1
|
Gerhold JM, Sedman T, Visacka K, Slezakova J, Tomaska L, Nosek J, Sedman J. Replication intermediates of the linear mitochondrial DNA of Candida parapsilosis suggest a common recombination based mechanism for yeast mitochondria. J Biol Chem 2014; 289:22659-22670. [PMID: 24951592 DOI: 10.1074/jbc.m114.552828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Variation in the topology of mitochondrial DNA (mtDNA) in eukaryotes evokes the question if differently structured DNAs are replicated by a common mechanism. RNA-primed DNA synthesis has been established as a mechanism for replicating the circular animal/mammalian mtDNA. In yeasts, circular mtDNA molecules were assumed to be templates for rolling circle DNA-replication. We recently showed that in Candida albicans, which has circular mapping mtDNA, recombination driven replication is a major mechanism for replicating a complex branched mtDNA network. Careful analyses of C. albicans-mtDNA did not reveal detectable amounts of circular DNA molecules. In the present study we addressed the question of how the unit sized linear mtDNA of Candida parapsilosis terminating at both ends with arrays of tandem repeats (mitochondrial telomeres) is replicated. Originally, we expected to find replication intermediates diagnostic of canonical bi-directional replication initiation at the centrally located bi-directional promoter region. However, we found that the linear mtDNA of Candida parapsilosis also employs recombination for replication initiation. The most striking findings were that the mitochondrial telomeres appear to be hot spots for recombination driven replication, and that stable RNA:DNA hybrids, with a potential role in mtDNA replication, are also present in the mtDNA preparations.
Collapse
Affiliation(s)
- Joachim M Gerhold
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23c, 51014 Tartu, Estonia and.
| | - Tiina Sedman
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23c, 51014 Tartu, Estonia and
| | - Katarina Visacka
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, and
| | - Judita Slezakova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, and
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, and
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Juhan Sedman
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23c, 51014 Tartu, Estonia and
| |
Collapse
|
2
|
Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2011; 34:925-51. [PMID: 20374295 DOI: 10.1111/j.1574-6976.2010.00217.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
3
|
Abstract
What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance-nodulation-cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.
Collapse
Affiliation(s)
- Dietrich H Nies
- Institute of Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06099 Halle/Saale, Germany.
| |
Collapse
|
4
|
|
5
|
Lange M, Ahring BK. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea. FEMS Microbiol Rev 2001; 25:553-71. [PMID: 11742691 DOI: 10.1111/j.1574-6976.2001.tb00591.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict demands to anaerobic culture conditions. These differences may, at least partly, be responsible for the delay in availability of genetic research tools for methanogens. At present, however, the research within genetics of methanogens and their gene regulation and expression is in rapid progress. Two complete methanogenic genomes have been sequenced and published and more are underway. Besides, sequences are known from a multitude of individual genes from methanogens. Standard methods for simple DNA and RNA work can normally be employed, but permeabilization of the cell wall may demand special procedures. Efficient genetic manipulation systems, including shuttle and integration vector systems, have appeared for mesophilic, but not for thermophilic species within the last few years and will have a major impact on future investigations of methanogenic molecular biology.
Collapse
Affiliation(s)
- M Lange
- Biocentrum-DTU, Technical University of Denmark, Building 227, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
6
|
Groth C, Petersen RF, Piskur J. Diversity in organization and the origin of gene orders in the mitochondrial DNA molecules of the genus Saccharomyces. Mol Biol Evol 2000; 17:1833-41. [PMID: 11110899 DOI: 10.1093/oxfordjournals.molbev.a026284] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sequencing of the Saccharomyces cerevisiae nuclear and mitochondrial genomes provided a new background for studies on the evolution of the genomes. In this study, mitochondrial genomes of a number of Saccharomyces yeasts were mapped by restriction enzyme analysis, the orders of the genes were determined, and two of the genes were sequenced. The genome organization, i.e., the size, presence of intergenic sequences, and gene order, as well as polymorphism within the coding regions, indicate that Saccharomyces mtDNA molecules are dynamic structures and have undergone numerous changes during their evolution. Since the separation and sexual isolation of different yeast lineages, the coding parts have been accumulating point mutations, presumably in a linear manner with the passage of time. However, the accumulation of other changes may not have been a simple function of time. Larger mtDNA molecules belonging to Saccharomyces sensu stricto yeasts have acquired extensive intergenic sequences, including guanosine-cytosine-rich clusters, and apparently have rearranged the gene order at higher rates than smaller mtDNAs belonging to the Saccharomyces sensu lato yeasts. While within the sensu stricto group transposition has been a predominant mechanism for the creation of novel gene orders, the sensu lato yeasts could have used both transposition- and inversion-based mechanisms.
Collapse
Affiliation(s)
- C Groth
- Department of Microbiology, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
7
|
Piskur J. The transmission disadvantage of yeast mitochondrial intergenic mutants is eliminated in the mgt1 (cce1) background. J Bacteriol 1997; 179:5614-7. [PMID: 9287024 PMCID: PMC179440 DOI: 10.1128/jb.179.17.5614-5617.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A trans-acting element, MGT1 (also called CCE1), has previously been shown to be required in Saccharomyces cerevisiae for the preferential transmission of petite mitochondrial DNA (mtDNA) molecules over wild-type mtDNA molecules. In the present study a possible role of this nuclear gene in the transmission of mtDNA from various respiration-competent mutants was studied. Several of these mutants, lacking one or the other of two biologically active mitochondrial intergenic sequences, were employed in genetic crosses. When these deletion mutants were crossed to the parental wild-type strain in the MGT1/CCE1 background, the progeny contained predominantly wild-type mtDNA molecules. When crosses were performed in the mgt1/cce1 background, the parental molecules interacted in zygotes and underwent homologous recombination but wild-type and intergenic-deletion alleles were transmitted with equal frequencies.
Collapse
Affiliation(s)
- J Piskur
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Piskur J, Mozina SS, Stenderup J, Pedersen MB. A mitochondrial molecular marker, ori-rep-tra, for differentiation of yeast species. Appl Environ Microbiol 1995; 61:2780-2. [PMID: 7618892 PMCID: PMC167552 DOI: 10.1128/aem.61.7.2780-2782.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Yeasts exhibit various mechanisms for the inheritance of their mitochondrial genomes. Differences among these mechanisms are based on variations within nuclear as well as mitochondrial genetic elements. Here we report diagnostic differences in the presence of biologically active mitochondrial intergenic sequences, ori-reptra, among related yeasts in the genera Saccharomyces, Arxiozyma, Debaryomyces, Kluyveromyces, Pachytichospora, Torulaspora, and Zygosaccharomyces. A molecular probe containing ori-rep-tra can be employed specifically for the differentiation and identification of isolates belonging to the species complex Saccharomyces sensu stricto.
Collapse
Affiliation(s)
- J Piskur
- Department of Genetics, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
9
|
Landgren M, Glimelius K. A high frequency of intergenomic mitochondrial recombination and an overall biased segregation of B. campestris or recombined B. campestris mitochondria were found in somatic hybrids made within Brassicaceae. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 87:854-62. [PMID: 24190472 DOI: 10.1007/bf00221138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/1993] [Accepted: 05/27/1993] [Indexed: 05/10/2023]
Abstract
Mitochondrial segregation and rearrangements were studied in regenerated somatic hybrids from seven different species combinations produced using reproducible and uniform methods. The interspecific hybridizations were made between closely or more distantly related species within the Brassicaceae and were exemplified by three intrageneric, two intergeneric and two intertribal species combinations. The intrageneric combinations were represented by Brassica campestris (+) B. oleracea, B. napus (+) B. nigra and B. napus (+) B. juncea (tournefortii) hybrids, the intergeneric combinations by B. napus (+) Raphanus sativus and B. napus (+) Eruca sativa hybrids, and the intertribal combinations by B. napus (+) Thlaspi perfoliatum and B. napus (+) Arabidopsis thaliana hybrids. In each species combination, one of the two mitochondrial genotypes was B. campestris since the B. napus cultivar used in the fusions contained this cytoplasm. Mitochondrial DNA (mtDNA) analyses were performed using DNA hybridization with nine different mitochondrial genes as probes. Among the various species combinations, 43-95% of the hybrids demonstrated mtDNA rearrangements. All examined B. campestris mtDNA regions could undergo intergenomic recombination since hybrid-specific fragments were found for all of the mtDNA probes analysed. Furthermore, hybrids with identical hybrid-specific fragments were found for all probes except cox II and rrn18/rrn5, supporting the suggestion that intergenomic recombination can involve specific sequences. A strong bias of hybrids having new atp A-or atp9-associated fragments observed in the intra- and intergeneric combinations could imply that these regions contain sequences that have a high reiteration number, which gives them a higher probability of recombining. A biased segregation of B. campestris-or B. campestris-like mitochondria was found in all combinations. A different degree of phylogenetic relatedness between the fusion partners did not have a significant influence on mitochondrial segregation in the hybrids in this study.
Collapse
Affiliation(s)
- M Landgren
- Uppsala Genetic Centre, Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 7003, 750 07, Uppsala, Sweden
| | | |
Collapse
|
10
|
Abstract
Mammalian mitochondrial DNA replication is initiated by the processing of RNA transcripts derived from an upstream promoter to create RNA primers for DNA replication. In the yeast Saccharomyces cerevisiae, mitochondrial ori/rep sequences contain a transcription promoter upstream of the site of transition from RNA to DNA synthesis, suggesting a common mode of replication initiation. Recent research has identified features in the mode and machinery of DNA replication conserved from yeast to mammals.
Collapse
Affiliation(s)
- M E Schmitt
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427
| | | |
Collapse
|
11
|
Chiu WL, Sears BB. Electron microscopic localization of replication origins in Oenothera chloroplast DNA. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:33-9. [PMID: 1552900 DOI: 10.1007/bf00299134] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The origins of chloroplast DNA (cpDNA) replication were mapped in two plastome types of Oenothera in order to determine whether variation in the origin of cpDNA replication could account for the different transmission abilities associated with these plastomes. Two pairs of displacement loop (D-loop) initiation sites were observed on closed circular cpDNA molecules by electron microscopy. Each pair of D-loops was mapped to the inverted repeats of the Oenothera cpDNA by the analysis of restriction fragments. The starting points of the two adjacent D-loops are approximately 4 kb apart, bracketing the 16S rRNA gene. Although there are small DNA length variations near one of the D-loop initiation sites, no apparent differences in the number and the location of replication origins were observed between plastomes with the highest (type I) and lowest (type IV) transmission efficiencies.
Collapse
Affiliation(s)
- W L Chiu
- Department of Botany and Plant Pathology, Michigan State University, East Lansing 48824
| | | |
Collapse
|