1
|
Kim J, Kim EJ, Ko HJ, Lee YH, Hong SK, Shin M, Lee JH, Kwak W. Construction of Streptomyces coelicolor A3(2) mutants that exclusively produce NA4/NA6 intermediates of agarose metabolism through mutation induction. Sci Rep 2023; 13:18968. [PMID: 37923760 PMCID: PMC10624881 DOI: 10.1038/s41598-023-46410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
NA4/NA6, an intermediate degradation product of β-agarase, is a high value-added product with anticancer, anti-obesity, and anti-diabetic effects. Therefore, a method that enables the efficient production of NA4/NA6 would be useful from economic and medical perspectives. In this study, we aimed to generate a Streptomyces coelicolor A3(2) mutant M22-2C43 that produces NA4/NA6 as a final product; this method serves as a more efficient alternative to the enzymatic conversion of β-agarase for the generation of these products. The M22-2C43 strain was generated through two rounds of mutagenesis and screening for increased β-agarase activity and effective production of NA4/NA6. We assembled the complete genomes of two mutants, M22 and M22-2C43, which were identified following a two-round screening. Large and small genetic changes were found in these two mutants, including the loss of two plasmids present in wild-type S. coelicolor A3(2) and chromosome circularization of mutant M22-2C43. These findings suggest that mutant M22-2C43 can produce NA4/NA6 as a degradation product due to functional inactivation of the dagB gene through a point mutation (G474A), ultimately preventing further degradation of NA4/NA6 to NA2. To our knowledge, this is the first report of a microbial strain that can effectively produce NA4/NA6 as the main degradation product of β-agarase, opening the door for the use of this species for the large-scale production of this valuable product.
Collapse
Affiliation(s)
- Jina Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Eun Joo Kim
- Dyne Bio Inc., Seongnam-si, Gyeonggido, 13209, Republic of Korea
| | - Hye-Jeong Ko
- Dyne Bio Inc., Seongnam-si, Gyeonggido, 13209, Republic of Korea
| | - Yeon-Hee Lee
- Dyne Bio Inc., Seongnam-si, Gyeonggido, 13209, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, 17058, Gyeonggido, Korea
| | - Miyoung Shin
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Je Hyeon Lee
- Dyne Bio Inc., Seongnam-si, Gyeonggido, 13209, Republic of Korea.
| | - Woori Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
2
|
Fermentation optimization, purification and biochemical characterization of a porphyran degrading enzyme with funoran side-activity from Zobellia uliginosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Tsevelkhoroloo M, Shim SH, Lee CR, Hong SK, Hong YS. LacI-Family Transcriptional Regulator DagR Acts as a Repressor of the Agarolytic Pathway Genes in Streptomyces coelicolor A3(2). Front Microbiol 2021; 12:658657. [PMID: 33889146 PMCID: PMC8055832 DOI: 10.3389/fmicb.2021.658657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022] Open
Abstract
Actinobacteria utilize various polysaccharides in the soil as carbon source by degrading them via extracellular hydrolytic enzymes. Agarose, a marine algal polysaccharide composed of D-galactose and 3,6-anhydro-L-galactose (AHG), is one of the carbon sources used by S. coelicolor A3(2). However, little is known about agar hydrolysis in S. coelicolor A3(2), except that the regulation of agar hydrolysis metabolism is strongly inhibited by glucose as in the catabolic pathways of other polysaccharides. In this study, we elucidated the role of DagR in regulating the expression of three agarase genes (dagA, dagB, and dagC) in S. coelicolor A3(2) by developing a dagR-deletion mutant (Δsco3485). We observed that the Δsco3485 mutant had increased mRNA level of the agarolytic pathway genes and 1.3-folds higher agarase production than the wild type strain, indicating that the dagR gene encodes a cluster-suited repressor. Electrophoretic mobility shift assay revealed that DagR bound to the upstream regions of the three agarase genes. DNase 1 footprinting analysis demonstrated that a palindromic sequence present in the upstream region of the three agarase genes was essential for DagR-binding. Uniquely, the DNA-binding activity of DagR was inhibited by AHG, one of the final degradation products of agarose. AHG-induced agarase production was not observed in the Δsco3485 mutant, as opposed to that in the wild type strain. Therefore, DagR acts as a repressor that binds to the promoter region of the agarase genes, inhibits gene expression at the transcriptional level, and is derepressed by AHG. This is the first report on the regulation of gene expression regarding agar metabolism in S. coelicolor A3(2).
Collapse
Affiliation(s)
- Maral Tsevelkhoroloo
- Department of Bioscience and Bioinformatics, Myong-Ji University, Yongin-si, South Korea
| | - So Heon Shim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myong-Ji University, Yongin-si, South Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myong-Ji University, Yongin-si, South Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea
| |
Collapse
|
4
|
Tran NT, Huang X, Hong HJ, Bush MJ, Chandra G, Pinto D, Bibb MJ, Hutchings MI, Mascher T, Buttner MJ. Defining the regulon of genes controlled by σ E , a key regulator of the cell envelope stress response in Streptomyces coelicolor. Mol Microbiol 2019; 112:461-481. [PMID: 30907454 PMCID: PMC6767563 DOI: 10.1111/mmi.14250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 01/01/2023]
Abstract
The extracytoplasmic function (ECF) σ factor, σE , is a key regulator of the cell envelope stress response in Streptomyces coelicolor. Although its role in maintaining cell wall integrity has been known for over a decade, a comprehensive analysis of the genes under its control has not been undertaken. Here, using a combination of chromatin immunoprecipitation-sequencing (ChIP-seq), microarray transcriptional profiling and bioinformatic analysis, we attempt to define the σE regulon. Approximately half of the genes identified encode proteins implicated in cell envelope function. Seventeen novel targets were validated by S1 nuclease mapping or in vitro transcription, establishing a σE -binding consensus. Subsequently, we used bioinformatic analysis to look for conservation of the σE target promoters identified in S. coelicolor across 19 Streptomyces species. Key proteins under σE control across the genus include the actin homolog MreB, three penicillin-binding proteins, two L,D-transpeptidases, a LytR-CpsA-Psr-family protein predicted to be involved in cell wall teichoic acid deposition and a predicted MprF protein, which adds lysyl groups to phosphatidylglycerol to neutralize membrane surface charge. Taken together, these analyses provide biological insight into the σE -mediated cell envelope stress response in the genus Streptomyces.
Collapse
Affiliation(s)
- Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaoluo Huang
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Hee-Jeon Hong
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Daniela Pinto
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Thorsten Mascher
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
5
|
Abstract
In red algae, the most abundant principal cell wall polysaccharides are mixed galactan agars, of which agarose is a common component. While bioconversion of agarose is predominantly catalyzed by bacteria that live in the oceans, agarases have been discovered in microorganisms that inhabit diverse terrestrial ecosystems, including human intestines. Here we comprehensively define the structure-function relationship of the agarolytic pathway from the human intestinal bacterium Bacteroides uniformis (Bu) NP1. Using recombinant agarases from Bu NP1 to completely depolymerize agarose, we demonstrate that a non-agarolytic Bu strain can grow on GAL released from agarose. This relationship underscores that rare nutrient utilization by intestinal bacteria is facilitated by the acquisition of highly specific enzymes that unlock inaccessible carbohydrate resources contained within unusual polysaccharides. Intriguingly, the agarolytic pathway is differentially distributed throughout geographically distinct human microbiomes, reflecting a complex historical context for agarose consumption by human beings.
Collapse
|
6
|
Yoon SY, Lee HM, Kong JN, Kong KH. Secretory expression and enzymatic characterization of recombinant Agarivorans albus β-agarase in Escherichia coli. Prep Biochem Biotechnol 2017; 47:1037-1042. [DOI: 10.1080/10826068.2017.1373292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sug-Young Yoon
- Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84, Dongjak-Gu, Seoul, Korea
| | - Hyung-Min Lee
- Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84, Dongjak-Gu, Seoul, Korea
| | - Ji-Na Kong
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwang-Hoon Kong
- Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84, Dongjak-Gu, Seoul, Korea
| |
Collapse
|
7
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Woods EC, McBride SM. Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Microbes Infect 2017; 19:238-248. [PMID: 28153747 DOI: 10.1016/j.micinf.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 11/27/2022]
Abstract
Extracytoplasmic function (ECF) sigma factors are a subfamily of σ70 sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens.
Collapse
Affiliation(s)
- Emily C Woods
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Tzanis A, Dalton KA, Hesketh A, den Hengst CD, Buttner MJ, Thibessard A, Kelemen GH. A sporulation-specific, sigF-dependent protein, SspA, affects septum positioning in Streptomyces coelicolor. Mol Microbiol 2013; 91:363-80. [PMID: 24261854 PMCID: PMC4282423 DOI: 10.1111/mmi.12466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 01/17/2023]
Abstract
The RNA polymerase sigma factor SigF controls late development during sporulation in the filamentous bacterium Streptomyces coelicolor. The only known SigF-dependent gene identified so far, SCO5321, is found in the biosynthetic cluster encoding spore pigment synthesis. Here we identify the first direct target for SigF, the gene sspA, encoding a sporulation-specific protein. Bioinformatic analysis suggests that SspA is a secreted lipoprotein with two PepSY signature domains. The sspA deletion mutant exhibits irregular sporulation septation and altered spore shape, suggesting that SspA plays a role in septum formation and spore maturation. The fluorescent translational fusion protein SspA–mCherry localized first to septum sites, then subsequently around the surface of the spores. Both SspA protein and sspA transcription are absent from the sigF null mutant. Moreover, in vitro transcription assay confirmed that RNA polymerase holoenzyme containing SigF is sufficient for initiation of transcription from a single sspA promoter. In addition, in vivo and in vitro experiments showed that sspA is a direct target of BldD, which functions to repress sporulation genes, including whiG, ftsZ and ssgB, during vegetative growth, co-ordinating their expression during sporulation septation.
Collapse
Affiliation(s)
- Angelos Tzanis
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Bibb MJ, Domonkos A, Chandra G, Buttner MJ. Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σ(BldN) and a cognate anti-sigma factor, RsbN. Mol Microbiol 2012; 84:1033-49. [PMID: 22582857 DOI: 10.1111/j.1365-2958.2012.08070.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chaplin and rodlin proteins together constitute the major components of the hydrophobic sheath that coats the aerial hyphae and spores in Streptomyces, and mutants lacking the chaplins are unable to erect aerial hyphae and differentiate on minimal media. We have gained insight into the developmental regulation of the chaplin (chp) and rodlin (rdl) genes by exploiting a new model species, Streptomyces venezuelae, which sporulates in liquid culture. Using microarrays, the chaplin and rodlin genes were found to be highly induced during submerged sporulation in a bldN-dependent manner. Using σ(BldN) ChIP-chip, we show that this dependence arises because the chaplin and rodlin genes are direct biochemical targets of σ(BldN) . sven3186 (here named rsbN for regulator of sigma BldN), the gene lying immediately downstream of bldN, was also identified as a target of σ(BldN) . Disruption of rsbN causes precocious sporulation and biochemical experiments demonstrate that RsbN functions as a σ(BldN) -specific anti-sigma factor.
Collapse
Affiliation(s)
- Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
11
|
Rhodococcus sp. Q5, a novel agarolytic bacterium isolated from printing and dyeing wastewater. Folia Microbiol (Praha) 2012; 57:379-86. [PMID: 22538428 DOI: 10.1007/s12223-012-0150-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
An agar-degrading bacterium, Rhodococcus sp. Q5, was isolated from printing and dyeing wastewater using a mineral salts agar plate containing agar as the sole carbon source. The bacterium grew from pH 4.0 to 9.0, from 15 to 35°C, and in NaCl concentrations of 0-5 %; optimal values were pH 6.0, 30°C, and 1 % NaCl. Maximal agarase production was observed at pH 6.0 and 30°C. The bacterium did not require NaCl for growth or agarase production. The agarase secreted by Q5 was inducible by agar and was repressed by all simple sugars tested except lactose. Strain Q5 could hydrolyze starch but not cellulose or carboxymethyl cellulose. Agarase activity could also be detected in the medium when lactose or starch was the sole source of carbon and energy. Strain Q5 could grow in nitrogen-free mineral media; an organic nitrogen source was more effective than inorganic carbon sources for growth and agarase production. Addition of more organic nitrogen (peptone) to the medium corresponded with reduced agarase activity.
Collapse
|
12
|
Chi WJ, Chang YK, Hong SK. Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol 2012; 94:917-30. [PMID: 22526785 DOI: 10.1007/s00253-012-4023-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
Abstract
Agar is a mixture of heterogeneous galactans, mainly composed of 3,6-anhydro-L-galactoses (or L-galactose-6-sulfates) D-galactoses and L-galactoses (routinely in the forms of 3,6-anhydro-L-galactoses or L-galactose-6-sulfates) alternately linked by β-(1,4) and α-(1,3) linkages. It is a major component of the cell walls of red algae and has been used in a variety of laboratory and industrial applications, owing to its jellifying properties. Many microorganisms that can hydrolyze and metabolize agar as a carbon and energy source have been identified in seawater and marine sediments. Agarolytic microorganisms commonly produce agarases, which catalyze the hydrolysis of agar. Numerous agarases have been identified in microorganisms of various genera. They are classified according to their cleavage pattern into three types-α-agarase, β-agarase, and β-porphyranase. Although, in a broad sense, many other agarases are involved in complete hydrolysis of agar, most of those identified are β-agarases. In this article we review agarolytic microorganisms and their agar-hydrolyzing systems, covering β-agarases as well as α-agarases, α-neoagarobiose hydrolases, and β-porphyranases, with emphasis on the recent discoveries. We also present an overview of the biochemical and structural characteristics of the various types of agarases. Further, we summarize and compare the agar-hydrolyzing systems of two specific microorganisms: Gram-negative Saccharophagus degradans 2-40 and Gram-positive Streptomyces coelicolor A3(2). We conclude with a brief discussion of the importance of agarases and their possible future application in producing oligosaccharides with various nutraceutical activities and in sustainably generating stock chemicals for biorefinement and bioenergy.
Collapse
Affiliation(s)
- Won-Jae Chi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, Korea
| | | | | |
Collapse
|
13
|
Zhang C, Kim SK. Application of marine microbial enzymes in the food and pharmaceutical industries. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:423-35. [PMID: 22361204 DOI: 10.1016/b978-0-12-416003-3.00028-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over billions of years, the ocean is regarded as the origin of life on Earth, and the ocean includes the largest habitats hosting the most life forms. Competition among microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to the evolution. The evolution prompts the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work done on the occurrence and bioprocessing of marine microbial enzymes.
Collapse
Affiliation(s)
- Chen Zhang
- School of Medicine, Tongji University, Shanghai, China
| | | |
Collapse
|
14
|
Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo- and endo-type β-agarase-producing neoagarobiose. J Bacteriol 2011; 194:142-9. [PMID: 22020647 DOI: 10.1128/jb.05978-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor can degrade agar, the main cell wall component of red macroalgae, for growth. To constitute a crucial carbon source for bacterial growth, the alternating α-(1,3) and β-(1,4) linkages between the 3,6-anhydro-L-galactoses and D-galactoses of agar must be hydrolyzed by α/β-agarases. In S. coelicolor, DagA was confirmed to be an endo-type β-agarase that degrades agar into neoagarotetraose and neoagarohexaose. Genomic sequencing data of S. coelicolor revealed that Sco3487, annotated as a putative hydrolase, has high similarity to the glycoside hydrolase (GH) GH50 β-agarases. Sco3487 encodes a primary translation product (88.5 kDa) of 798 amino acids, including a 45-amino-acid signal peptide. The sco3487 gene was cloned and expressed under the control of the ermE promoter in Streptomyces lividans TK24. β-Agarase activity was detected in transformant culture broth using the artificial chromogenic substrate p-nitrophenyl-β-D-galactopyranoside. Mature Sco3487 (83.9 kDa) was purified 52-fold with a yield of 66% from the culture broth. The optimum pH and temperature for Sco3487 activity were 7.0 and 40°C, respectively. The K(m) and V(max) for agarose were 4.87 mg/ml (4 × 10(-5) M) and 10.75 U/mg, respectively. Sco3487 did not require metal ions for its activity, but severe inhibition by Mn(2+) and Cu(2+) was observed. Thin-layer chromatography analysis, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and Fourier transform-nuclear magnetic resonance spectrometry of the Sco3487 hydrolysis products revealed that Sco3487 is both an exo- and endo-type β-agarase that degrades agarose, neoagarotetraose, and neoagarohexaose into neoagarobiose.
Collapse
|
15
|
Yang JI, Chen LC, Shih YY, Hsieh C, Chen CY, Chen WM, Chen CC. Cloning and characterization of β-agarase AgaYT from Flammeovirga yaeyamensis strain YT. J Biosci Bioeng 2011; 112:225-32. [PMID: 21715227 DOI: 10.1016/j.jbiosc.2011.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/29/2011] [Accepted: 05/31/2011] [Indexed: 11/29/2022]
Abstract
A bacterium with potent agar-degrading capability was isolated from the surface of a red algae, Gracilaria tenuistipitata. Based on phenotypic characteristics, 16S rDNA gene sequence and a phylogenetic analysis, this bacterium was identified and named as Flammeovirga yaeyamensis strain YT. PCR using homology-based degenerate primers was employed to clone any agarase gene belonging to GH16 family encoded in F. yaeyamensis strain YT. The resolved 1512 nucleotides revealed that the cloned gene, namely AgaYT, encodes a protein of 503 amino acids comprising a signal peptide, a glycosyl hydrolase catalytic module and a C-terminal domain with an unknown function. The recombinant protein r-AgaYT is an endo-type β-agarase hydrolyzing agarose to yield neoagarobiose and neoagarotetraose as the main hydrolytic products. The specific activity of r-AgaYT was determined about 178.6 U mg(-1) at 40°C and pH 8.0.
Collapse
Affiliation(s)
- Jing-Iong Yang
- Department of Seafood Science, National Kaohsiung Marine University, No. 142 Hai-chuan Rd., Nan-tzu, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl Microbiol Biotechnol 2011; 92:749-59. [DOI: 10.1007/s00253-011-3347-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 12/01/2022]
|
17
|
Choi HJ, Hong JB, Park JJ, Chi WJ, Kim MC, Chang YK, Hong SK. Production of agarase from a novel Micrococcus sp. GNUM-08124 strain isolated from the East Sea of Korea. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0271-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Walter S, Schrempf H. Physiological Studies of Cellulase (Avicelase) Synthesis in Streptomyces reticuli. Appl Environ Microbiol 2010; 62:1065-9. [PMID: 16535256 PMCID: PMC1388813 DOI: 10.1128/aem.62.3.1065-1069.1996] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellulase (Avicelase, Cel1) from Streptomyces reticuli efficiently hydrolyzes crystalline cellulose (Avicel) to cellobiose. The synthesis of the enzyme was found to be dependent on the presence of insoluble Avicel but not on either soluble hydroxyethylcellulose, cellooligomers, or cellobiose. Glycerol and various metabolizable mono- and disaccharides repress Avicelase synthesis, whereas yeast extract has no inducing or repressing effect. Glucose kinase is not required for the repression effect. In the course of cultivation, S. reticuli secretes significant quantities of acid, predominantly pyruvate and succinate, which reduce the pH to 4 in commonly used media with low buffering capacity. Comparative studies with media with low and high buffering capacities revealed that Avicelase synthesis is strongly repressed at a low pH.
Collapse
|
19
|
Zhang C, Kim SK. Research and application of marine microbial enzymes: status and prospects. Mar Drugs 2010; 8:1920-34. [PMID: 20631875 PMCID: PMC2901830 DOI: 10.3390/md8061920] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 11/16/2022] Open
Abstract
Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Pukyong National University, Busan, 608-737, Korea
- Key laboratory of Molecular Enzymology and Enzyme Engineering of Ministry Education, Jilin University, Changchun, 130023, China; E-Mail:
| | - Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan, 608-737, Korea
- Marine Bioprocess Research Center, Pukyong National University, Busan, 608-737, Korea
- *Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-51-629-7097; Fax: +82 -51-629-7099
| |
Collapse
|
20
|
Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H. The complex extracellular biology ofStreptomyces. FEMS Microbiol Rev 2010; 34:171-98. [DOI: 10.1111/j.1574-6976.2009.00206.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
21
|
Le TBK, Fiedler HP, den Hengst CD, Ahn SK, Maxwell A, Buttner MJ. Coupling of the biosynthesis and export of the DNA gyrase inhibitor simocyclinone in Streptomyces antibioticus. Mol Microbiol 2009; 72:1462-74. [PMID: 19460097 DOI: 10.1111/j.1365-2958.2009.06735.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because most antibiotics are potentially lethal to the producing organism, there must be mechanisms to ensure that the machinery responsible for export of the mature antibiotic is in place at the time of biosynthesis. Simocyclinone D8 is a potent DNA gyrase inhibitor produced by Streptomyces antibioticus Tü 6040. Within the simocyclinone biosynthetic cluster are two divergently transcribed genes, simR and simX, encoding proteins that resemble the TetR/TetA repressor-efflux pump pair that cause widespread resistance to clinically important tetracyclines. Engineered expression of simX from a strong, heterologous promoter conferred high level simocyclinone D8 resistance on Streptomyces lividans, showing that simX encodes a simocyclinone efflux pump. Transcription of simX is controlled by SimR, which directly represses the simX and simR promoters by binding to two operator sites in the simX-simR intergenic region. Simocyclinone D8 abolishes DNA binding by SimR, providing a mechanism that couples the biosynthesis of simocyclinone to its export. In addition, an intermediate in the biosynthetic pathway, simocyclinone C4, which is essentially inactive as a DNA gyrase inhibitor, also induces simX expression in vivo and relieves simX repression by SimR in vitro.
Collapse
Affiliation(s)
- Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Purification and characterization of agarases from a marine bacterium Vibrio sp. F-6. J Ind Microbiol Biotechnol 2008; 35:915-22. [DOI: 10.1007/s10295-008-0365-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 04/25/2008] [Indexed: 11/27/2022]
|
23
|
Jung IS, Kim YJ, Song HJ, Gal SW, Choi YJ. Purification and Properties of a Novel Extracellular Agarase from Marine Bacterium, Sphingomonas paucimobilis AS-1. ACTA ACUST UNITED AC 2008. [DOI: 10.5352/jls.2008.18.1.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Widdick DA, Eijlander RT, van Dijl JM, Kuipers OP, Palmer T. A Facile Reporter System for the Experimental Identification of Twin-Arginine Translocation (Tat) Signal Peptides from All Kingdoms of Life. J Mol Biol 2008; 375:595-603. [DOI: 10.1016/j.jmb.2007.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/29/2007] [Accepted: 11/01/2007] [Indexed: 11/25/2022]
|
25
|
Dalton KA, Thibessard A, Hunter JIB, Kelemen GH. A novel compartment, the 'subapical stem' of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor. Mol Microbiol 2007; 64:719-37. [PMID: 17462019 DOI: 10.1111/j.1365-2958.2007.05684.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Streptomyces coelicolor has nine SigB-like RNA polymerase sigma factors, several of them implicated in morphological differentiation and/or responses to different stresses. One of the nine, SigN, is the focus of this article. A constructed sigN null mutant was delayed in development and exhibited a bald phenotype when grown on minimal medium containing glucose as carbon source. One of two distinct sigN promoters, sigNP1, was active only during growth on solid medium, when its activation coincided with aerial hyphae formation. Transcription from sigNP1 was readily detected in several whi mutants (interrupted in morphogenesis of aerial mycelium into spores), but was absent from all bld mutants tested, suggesting that sigNP1 activity was restricted to the aerial hyphae. It also depended on sigN, thus sigN was autoregulated. Mutational and transcription studies revealed no functional significance to the location of sigN next to sigF, encoding another SigB-like sigma factor. We identified another potential SigN target, nepA, encoding a putative small secreted protein. Transcription of nepA originated from a single, aerial hyphae-specific and sigN-dependent promoter. While in vitro run-off transcription using purified SigN on the Bacillus subtilis ctc promoter confirmed that SigN is an RNA polymerase sigma factor, SigN failed to initiate transcription from sigNP1 and from the nepA promoter in vitro. Additional in vivo data indicated that further nepA upstream sequences, which are likely to bind a potential activator, are required for successful transcription. Using a nepA-egfp transcriptional fusion we located nepA transcription to a novel compartment, the 'subapical stem' of the aerial hyphae. We suggest that this newly recognized compartment defines an interface between the aerial and vegetative parts of the Streptomyces colony and might also be involved in communication between these two compartments.
Collapse
Affiliation(s)
- Kate A Dalton
- University of East Anglia, School of Biological Sciences, Norwich NR47TJ, UK
| | | | | | | |
Collapse
|
26
|
Ma C, Lu X, Shi C, Li J, Gu Y, Ma Y, Chu Y, Han F, Gong Q, Yu W. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J Biol Chem 2006; 282:3747-54. [PMID: 17166842 DOI: 10.1074/jbc.m607888200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agarases are generally classified into glycoside hydrolase families 16, 50, and 86 and are found to degrade agarose to frequently generate neoagarobiose, neoagarotetraose, or neoagarohexaose as the main products. In this study we have cloned a novel endo-type beta-agarase gene, agaB, from marine Pseudoalteromonas sp. CY24. The novel agarase encoded by agaB gene has no significant sequence similarity with any known proteins including all glycoside hydrolases. It degrades agarose to generate neoagarooctaose and neoagarodecaose as the main end products. Based on the analyses of enzymatic kinetics and degradation patterns of different oligosaccharides, the agarase AgaB appears to have a large substrate binding cleft that accommodates 12 sugar units, with 8 sugar units toward the reducing end spanning subsites +1 to +8 and 4 sugar units toward the non-reducing end spanning subsites -4 to -1, and enzymatic cleavage taking place between subsites -1 and +1. In addition, 1H NMR analysis shows that this enzyme hydrolyzes the glycosidic bond with inversion of anomeric configuration, in contrast to other known agarases that are retaining. Altogether, AgaB is structurally and functionally different from other known agarases and appears to represent a new family of glycoside hydrolase.
Collapse
Affiliation(s)
- Cuiping Ma
- Department of Molecular Biology, Marine Drug and Food Institute, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W. Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 2006; 71:23-33. [PMID: 16550377 DOI: 10.1007/s00253-006-0377-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Agars and carrageenans are 1,3-alpha-1,4-beta-galactans from the cell walls of red algae, substituted by zero (agarose), one (kappa-), two (iota-), or three (lambda-carrageenan) sulfate groups per disaccharidic monomer. Agars, kappa-, and iota-carrageenans auto-associate into crystalline fibers and are well known for their gelling properties, used in a variety of laboratory and industrial applications. These sulfated galactans constitute a crucial carbon source for a number of marine bacteria. These microorganisms secrete glycoside hydrolases specific for these polyanionic, insoluble polysaccharides, agarases and carrageenases. This article reviews the microorganisms involved in the degradation of agars and carrageenans, in their environmental and taxonomic diversity. We also present an overview on the biochemistry of the different families of galactanases. The structure-function relationships of the family GH16 beta-agarases and kappa-caraggeenases and of the family GH82 iota-carrageenases are discussed in more details. In particular, we examine how the active site topologies of these glycoside hydrolases influence their mode of action in heterogeneous phase. Finally, we discuss the next challenges in the basic and applied field of the galactans of red algae and of their related degrading microorganisms.
Collapse
Affiliation(s)
- Gurvan Michel
- Equipe Glycobiologie Marine, UMR7139 Végétaux Marins et Biomolécules (CNRS/UPMC), Station Biologique, Roscoff, Bretagne, France
| | | | | | | | | |
Collapse
|
28
|
Lee S, Park J, Yoon S, Kim J, Kong I. Sequence analysis of a beta-agarase gene (pjaA) from Pseudomonas sp. isolated from marine environment. J Biosci Bioeng 2005; 89:485-8. [PMID: 16232782 DOI: 10.1016/s1389-1723(00)89101-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1999] [Accepted: 11/18/1999] [Indexed: 10/18/2022]
Abstract
The pjaA gene of Pseudomonas sp. W7 consists of an open reading frame of 1926 bp encoding beta-agarase, a protein of 642 amino acids and a molecular weight of 69,540 Da. The expressed protein of plasmid pEAG3-3, in which 259 amino acid residues from C-terminus of the overexpression plasmid (pEAG3) were eliminated, led to the complete loss of agarolytic activity.
Collapse
Affiliation(s)
- S Lee
- Department of Biotechnology and Bioengineering, Pukyong National University, Pusan 608-737, Korea
| | | | | | | | | |
Collapse
|
29
|
Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, Czjzek M, Helbert W, Michel G, Barbeyron T. The endo-beta-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem J 2005; 385:703-13. [PMID: 15456406 PMCID: PMC1134745 DOI: 10.1042/bj20041044] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two beta-agarase genes, agaA and agaB, were functionally cloned from the marine bacterium Zobellia galactanivorans. The agaA and agaB genes encode proteins of 539 and 353 amino acids respectively, with theoretical masses of 60 and 40 kDa. These two beta-agarases feature homologous catalytic domains belonging to family GH-16. However, AgaA displays a modular architecture, consisting of the catalytic domain (AgaAc) and two C-terminal domains of unknown function which are processed during secretion of the enzyme. In contrast, AgaB is composed of the catalytic module and a signal peptide similar to the N-terminal signature of prokaryotic lipoproteins, suggesting that this protein is anchored in the cytoplasmic membrane. Gel filtration and electrospray MS experiments demonstrate that AgaB is a dimer in solution, while AgaAc is a monomeric protein. AgaAc and AgaB were overexpressed in Escherichia coli and purified to homogeneity. Both enzymes cleave the beta-(1-->4) linkages of agarose in a random manner and with retention of the anomeric configuration. Although they behave similarly towards liquid agarose, AgaAc is more efficient than AgaB in the degradation of agarose gels. Given these organizational and catalytic differences, we propose that, reminiscent of the agarolytic system of Pseudoalteromonas atlantica, AgaA is specialized in the initial attack on solid-phase agarose, while AgaB is involved with the degradation of agarose fragments.
Collapse
Affiliation(s)
- Murielle Jam
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Didier Flament
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Julie Allouch
- †Architecture et Fonction des Macromolécules Biologiques, UMR 6098, (CNRS/UAM I & II), 31 chemin Joseph Aiguier, F-13402 Marseille cedex 20, Provence, France
| | - Philippe Potin
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Laurent Thion
- ‡Plate-forme de Génotypage de la Ouest-Génopôle, Station Biologique, CNRS FR 2424, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne France
| | - Bernard Kloareg
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Mirjam Czjzek
- †Architecture et Fonction des Macromolécules Biologiques, UMR 6098, (CNRS/UAM I & II), 31 chemin Joseph Aiguier, F-13402 Marseille cedex 20, Provence, France
| | - William Helbert
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Gurvan Michel
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Tristan Barbeyron
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
30
|
Hunt AC, Servín-González L, Kelemen GH, Buttner MJ. The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family. J Bacteriol 2005; 187:716-28. [PMID: 15629942 PMCID: PMC543565 DOI: 10.1128/jb.187.2.716-728.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bldC locus, required for formation of aerial hyphae in Streptomyces coelicolor, was localized by map-based cloning to the overlap between cosmids D17 and D25 of a minimal ordered library. Subcloning and sequencing showed that bldC encodes a member of a previously unrecognized family of small (58- to 78-residue) DNA-binding proteins, related to the DNA-binding domains of the MerR family of transcriptional activators. BldC family members are found in a wide range of gram-positive and gram-negative bacteria. Constructed DeltabldC mutants were defective in differentiation and antibiotic production. They failed to form an aerial mycelium on minimal medium and showed severe delays in aerial mycelium formation on rich medium. In addition, they failed to produce the polyketide antibiotic actinorhodin, and bldC was shown to be required for normal and sustained transcription of the pathway-specific activator gene actII-orf4. Although DeltabldC mutants produced the tripyrrole antibiotic undecylprodigiosin, transcripts of the pathway-specific activator gene (redD) were reduced to almost undetectable levels after 48 h in the bldC mutant, in contrast to the bldC+ parent strain in which redD transcription continued during aerial mycelium formation and sporulation. This suggests that bldC may be required for maintenance of redD transcription during differentiation. bldC is expressed from a single promoter. S1 nuclease protection assays and immunoblotting showed that bldC is constitutively expressed and that transcription of bldC does not depend on any of the other known bld genes. The bldC18 mutation that originally defined the locus causes a Y49C substitution that results in instability of the protein.
Collapse
Affiliation(s)
- Alison C Hunt
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
31
|
Zhou X, He X, Li A, Lei F, Kieser T, Deng Z. Streptomyces coelicolor A3(2) lacks a genomic island present in the chromosome of Streptomyces lividans 66. Appl Environ Microbiol 2005; 70:7110-8. [PMID: 15574907 PMCID: PMC535201 DOI: 10.1128/aem.70.12.7110-7118.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptomyces lividans ZX1 has become a preferred host for DNA cloning in Streptomyces species over its progenitor, the wild-type strain 66 (stock number 1326 from the John Innes Center collection), especially when stable DNA is crucial for in vitro electrophoresis, because DNA from strain 66 contains a novel modification that makes it sensitive to oxidative double-strand cleavage during electrophoresis. Detailed analysis of this modification-deficient mutant (ZX1) revealed that it has several additional phenotypic traits associated with a chromosomal deletion of ca. 90 kb, which was cloned and mapped by using a cosmid library. Comparative sequence analysis of two clones containing the left and right deletion ends originating from strain 66 and one clone with the deletion and fused sequence cloned from strain ZX1 revealed a perfect 15-bp direct repeat, which may have mediated deletion and fusion to yield strain ZX1 by site-specific recombination. Analysis of AseI linking clones in the deleted region in relation to the published AseI map of strain ZX1 yielded a complete AseI map for the S. lividans 66 genome, on which the relative positions of a cloned phage phiHAU3 resistance (phiHAU3r) gene and the dnd gene cluster were precisely localized. Comparison of S. lividans ZX1 and its progenitor 66, as well as the sequenced genome of its close relative, Streptomyces coelicolor M145, reveals that the ca. 90-kb deletion in strain ZX1 may have originated from an insertion from an unknown source.
Collapse
Affiliation(s)
- Xiufen Zhou
- Bio-X Life Science Research Center, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Whitworth DE, Bryan SJ, Berry AE, McGowan SJ, Hodgson DA. Genetic dissection of the light-inducible carQRS promoter region of Myxococcus xanthus. J Bacteriol 2004; 186:7836-46. [PMID: 15547254 PMCID: PMC529085 DOI: 10.1128/jb.186.23.7836-7846.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Myxococcus xanthus photoprotective carotenoids are produced in response to illumination due to regulated expression of carotenoid biosynthesis genes at two loci. Induction of the carotenogenesis regulon is dependent on expression of the carQRS operon. The first gene product of the operon, CarQ, is a sigma factor belonging to the ECF family and is responsible for light-dependent initiation of transcription at the carQRS promoter. We defined the minimal carQRS promoter as a 145-bp fragment of DNA upstream of the carQRS transcriptional start site, which includes the promoter for a divergent gene, gufA. In order to elucidate regions with the promoter required for activity, point mutations were introduced into the carQRS promoter between positions -151 and 6. While most sequence changes abolished carQRS promoter activity, two changes enhanced promoter activity and two changes caused the mutant promoter to become constitutive and independent of CarQ. The promoter-null point mutations and 6-bp deletion mutations implied that the carQRS promoter requires a functional gufA promoter for transcriptional activity and vice versa. By mapping the extent of the promoter region, identifying sequences important for promoter activity, and highlighting potential topological effects, we provide a foundation for further analysis of the carQRS promoter.
Collapse
Affiliation(s)
- David E Whitworth
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
33
|
Crawford DL. Development of recombinant Streptomyces for biotechnological and environmental uses. Biotechnol Adv 2004; 6:183-206. [PMID: 14541215 DOI: 10.1016/0734-9750(88)90004-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recombinant DNA techniques for manipulation of genes in Streptomyces are well developed, and currently there is a high level of activity among researchers interested in applying molecular cloning and protoplast fusion techniques to strain development within this commercially important group of bacteria. A number of efficient plasmid and phage vector systems are being used for the molecular cloning of genes, primarily those encoding antibiotic biosynthesis enzymes, but also for a variety of other bioactive proteins and enzymes of known or potential commercial value. In addition, cloning aimed at constructing specialized bioconversion strains for use in the production of chemicals from organic carbon substrates is underway in numerous laboratories. This review discusses the current status of research involving recombinant DNA technologies applied to biotechnological applications using Streptomyces. The topic of potential environmental uses of recombinant Streptomyces is also reviewed, as is the status of current research aimed at assessing the fate and effects of recombinant Streptomyces in the environment. Also summarized is recent research that has confirmed that genetic exchange occurs readily among Streptomyces in the soil environment and which has shown the potential for exchange between recombinant Streptomyces and native soil bacteria.
Collapse
Affiliation(s)
- D L Crawford
- Department of Bacteriology and Biochemistry, Institute for Molecular and Agricultural Genetic Engineering, University of Idaho, Moscow, Idaho 83843, USA
| |
Collapse
|
34
|
Doull JL, Vining LC. Physiology of antibiotic production in actinomycetes and some underlying control mechanisms. Biotechnol Adv 2003; 8:141-58. [PMID: 14545908 DOI: 10.1016/0734-9750(90)90010-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Some of the accumulated information on the physiology and nutritional control of antibiotic production in actinomycetes can now be related to recent discoveries in the field of actinomycete molecular biology. This review focuses on aspects of genetic and metabolic control of antibiotic biosynthesis. It surveys some well established principles in the relationship between primary and secondary metabolism, and summarizes briefly the areas where progress is being made in elucidating the molecular organization of regulatory systems underlying this relationship.
Collapse
Affiliation(s)
- J L Doull
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
35
|
Allouch J, Jam M, Helbert W, Barbeyron T, Kloareg B, Henrissat B, Czjzek M. The three-dimensional structures of two beta-agarases. J Biol Chem 2003; 278:47171-80. [PMID: 12970344 DOI: 10.1074/jbc.m308313200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agars are important gelifying agents for biochemical use and the food industry. To cleave the beta-1,4-linkages between beta-d-galactose and alpha-l-3,6-anhydro-galactose residues in the red algal galactans known as agars, marine bacteria produce polysaccharide hydrolases called beta-agarases. Beta-agarases A and B from Zobellia galactanivorans Dsij have recently been biochemically characterized. Here we report the first crystal structure of these two beta-agarases. The two proteins were overproduced in Escherichia coli and crystallized, and the crystal structures were determined at 1.48 and 2.3 A for beta-agarases A and B, respectively. The structure of beta-agarase A was solved by the multiple anomalous diffraction method, whereas beta-agarase B was solved with molecular replacement using beta-agarase A as model. Their structures adopt a jelly roll fold with a deep active site channel harboring the catalytic machinery, namely the nucleophilic residues Glu-147 and Glu-184 and the acid/base residues Glu-152 and Glu-189 for beta-agarases A and B, respectively. The structures of the agarases were compared with those of two lichenases and of a kappa-carrageenase, which all belong to family 16 of the glycoside hydrolases in order to pinpoint the residues responsible for their widely differing substrate specificity. The relationship between structure and enzymatic activity of the two beta-agarases from Z. galactanivorans Dsij was studied by analysis of the degradation products starting with different oligosaccharides. The combination of the structural and biochemical results allowed the determination of the number of subsites present in the catalytic cleft of the beta-agarases.
Collapse
Affiliation(s)
- Julie Allouch
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098, Centre National de la Recherche Scientifique and Universités Aix-Marseille I and II, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Schroeder DC, Jaffer MA, Coyne VE. Investigation of the role of a β(1–4) agarase produced by Pseudoalteromonas gracilis B9 in eliciting disease symptoms in the red alga Gracilaria gracilis. Microbiology (Reading) 2003; 149:2919-2929. [PMID: 14523124 DOI: 10.1099/mic.0.26513-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gracilariaspecies are an important source of agar. The South AfricanGracilariaindustry has experienced a number of setbacks over the last decade in the form of complete or partial die-offs of the agarophyte growing in Saldanha Bay, which may be attributed to bacterial infection. Since a positive correlation was observed between the presence of agarolytic epiphytes and bacterial pathogenicity, we investigated the role of an agarase in the virulence mechanism employed by a bacterium that elicits disease inGracilaria gracilis. The recombinant plasmid pDA1, isolated from aPseudoalteromonas gracilisB9 genomic library, was responsible for the agarolytic activity exhibited byEscherichia colitransformants when grown on solid medium. Ablastsearch of the GenBank database showed that an 873 bp ORF (aagA) located on pDA1 had 85 % identity to theβ-agarase (dagA) fromPseudoalteromonas atlanticaATCC 19262T(or IAM 12927T) at the amino acid level. AagA was purified from the extracellular medium of anE. colitransformant harbouring pDA1 by using a combination of gel filtration and ion-exchange chromatography. AagA has anMrof 30 000 on SDS-PAGE. TLC of the digestion products of AagA showed that the enzyme cleaves theβ-(1,4) linkages of agarose to yield predominately neoagarotetraose. Western hybridization confirmed that the cloned agarase was in fact the extracellularβ-agarase ofP. gracilisB9. The observed relationship between disease symptoms ofG. gracilisand the agarolytic phenotype ofP. gracilisB9 was confirmed. Transmission electron microscope examination of cross sections of both healthyG. gracilisandG. gracilisinfected withP. gracilis, revealed a weakening of the cell structure in the latter plants. Immunogold-labelled antibodies localized the agarasein situto the cell walls of bleachedG. gracilis. Thus, the weakening observed in the cell structure ofG. gracilisinfected withP. graciliscan be attributed to degradation of the mucilaginous component of the cell wall of the bleached thalli.
Collapse
Affiliation(s)
- Declan C Schroeder
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | | | - Vernon E Coyne
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| |
Collapse
|
37
|
Yeoman KH, Mitelheiser S, Sawers G, Johnston AWB. The ECF sigma factor RpoI of R. leguminosarum initiates transcription of the vbsGSO and vbsADL siderophore biosynthetic genes in vitro. FEMS Microbiol Lett 2003; 223:239-44. [PMID: 12829293 DOI: 10.1016/s0378-1097(03)00386-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
When complexed with Escherichia coli RNA polymerase core enzyme, purified RpoI protein of Rhizobium leguminosarum initiated transcription in vitro from promoters of the vbsADL and vbsGSO operons, which are needed to synthesise the siderophore vicibactin. There is a single transcription initiation site for rpoI, regardless of whether the cells are grown in Fe-replete or Fe-depleted media, but levels of rpoI mRNA were reduced, though not abolished, in the presence of Fe. Unlike PvdS, a similar Pseudomonas sigma factor needed to transcribe genes involved in pyoverdine synthesis, RpoI transcribes vbsADL and vbsGSO in the absence of the cognate siderophore. The RpoI sigma factor is not required for transcription of rpoI.
Collapse
Affiliation(s)
- Kay H Yeoman
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
38
|
Browning DF, Whitworth DE, Hodgson DA. Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol Microbiol 2003; 48:237-51. [PMID: 12657058 DOI: 10.1046/j.1365-2958.2003.03431.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Illumination of dark-grown Myxococcus xanthus with blue light leads to the induction of carotenoid synthesis. Central to this response is the activation of the light-inducible promoter, PcarQRS, and the transcription of three downstream genes, carQ, carR and carS. Sequence analysis predicted that CarQ is a member of the ECF (extracytoplasmic function) subfamily of RNA polymerase sigma factors, and that CarR is an inner membrane protein. Genetic analysis strongly implied that CarR is an antisigma factor that sequesters CarQ in a transcriptionally inactive complex. Using in vitro transcription run-off assays, we present biochemical evidence that CarQ functions as a bacterial sigma factor and is responsible for transcription initiation at PcarQRS. Similar experiments using the crtI promoter failed to implicate CarQ in direct transcription of the crtI gene. Experiments using the yeast two-hybrid system demonstrated a protein-protein interaction between CarQ and CarR, providing evidence of a CarQ-CarR complex. The yeast two-hybrid system data also indicated that CarR is capable of oligomerization. Fractionation of M. xanthus membranes with the detergent sarkosyl showed that CarR was associated with the inner membrane. Furthermore, CarR was found to be unstable in illuminated stationary phase cells, providing a possible mechanism by which the CarR-CarQ complex is disrupted.
Collapse
Affiliation(s)
- Douglas F Browning
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
39
|
SUZUKI HISASHI, SAWAI YOSHINORI, SUZUKI TOHRU, KAWAI KEIICHI. Purification and Characterization of an Extracellular .BETA.-Agarase from Bacillus sp. MK03. J Biosci Bioeng 2003. [DOI: 10.1263/jbb.95.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Suzuki H, Sawai Y, Suzuki T, Kawai K. Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J Biosci Bioeng 2003. [DOI: 10.1016/s1389-1723(03)80063-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Hong HJ, Paget MSB, Buttner MJ. A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol Microbiol 2002; 44:1199-1211. [PMID: 12068806 DOI: 10.1046/j.1365-2958.2002.02960.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated a signal transduction system proposed to allow Streptomyces coelicolor to sense and respond to changes in the integrity of its cell envelope. The system consists of four proteins, encoded in an operon: sigmaE, an RNA polymerase factor; CseA (formerly ORF202), a protein of unknown function; CseB, a response regulator; and CseC, a sensor histidine protein kinase with two predicted transmembrane helices (Cse stands for control of sigma E). To develop a sensitive bioassay for inducers of the sigE system, the promoter of the sigE operon (sigEp) was fused to a reporter gene conferring resistance to kanamycin. Antibiotics that acted as inducers of the sigE signal transduction system were all inhibitors of intermediate and late steps in peptidoglycan biosynthesis, including ramoplanin, moenomycin A, bacitracin, several glycopeptides and some beta-lactams. The cell wall hydrolytic enzyme lysozyme also acted as an inducer. These data suggest that the CseB-CseC signal transduction system may be activated by the accumulation of an intermediate in peptidoglycan biosynthesis or degradationa. A computer-based searching method was used to identify a sigmaE target operon of 12 genes (the cwg operon), predicted to specify the biosynthesis of a cell wall glycan. In low-Mg(2+) medium, transcription of the cwg operon was induced by vancomycin in a sigE-dependent manner but, in high-Mg(2+) medium, there was substantial cwg transcription in a sigE null mutant, and this sigE-independent activity was also induced by vancomycin. Based on these data, we propose a model for the regulation and function of the sigmaE signal transduction system.
Collapse
Affiliation(s)
- Hee-Jeon Hong
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich NR4 7UH, UK.
| | | | | |
Collapse
|
42
|
González-Cerón G, Licona P, Servín-González L. Modified xylE and xylTE reporter genes for use in Streptomyces: analysis of the effect of xylT. FEMS Microbiol Lett 2001; 196:229-34. [PMID: 11267784 DOI: 10.1111/j.1574-6968.2001.tb10569.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The reporter gene xylE (encoding catechol 2,3-dioxygenase) has been modified for a more rational use in Streptomyces. Two reporter fragments, one containing xylE, and the other containing also the upstream gene xylT (which encodes a soluble ferredoxin), have been constructed to allow precise fusion of regulatory regions to the reporter genes. Identical fusions of these xylE and xylTE reporter fragments to the Streptomyces dagA and tipA promoters, in low and high copy number plasmids, show that the levels of xylE mRNA and catechol 2,3-dioxygenase activities are significantly higher when xylT is present.
Collapse
Affiliation(s)
- G González-Cerón
- Institute of Biomedical Research, National Autonomous University of Mexico, Apartado Postal 70228, Ciudad Universitaria, D.F., 04510 Mexico, Mexico
| | | | | |
Collapse
|
43
|
Hodgson DA. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 2001; 42:47-238. [PMID: 10907551 DOI: 10.1016/s0065-2911(00)42003-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Streptomycetes are Gram-positive bacteria with a unique capacity for the production of a multitude of varied and complex secondary metabolites. They also have a complex life cycle including differentiation into at least three distinct cell types. Whilst much attention has been paid to the pathways and regulation of secondary metabolism, less has been paid to the pathways and the regulation of primary metabolism, which supplies the precursors. With the imminent completion of the total genome sequence of Streptomyces coelicolor A3(2), we need to understand the pathways of primary metabolism if we are to understand the role of newly discovered genes. This review is written as a contribution to supplying these wants. Streptomycetes inhabit soil, which, because of the high numbers of microbial competitors, is an oligotrophic environment. Soil nutrient levels reflect the fact that plant-derived material is the main nutrient input; i.e. it is carbon-rich and nitrogen- and phosphate-poor. Control of streptomycete primary metabolism reflects the nutrient availability. The variety and multiplicity of carbohydrate catabolic pathways reflects the variety and multiplicity of carbohydrates in the soil. This multiplicity of pathways has led to investment by streptomycetes in pathway-specific and global regulatory networks such as glucose repression. The mechanism of glucose repression is clearly different from that in other bacteria. Streptomycetes feed by secreting complexes of extracellular enzymes that break down plant cell walls to release nutrients. The induction of these enzyme complexes is often coordinated by inducers that bear no structural relation to the substrate or product of any particular enzyme in the complex; e.g. a product of xylan breakdown may induce cellulase production. Control of amino acid catabolism reflects the relative absence of nitrogen catabolites in soil. The cognate amino acid induces about half of the catabolic pathways and half are constitutive. There are reduced instances of global carbon and nitrogen catabolite control of amino acid catabolism, which again presumably reflects the relative rarity of the catabolites. There are few examples of feedback repression of amino acid biosynthesis. Again this is taken as a reflection of the oligotrophic nature of the streptomycete ecological niche. As amino acids are not present in the environment, streptomycetes have rarely invested in feedback repression. Exceptions to this generalization are the arginine and branched-chain amino acid pathways and some parts of the aromatic amino acid pathways which have regulatory systems similar to Escherichia coli and Bacillus subtilis and other copiotrophic bacteria.
Collapse
Affiliation(s)
- D A Hodgson
- Department of Biological Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
44
|
Barbeyron T, Michel G, Potin P, Henrissat B, Kloareg B. iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem 2000; 275:35499-505. [PMID: 10934194 DOI: 10.1074/jbc.m003404200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
iota-Carrageenases are polysaccharide hydrolases that cleave the beta-1,4 linkages between the d-galactose-4-sulfate and 3, 6-anhydro-d-galactose-2-sulfate residues in the red algal galactans known as iota-carrageenans. We report here on the purification of iota-carrageenase activity from the marine bacterium Zobellia galactanovorans and on the characterization of iota-carrageenase structural genes. Genomic libraries from this latter bacterium as well as from Alteromonas fortis were functionally screened for the presence of iota-carrageenase(+) clones. The Z. galactanovorans and A. fortis iota-carrageenase genes encode homologous proteins of 53.4 and 54.8 kDa, respectively. Based on hydrophobic cluster analysis and on the (1)H NMR monitoring of the products of the overexpressed A. fortis iota-carrageenase, these enzymes appear to form a new family of glycoside hydrolases, unrelated to that of kappa-carrageenases and with an inverting mechanism of hydrolysis. They both feature a 45-amino acid-long N-terminal segment with sequence similarity to the N-terminal region of several other polysaccharidases. In those for which a three-dimensional structure is available, this conspicuous segment, also deemed "glycanase motif" (Chua, J. E. H., Manning, P. A., and Morona, R. (1999) Microbiology (Reading) 145, 1649-1659), corresponds to a strand-helix-strand "cap" that covers the N-terminal end of a common, right-handed beta-helical fold.
Collapse
Affiliation(s)
- T Barbeyron
- Station Biologique de Roscoff, UMR 1931 (CNRS and Laboratoires Goëmar), Place Georges Teissier, 29680 Roscoff, Bretagne, France
| | | | | | | | | |
Collapse
|
45
|
Kim JS, Jang JH, Lee JW, Kang SO, Kim KS, Lee JK. Identification of cis site involved in nickel-responsive transcriptional repression of sodF gene coding for Fe- and Zn-containing superoxide dismutase of Streptomyces griseus. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:200-7. [PMID: 10978523 DOI: 10.1016/s0167-4781(00)00178-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A sodF gene coding for iron- and zinc-containing superoxide dismutase (FeZnSOD) of Streptomyces griseus was cloned and sequenced. A 5' end of 0.8-kb sodF transcript was mapped at the 57 nucleotides upstream from an ATG initiation codon. Employing expressions of sodF::xylE fusions in trans in Streptomyces lividans, nickel-responsive transcriptional repression was found to be relieved if mutations were introduced into an operator sequence of inverted-repeat, TTGCAN(7)TGCAA, which traverses the 5' end (+1, G) of the sodF mRNA. Nickel-dependent interaction between cell extracts and sodF regulatory DNA, monitored through gel-mobility shift assay, was abolished when the operator was mutated. Recombinant sodF operon having operator mutations showed protein level and enzyme activity, which were no longer repressed by nickel, suggesting that nickel-responsive repression of FeZnSOD is regulated mainly at the level of transcription through the operator.
Collapse
Affiliation(s)
- J S Kim
- Department of Life Science, Sogang University, Mapo, Shinsu #1, Seoul 121-742, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
Bibb MJ, Molle V, Buttner MJ. sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol 2000; 182:4606-16. [PMID: 10913095 PMCID: PMC94633 DOI: 10.1128/jb.182.16.4606-4616.2000] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2000] [Accepted: 05/15/2000] [Indexed: 11/20/2022] Open
Abstract
Sporulation mutants of Streptomyces coelicolor appear white because they are defective in the synthesis of the gray polyketide spore pigment, and such white (whi) mutants have been used to define 13 sporulation loci. whiN, one of five new whi loci identified in a recent screen of NTG (N-methyl-N'-nitro-N-nitrosoguanidine)-induced whi strains (N. J. Ryding et al., J. Bacteriol. 181:5419-5425, 1999), was defined by two mutants, R112 and R650. R650 produced frequent spores that were longer than those of the wild type. In contrast, R112 produced long, straight, undifferentiated hyphae, although rare spore chains were observed, sometimes showing highly irregular septum placement. Subcloning and sequencing showed that whiN encodes a member of the extracytoplasmic function subfamily of RNA polymerase sigma factors and that the sigma factor has an unusual N-terminal extension of approximately 86 residues that is not present in other sigma factors. A constructed whiN null mutant failed to form aerial mycelium (the "bald" phenotype) and, as a consequence, whiN was renamed bldN. This observation was not totally unexpected because, on some media, the R112 point mutant produced substantially less aerial mycelium than its parent, M145. The bldN null mutant did not fit simply into the extracellular signaling cascade proposed for S. coelicolor bld mutants. Expression of bldN was analyzed during colony development in wild-type and aerial mycelium-deficient bld strains. bldN was transcribed from a single promoter, bldNp. bldN transcription was developmentally regulated, commencing approximately at the time of aerial mycelium formation, and depended on bldG and bldH, but not on bldA, bldB, bldC, bldF, bldK, or bldJ or on bldN itself. Transcription from the p1 promoter of the response-regulator gene bldM depended on bldN in vivo, and the bldMp1 promoter was shown to be a direct biochemical target for sigma(BldN) holoenzyme in vitro.
Collapse
Affiliation(s)
- M J Bibb
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom.
| | | | | |
Collapse
|
47
|
Yamasaki M, Miyashita K, Cullum J, Kinashi H. A complex insertion sequence cluster at a point of interaction between the linear plasmid SCP1 and the linear chromosome of Streptomyces coelicolor A3(2). J Bacteriol 2000; 182:3104-10. [PMID: 10809688 PMCID: PMC94495 DOI: 10.1128/jb.182.11.3104-3110.2000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2000] [Accepted: 03/13/2000] [Indexed: 11/20/2022] Open
Abstract
The giant linear plasmid SCP1 can integrate into the central region of the linear chromosome of Streptomyces coelicolor A3(2). Nucleotide sequence analysis around the target site for SCP1 integration in strain M145 identified a total of five copies of four insertion sequences (ISs) in a 6.5-kb DNA stretch. Three of the four (IS468, IS469, and IS470) are new IS elements, and the other is IS466. All of these elements contain one open reading frame which encodes a transposase-like protein. Two copies of IS468 (IS468A and -B) are tandemly aligned at the left end of the cluster. Following these, IS469 and IS466 are located in a tail-to-tail orientation with 69.3% identity to each other. IS470 is located at the right end of the cluster. The activities of IS466 and IS468 were demonstrated by transposition experiments and sequence comparison of several copies, respectively.
Collapse
Affiliation(s)
- M Yamasaki
- Department of Molecular Biotechnology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | | | | | | |
Collapse
|
48
|
XAVIER CHIURA HIROSHI, KITA-TSUKAMOTO KUMIKO. Purification and Characterisation of a Novel Agarase Secreted by a Marine Bacterium, Pseudoalteromonas sp. Strain CKT1. Microbes Environ 2000. [DOI: 10.1264/jsme2.2000.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- HIROSHI XAVIER CHIURA
- Department of Biology, Division of Natural Sciences, International Christian University Mitaka, Tokyo 181-8585, Japan
| | - KUMIKO KITA-TSUKAMOTO
- Marine Microbiology Division Ocean Research Institute, University of Tokyo 1-15-1, Minamidai, Nakano, Tokyo 164-8639, Japan
| |
Collapse
|
49
|
Hopwood DA. Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2183-2202. [PMID: 10517572 DOI: 10.1099/00221287-145-9-2183] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- David A Hopwood
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK1
| |
Collapse
|
50
|
Schlösser A, Jantos J, Hackmann K, Schrempf H. Characterization of the binding protein-dependent cellobiose and cellotriose transport system of the cellulose degrader Streptomyces reticuli. Appl Environ Microbiol 1999; 65:2636-43. [PMID: 10347054 PMCID: PMC91389 DOI: 10.1128/aem.65.6.2636-2643.1999] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces reticuli has an inducible ATP-dependent uptake system specific for cellobiose and cellotriose. By reversed genetics a gene cluster encoding components of a binding protein-dependent cellobiose and cellotriose ABC transporter was cloned and sequenced. The deduced gene products comprise a regulatory protein (CebR), a cellobiose binding lipoprotein (CebE), two integral membrane proteins (CebF and CebG), and the NH2-terminal part of an intracellular beta-glucosidase (BglC). The gene for the ATP binding protein MsiK is not linked to the ceb operon. We have shown earlier that MsiK is part of two different ABC transport systems, one for maltose and one for cellobiose and cellotriose, in S. reticuli and Streptomyces lividans. Transcription of polycistronic cebEFG and bglC mRNAs is induced by cellobiose, whereas the cebR gene is transcribed independently. Immunological experiments showed that CebE is synthesized during growth with cellobiose and that MsiK is produced in the presence of several sugars at high or moderate levels. The described ABC transporter is the first one of its kind and is the only specific cellobiose/cellotriose uptake system of S. reticuli, since insertional inactivation of the cebE gene prevents high-affinity uptake of cellobiose.
Collapse
Affiliation(s)
- A Schlösser
- FB Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|