aroC. A ColE1 hybrid plasmid carrying the aroC+, trmC+ and hisT+ genes was isolated, and the gene order was established, by subcloning, to be hisT-trmC-aroC. The trmC gene is located 1.9 kb from the aroC gene. Two mutations (trmC1 and trmC2) were shown to be recessive, suggesting that the trmC gene is the structural gene for the tRNA-(mnm5s2U)methyltransferase.
Collapse
|