1
|
Domenech M, García E. The N-Acetylglucosaminidase LytB of Streptococcus pneumoniae Is Involved in the Structure and Formation of Biofilms. Appl Environ Microbiol 2020; 86:e00280-20. [PMID: 32198170 PMCID: PMC7205503 DOI: 10.1128/aem.00280-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
The N-acetylglucosaminidase LytB of Streptococcus pneumoniae is involved in nasopharyngeal colonization and is responsible for cell separation at the end of cell division; thus, ΔlytB mutants form long chains of cells. This paper reports the construction and properties of a defective pneumococcal mutant producing an inactive LytB protein (LytBE585A). It is shown that an enzymatically active LytB is required for in vitro biofilm formation, as lytB mutants (either ΔlytB or producing the inactive LytBE585A) are incapable of forming substantial biofilms, despite that extracellular DNA is present in the biofilm matrix. Adding small amounts (0.5 to 2.0 μg/ml) of exogenous LytB or some LytB constructs restored the biofilm-forming capacity of lytB mutants to wild-type levels. The LytBE585A mutant formed biofilm more rapidly than ΔlytB mutants in the presence of LytB. This suggests that the mutant protein acted in a structural role, likely through the formation of complexes with extracellular DNA. The chain-dispersing capacity of LytB allowed the separation of daughter cells, presumably facilitating the formation of microcolonies and, finally, of biofilms. A role for the possible involvement of LytB in the synthesis of the extracellular polysaccharide component of the biofilm matrix is also discussed.IMPORTANCE It has been previously accepted that biofilm formation in S. pneumoniae must be a multigenic trait because the mutation of a single gene has led to only to partial inhibition of biofilm production. In the present study, however, evidence that the N-acetylglucosaminidase LytB is crucial in biofilm formation is provided. Despite the presence of extracellular DNA, strains either deficient in LytB or producing a defective LytB enzyme formed only shallow biofilms.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
2
|
Liu Y, Zeng Y, Huang Y, Gu L, Wang S, Li C, Morrison DA, Deng H, Zhang JR. HtrA-mediated selective degradation of DNA uptake apparatus accelerates termination of pneumococcal transformation. Mol Microbiol 2019; 112:1308-1325. [PMID: 31396996 DOI: 10.1111/mmi.14364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Natural transformation mediates horizontal gene transfer, and thereby promotes exchange of antibiotic resistance and virulence traits among bacteria. Streptococcus pneumoniae, the first known transformable bacterium, rapidly activates and then terminates the transformation state, but it is unclear how the bacterium accomplishes this rapid turn-around at the protein level. This work determined the transcriptomic and proteomic dynamics during the window of pneumococcal transformation. RNA sequencing revealed a nearly uniform temporal pattern of rapid transcriptional activation and subsequent shutdown for the genes encoding transformation proteins. In contrast, mass spectrometry analysis showed that the majority of transformation proteins were substantially preserved beyond the window of transformation. However, ComEA and ComEC, major components of the DNA uptake apparatus for transformation, were completely degraded at the end of transformation. Further mutagenesis screening revealed that the membrane-associated serine protease HtrA mediates selective degradation of ComEA and ComEC, strongly suggesting that breakdown of the DNA uptake apparatus by HtrA is an important mechanism for termination of pneumococcal transformation. Finally, our mutagenesis analysis showed that HtrA inhibits natural transformation of Streptococcus mitis and Streptococcus gordonii. Together, this work has revealed that HtrA regulates the level and duration of natural transformation in multiple streptococcal species.
Collapse
Affiliation(s)
- Yanni Liu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yuna Zeng
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yijia Huang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Lixiao Gu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunhao Li
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Roig-Molina E, Domenech M, Retamosa MDG, Nácher-Vázquez M, Rivas L, Maestro B, García P, García E, Sanz JM. Widening the antimicrobial spectrum of esters of bicyclic amines: In vitro effect on gram-positive Streptococcus pneumoniae and gram-negative non-typeable Haemophilus influenzae biofilms. Biochim Biophys Acta Gen Subj 2018; 1863:96-104. [PMID: 30292448 DOI: 10.1016/j.bbagen.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 11/19/2022]
Abstract
Antibiotic resistance is a global current threat of increasing importance. Moreover, biofilms represent a medical challenge since the inherent antibiotic resistance of their producers demands the use of high doses of antibiotics over prolonged periods. Frequently, these therapeutic measures fail, contributing to bacterial persistence, therefore demanding the development of novel antimicrobials. Esters of bicyclic amines (EBAs), which are strong inhibitors of Streptococcus pneumoniae growth, were initially designed as inhibitors of pneumococcal choline-binding proteins on the basis of their structural analogy to the choline residues in the cell wall. However, instead of mimicking the characteristic cell chaining phenotype caused by exogenously added choline on planktonic cultures of pneumococcal cells, EBAs showed an unexpected lytic activity. In this work we demonstrate that EBAs display a second, and even more important, function as cell membrane destabilizers. We then assayed the inhibitory and disintegrating activity of these molecules on pneumococcal biofilms. The selected compound (EBA 31) produced the highest effect on S. pneumoniae (encapsulated and non-encapsulated) biofilms at very low concentrations. EBA 31 was also effective on mixed biofilms of non-encapsulated S. pneumoniae plus non-typeable Haemophilus influenzae, two pathogens frequently forming a self-produced biofilm in the human nasopharynx. These results support the role of EBAs as a promising alternative for the development of novel, broad-range antimicrobial drugs encompassing both Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Emma Roig-Molina
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda Universidad s/n, Elche 03202, Spain
| | - Mirian Domenech
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - María de Gracia Retamosa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda Universidad s/n, Elche 03202, Spain
| | | | - Luis Rivas
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Beatriz Maestro
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda Universidad s/n, Elche 03202, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Jesús M Sanz
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda Universidad s/n, Elche 03202, Spain; Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Domenech M, García E. N-Acetyl-l-Cysteine and Cysteamine as New Strategies against Mixed Biofilms of Nonencapsulated Streptococcus pneumoniae and Nontypeable Haemophilus influenzae. Antimicrob Agents Chemother 2017; 61:e01992-16. [PMID: 27919900 PMCID: PMC5278723 DOI: 10.1128/aac.01992-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Acute otitis media, a polymicrobial disease of the middle ear cavity of children, is a significant public health problem worldwide. It is most frequently caused by encapsulated Streptococcus pneumoniae and nontypeable Haemophilus influenzae, although the widespread use of pneumococcal conjugate vaccines is apparently producing an increase in the carriage of nonencapsulated S. pneumoniae Frequently, pneumococci and H. influenzae live together in the human nasopharynx, forming a self-produced biofilm. Biofilms present a global medical challenge since the inherent antibiotic resistance of their producers demands the use of large doses of antibiotics over prolonged periods. Frequently, these therapeutic measures fail, contributing to bacterial persistence. Here, we describe the development of an in vitro nonencapsulated S. pneumoniae-nontypeable H. influenzae biofilm system with polystyrene or glass-bottom plates. Confocal laser scanning microscopy and specific fluorescent labeling of pneumococcal cells with Helix pomatia agglutinin revealed an even distribution of both species within the biofilm. This simple and robust protocol of mixed biofilms was used to test the antimicrobial properties of two well-known antioxidants that are widely used in the clinical setting, i.e., N-acetyl-l-cysteine and cysteamine. This repurposing approach showed the high potency of N-acetyl-l-cysteine and cysteamine against mixed biofilms of nonencapsulated S. pneumoniae and nontypeable H. influenzae Decades of clinical use mean that these compounds are safe to use, which may accelerate their evaluation in humans.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
5
|
Moscoso M, Esteban-Torres M, Menéndez M, García E. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci. PLoS One 2014; 9:e101037. [PMID: 25006964 PMCID: PMC4090064 DOI: 10.1371/journal.pone.0101037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/02/2014] [Indexed: 12/15/2022] Open
Abstract
Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models.
Collapse
Affiliation(s)
- Miriam Moscoso
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Mallorca, Illes Balears, Spain
| | - María Esteban-Torres
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Mallorca, Illes Balears, Spain
| | - Margarita Menéndez
- Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, CSIC, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Mallorca, Illes Balears, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Mallorca, Illes Balears, Spain
- * E-mail:
| |
Collapse
|
6
|
Zähner D, Gandhi AR, Yi H, Stephens DS. Mitis group streptococci express variable pilus islet 2 pili. PLoS One 2011; 6:e25124. [PMID: 21966432 PMCID: PMC3178606 DOI: 10.1371/journal.pone.0025124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/25/2011] [Indexed: 11/25/2022] Open
Abstract
Background Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2)-encoded pili to facilitate adhesion to eukaryotic cells. Methodology/Principal Findings PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae) and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains. Conclusions/Significance This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with pathogenic traits in the Mitis group streptococci.
Collapse
Affiliation(s)
- Dorothea Zähner
- Division of Infectious Diseases, Department of Medicine, Atlanta, Georgia, United States of America.
| | | | | | | |
Collapse
|
7
|
Johnsborg O, Eldholm V, Håvarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 2007; 158:767-78. [PMID: 17997281 DOI: 10.1016/j.resmic.2007.09.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/04/2007] [Accepted: 09/21/2007] [Indexed: 02/02/2023]
Abstract
Studies show that gene acquisition through natural transformation has contributed significantly to the adaptation and ecological diversification of several bacterial species. Relatively little is still known, however, about the prevalence and phylogenetic distribution of organisms possessing this property. Thus, whether natural transformation only benefits a limited number of species or has a large impact on lateral gene flow in nature remains a matter of speculation. Here we will review the most recent advances in our understanding of the phenomenon and discuss its possible biological functions.
Collapse
Affiliation(s)
- Ola Johnsborg
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | | | | |
Collapse
|
8
|
de las Rivas B, García JL, López R, García P. Molecular characterization of the pneumococcal teichoic acid phosphorylcholine esterase. Microb Drug Resist 2002; 7:213-22. [PMID: 11759082 DOI: 10.1089/10766290152652756] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A search to identify proteins with high affinity for choline-containing pneumococcal cell walls (choline-binding proteins) has permitted the localization, cloning, sequencing, and overexpression of a gene (pce), coding for a protein (Pce) that liberates phosphorylcholine from purified cell walls of Streptococcus pneumoniae. The pce gene of the pneumococcal strain R6 encodes a protein of 627 amino acids with a predicted Mr of 72,104. Pce can remove a maximum of 20% phosphorylcholine residues from the cell wall teichoic acid. In silico analysis of Pce shows a modular organization of the enzyme where the choline-binding domain, involved in cell wall substrate recognition, and the catalytic domain are located at the carboxy- and amino-terminal moieties of the protein, respectively. Remarkably, a long tail of 85 amino acids follows the carboxy-terminal domain, a structural feature that had not been described for the published choline-binding proteins. The carboxy-terminal moiety of Pce is assembled by 10 repeated motifs, and the protein has also a cleavable signal peptide of 25 amino acids that renders after its cleavage a mature protein of 69,426 Da (602 amino acids). The pce gene has been expressed in Escherichia coli, and Pce was active when assayed on pneumococcal walls. We have also found that the signal peptide of Pce was functional in E. coli. Biochemical analysis suggested that Pce is the teichoic acid phosphorylcholine esterase of S. pneumoniae that had been biochemically characterized previously. Construction of two pce pneumococcal mutants (R6D and M31D) by insertion-duplication mutagenesis revealed that these mutants grew at a doubling-time similar to those of the parental strains of the wild-type R6 and the lytA-mutant M31, respectively. R6D and M31D were morphologically indistinguishable from the parental strains when whole-mounted cells were observed under the electron microscope and exhibited levels of competence for genetic transformation slightly lower than those reported for R6 and M31.
Collapse
Affiliation(s)
- B de las Rivas
- Centro de Investigaciones Biológicas, CSIC, Velázquez, Madrid, Spain
| | | | | | | |
Collapse
|
9
|
Cvitkovitch DG. Genetic competence and transformation in oral streptococci. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 12:217-43. [PMID: 11497374 DOI: 10.1177/10454411010120030201] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The oral streptococci are normally non-pathogenic residents of the human microflora. There is substantial evidence that these bacteria can, however, act as "genetic reservoirs" and transfer genetic information to transient bacteria as they make their way through the mouth, the principal entry point for a wide variety of bacteria. Examples that are of particular concern include the transfer of antibiotic resistance from oral streptococci to Streptococcus pneumoniae. The mechanisms that are used by oral streptococci to exchange genetic information are not well-understood, although several species are known to enter a physiological state of genetic competence. This state permits them to become capable of natural genetic transformation, facilitating the acquisition of foreign DNA from the external environment. The oral streptococci share many similarities with two closely related Gram-positive bacteria, S. pneumoniae and Bacillus subtilis. In these bacteria, the mechanisms of quorum-sensing, the development of competence, and DNA uptake and integration are well-characterized. Using this knowledge and the data available in genome databases allowed us to identify putative genes involved in these processes in the oral organism Streptococcus mutans. Models of competence development and genetic transformation in the oral streptococci and strategies to confirm these models are discussed. Future studies of competence in oral biofilms, the natural environment of oral streptococci, will be discussed.
Collapse
Affiliation(s)
- D G Cvitkovitch
- Dental Research Institute, University of Toronto, Faculty of Dentistry, ON, Canada.
| |
Collapse
|
10
|
Llull D, Garcia E, Lopez R. Tts, a processive beta-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in Pneumococcus and other gram-positive species. J Biol Chem 2001; 276:21053-61. [PMID: 11264282 DOI: 10.1074/jbc.m010287200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 37 capsule of Streptococcus pneumoniae is a homopolysaccharide built up from repeating units of [beta-d-Glcp-(1-->2)]-beta-d-Glcp-(1-->3). The elements governing the expression of the tts gene, coding for the glucosyltransferase involved in the synthesis of the type 37 pneumococcal capsular polysaccharide, have been studied. Primer extension analysis and functional tests demonstrated the presence of four new transcriptional start points upstream of the previously reported tts promoter (ttsp). Most interesting, three of these transcriptional start points are located in a RUP element thought to be involved in recombinational events (Oggioni, M. R., and Claverys, J. P. (1999) Microbiology 145, 2647-2653). Transformation experiments using either a recombinant plasmid containing the whole transcriptional unit of tts or chromosomal DNA from a type 37 pneumococcus showed that tts is the only gene required to drive the biosynthesis of a type 37 capsule in S. pneumoniae and other Gram-positive bacteria, namely Streptococcus oralis, Streptococcus gordonii, and Bacillus subtilis. The Tts synthase was overproduced in S. pneumoniae and purified as a membrane-associated enzyme. These membrane preparations used UDP-Glc as substrate to catalyze the synthesis of a high molecular weight polysaccharide immunologically identical to the type 37 capsule. In addition, UDP-Gal was also a substrate to produce type 37 polysaccharide since a strong UDP-Glc-4'-epimerase activity is associated to the membrane fraction of S. pneumoniae. These results indicated that Tts has a dual biochemical activity that leads to the synthesis of the branched type 37 polysaccharide.
Collapse
Affiliation(s)
- D Llull
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain
| | | | | |
Collapse
|
11
|
Abstract
It has been recently reported that different type 37 clinical isolates of Streptococcus pneumoniae have an identical tts gene directing the formation of type 37 capsular polysaccharide. Here we show that type 37 S. pneumoniae strains isolated in two different continents (Europe and America) some 60 years apart frequently gave rise to nontypable variants upon in vitro cultivation. The tts gene from three independent nontypable mutants was PCR amplified and sequenced showing different classes of inactivating mutations. Furthermore, pulsed-field gel electrophoresis and multilocus sequence typing demonstrated that the type 37 pneumococcal isolates studied so far constitute a highly related strain cluster (a clonal complex), and strongly suggested that every type 37 pneumococcus has spread globally from a single, old clone.
Collapse
Affiliation(s)
- D Llull
- Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | | | | |
Collapse
|
12
|
Abstract
Oral microbial-plaque communities are biofilms composed of numerous genetically distinct types of bacteria that live in close juxtaposition on host surfaces. These bacteria communicate through physical interactions called coaggregation and coadhesion, as well as other physiological and metabolic interactions. Streptococci and actinomyces are the major initial colonizers of the tooth surface, and the interactions between them and their substrata help establish the early biofilm community. Fusobacteria play a central role as physical bridges that mediate coaggregation of cells and as physiological bridges that promote anaerobic microenvironments which protect coaggregating strict anaerobes in an aerobic atmosphere. New technologies for investigating bacterial populations with 16S rDNA probes have uncovered previously uncultured bacteria and have offered an approach to in situ examination of the spatial arrangement of the participant cells in oral-plaque biofilms. Flow cells with saliva-coated surfaces are particularly useful for studies of biofilm formation and observation. The predicted sequential nature of colonization of the tooth surface by members of different genera can be investigated by using these new technologies and imaging the cells in situ with confocal scanning laser microscopy. Members of at least seven genera now can be subjected to genetic studies owing to the discovery of gene-transfer systems in these genera. Identification of contact-inducible genes in streptococci offers an avenue to explore bacterial responses to their environment and leads the way toward understanding communication among inhabitants of a multispecies biofilm.
Collapse
Affiliation(s)
- P E Kolenbrander
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
13
|
de la Campa AG, García E, Fenoll A, Muñoz R. Molecular bases of three characteristic phenotypes of pneumococcus: optochin-sensitivity, coumarin-sensitivity, and quinolone-resistance. Microb Drug Resist 2000; 3:177-93. [PMID: 9185146 DOI: 10.1089/mdr.1997.3.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pneumoniae is uniquely sensitive to amino alcohol antimalarials in the erythro configuration, such as optochin, quinine, and quinidine. The protein responsible for the optochin (quinine)-sensitive (Opts, Qins) phenotype of pneumococcus is the proteolipid c subunit of the FzeroF1 H(+)-ATPase. OptR/QinR isolates arose by point mutations in the atpC gene and produce different amino acid changes in one of the two transmembrane alpha-helices of the c subunit. In addition, comparison of the sequence of the atpCAB genes of S. pneumoniae R6 (Opts) and M222 (an OptR strain produced by interspecies recombination between pneumococcus and S. oralis), and S. oralis (OptR) revealed that, in M222, an interchange of atpC and atpA had occurred. We also demonstrate that optochin, quinine, and related compounds specifically inhibited the membrane-bound ATPase activity. Equivalent differences between Opts/Qins and OptR/QinR strains, both in growth inhibition and in membrane ATPase resistance, were found. Pneumococci also show a characteristic sensitivity to coumarin drugs, and a relatively high level of resistance to most quinolones. We have cloned and sequenced the gyrB gene, and characterized novobiocin resistant mutants. The same amino acid substitution (Ser-127 to Leu) confers novobiocin resistance on four isolates. This residue position is equivalent to Val-120 of Escherichia coli ryGB, a residue that lies inside the ATP-binding domain but is not involved in novobiocin binding in E. coli, as revealed by crystallographic data. In addition, the genes encoding the ParC and ParE subunits of topoisomerase IV, together with the region encoding amino acids 46 to 172 (residue numbers as in E. coli) of the pneumococcal ryGA subunit, were characterized in respect to fluoroquinolone resistance. The gyrA gene maps to a physical location distant from the gyrB and parEC loci on the chromosome. Ciprofloxacin-resistant (CpR) clinical isolates had mutations affecting amino acid residues of the quinolone resistance-determining region of ParC (low-level CpR), or in both resistance-determining regions of ParC and GyrA (high-level CpR). Mutations were found in residue positions equivalent to Ser-83 and Asp-87 of the E. coli GyrA subunit. Transformation experiments demonstrated that topoisomerase IV is the primary target of ciprofloxacin, DNA gyrase being a secondary one.
Collapse
Affiliation(s)
- A G de la Campa
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
García P, Martín AC, López R. Bacteriophages of Streptococcus pneumoniae: a molecular approach. Microb Drug Resist 2000; 3:165-76. [PMID: 9185145 DOI: 10.1089/mdr.1997.3.165] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have characterized four families of pneumococcal phages with remarkable morphologic and physiological differences. Dp-1 and Cp-1 are lytic phages, whereas HB-3 and EJ-1 are temperate phages. Interestingly, Cp-1 and HB-3 have a terminal protein covalently linked to the 5' ends of their lineal DNAs. In the case of Dp-1, we have found that the choline residues of the teichoic acid were essential components of the phage receptors. We have also developed a transfection system using mature DNAs from Dp-4 and Cp-1. In the later case, the transfecting activity of the DNA was destroyed by treatment with proteolytic enzymes, a feature also shared by the genomes of several small Bacillus phages. DNA replication was investigated in the case of Dp-4 and Cp-1 phages. The terminal protein linked to Cp-1 DNA plays a key role in the peculiar mechanism of DNA replication that has been coined as protein-priming. Recently, the linear 19,345-bp double-stranded DNA of Cp-1 has been completely sequenced, several of its gene products have been analyzed, and a complete transcriptional map has been ellaborated. Most of the pneumococcal lysins exhibit an absolute dependence of the presence of choline in the cell wall substrate for activity, and phage lysis requires, as reported for other systems, the action of a second phage-encoded protein, the holin, which presumably forms some kind of lesion in the membrane. The two lytic gene cassettes, from EJ-1 and Cp-1 phages, have been cloned and expressed in heterologous and homologous systems. The finding that some lysogenic strains of Streptococcus pneumoniae harbor phage remnants has provided important clues on the interchanges between phage and bacteria and supports the view of the chimeric origin of phages.
Collapse
Affiliation(s)
- P García
- Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | |
Collapse
|
15
|
López R, García E, García P, García JL. The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? Microb Drug Resist 2000; 3:199-211. [PMID: 9185148 DOI: 10.1089/mdr.1997.3.199] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autolysins are enzymes that degrade different bonds in the peptidoglycan and, eventually, cause the lysis and death of the cell. Streptococcus pneumoniae contains a powerful autolytic enzyme that has been characterized as an N-acetylmuramoyl-L-alanine amidase. We have cloned the lytA gene coding for this amidase and studied in depth the genetics and expression of this gene, which represented the first molecular analysis of a bacterial autolysin. Two observations have been fundamental in revealing further knowledge on the lytic systems of pneumococcus: (a) The well-documented dependence of the pneumococcal autolysin on the presence of choline in the cell wall for activity, and (b) the early observation that most pneumococcal phages also required the presence of this amino-alcohol in the growth medium to achieve a successful liberation of the phage progeny. We concluded that choline would serve as an element of strong selective pressure to preserve certain structures of the host and phage lytic enzymes which should lead to sequence homologies. We constructed active chimeras between the lytic enzymes of S. pneumoniae and its bacteriophages using genes that share sequence homology as well as genes that completely lack homologous regions. In this way, we demonstrated that the pneumococcal lytic enzymes are the result of the fusion of two independent functional modules where the carboxy-terminal domain might be responsible for the specific recognition of choline-containing cell walls whereas the active center of these enzymes should be localized in the N-terminal part of the protein. The modular design postulated for the pneumococcal lysins seems to be a widespread model for many types of microbial proteins and the construction of functional chimeric proteins between the lytic enzymes of pneumococcus and those of several gram-positive microorganisms, like Clostridium acetobutylicum or Lactococcus lactis, provided interesting clues on the modular evolution of proteins. The study of several genes coding for the lytic enzymes of temperate phages of pneumococcus also highlighted on some evolutionary relationships between microorganisms. We suggest that lysogenic relationships may represent a common mechanism by which pathogenic organisms like pneumococcus should undergo a rapid adaptation to an evolving environment.
Collapse
Affiliation(s)
- R López
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
16
|
García E, Arrecubieta C, Muñoz R, Mollerach M, López R. A functional analysis of the Streptococcus pneumoniae genes involved in the synthesis of type 1 and type 3 capsular polysaccharides. Microb Drug Resist 2000; 3:73-88. [PMID: 9109098 DOI: 10.1089/mdr.1997.3.73] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Type 3 pneumococci produce a capsule composed of cellobiuronic acid units connected in a beta (1-->3) linkage. Cellobiuronic acid is a disaccharide consisting of D-glucuronic acid (GlcA) beta (1-->4) linked to D-glucose (Glc). The genes implicated in the biosynthesis of the type 3 capsule have been cloned, expressed, and biochemically characterized. The three type 3-specific genes--designated as cap3ABC--are transcribed together. However, the two complete open reading frames located upstream of cap3A are not transcribed and, consequently, are not required for capsule formation. The promoter of the cap3 operon was localized by primer extension analysis. The products of cap3A, cap3B, and cap3C were biochemically characterized as a UDP-Glc dehydrogenase, the type 3 polysaccharide synthase, and a Glc-1-P uridyltransferase, respectively. The Cap3B synthase was expressed in Escherichia coli, and pneumococcal type 3 polysaccharide was synthesized in this heterologous system. When a recombinant plasmid (pLSE3B) containing cap3B was introduced by transformation into encapsulated pneumococci of types 1, 2, 5, or 8, the lincomycin-resistant transformants displayed a binary type of capsule, this is, they showed a type 3 capsule in addition to that of the recipient type. Unencapsulated (S2) laboratory strains of S. pneumoniae also synthesized a type 3 capsule when transformed with pLSE3B. On the other hand, we have cloned and sequenced seven type 1-specific genes (designated as cap1A-G), and their functions have been preliminarily assigned based on sequence similarities.
Collapse
Affiliation(s)
- E García
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Llull D, Muñoz R, López R, García E. A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains. J Exp Med 1999; 190:241-51. [PMID: 10432287 PMCID: PMC2195575 DOI: 10.1084/jem.190.2.241] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/1999] [Accepted: 05/18/1999] [Indexed: 11/12/2022] Open
Abstract
The molecular aspects of the type 37 pneumococcal capsular biosynthesis, a homopolysaccharide composed of sophorosyl units (beta-d-Glc-(1-->2)-beta-d-Glc) linked by beta-1,3 bonds, have been studied. Remarkably, the biosynthesis of the type 37 capsule is driven by a single gene (tts) located far apart from the cap locus responsible for capsular formation in all of the types characterized to date in Streptococcus pneumoniae. However, a cap37 locus virtually identical to the cap33f cluster has been found in type 37 strains, although some of its genes are inactivated by mutations. The tts gene has been sequenced and its transcription start point determined. Tts shows sequence motifs characteristic of cellulose synthases and other beta-glycosyltransferases. Insertion of the tts gene into the pneumococcal DNA causes a noticeable genome reorganization in such a way that genes normally separated by more than 350 kb in the chromosome are located together in clinical isolates of type 37. Encapsulated pneumococcal strains belonging to 10 different serotypes (or serogroups) transformed with tts synthesized type 37 polysaccharide, leading to the formation of strains that display the binary type of capsule. Type 37 pneumococcus constitutes the first case of a natural, genetically binary strain and represents a novel alternative to the mechanisms of intertype transformation.
Collapse
Affiliation(s)
- Daniel Llull
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Rosario Muñoz
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Rubens López
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Ernesto García
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
18
|
González I, Georgiou M, Alcaide F, Balas D, Liñares J, de la Campa AG. Fluoroquinolone resistance mutations in the parC, parE, and gyrA genes of clinical isolates of viridans group streptococci. Antimicrob Agents Chemother 1998; 42:2792-8. [PMID: 9797205 PMCID: PMC105945 DOI: 10.1128/aac.42.11.2792] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/1998] [Accepted: 08/08/1998] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequences of the quinolone resistance-determining regions (QRDRs) of the parC and gyrA genes from seven ciprofloxacin-resistant (Cpr) isolates of viridans group streptococci (two high-level Cpr Streptococcus oralis and five low-level Cpr Streptococcus mitis isolates) were determined and compared with those obtained from susceptible isolates. The nucleotide sequences of the QRDRs of the parE and gyrB genes from the five low-level Cpr S. mitis isolates and from the NCTC 12261 type strain were also analyzed. Four of these low-level Cpr isolates had changes affecting the subunits of DNA topoisomerase IV: three in Ser-79 (to Phe or Ile) of ParC and one in ParE at a position not previously described to be involved in quinolone resistance (Pro-424). One isolate did not show any mutation. The two high-level Cpr S. oralis isolates showed mutations affecting equivalent residue positions of ParC and GyrA, namely, Ser-79 to Phe and Ser-81 to Phe or Tyr, respectively. The parC mutations were able to transform Streptococcus pneumoniae to ciprofloxacin resistance, while the gyrA mutations transformed S. pneumoniae only when mutations in parC were present. These results suggest that DNA topoisomerase IV is a primary target of ciprofloxacin in viridans group streptococci, DNA gyrase being a secondary target.
Collapse
Affiliation(s)
- I González
- Unidad de Genética Bacteriana (Consejo Superior de Investigaciones Científicas), Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Martín AC, López R, García P. Pneumococcal bacteriophage Cp-1 encodes its own protease essential for phage maturation. J Virol 1998; 72:3491-4. [PMID: 9525689 PMCID: PMC109866 DOI: 10.1128/jvi.72.4.3491-3494.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The major capsid protein of the pneumococcal phage Cp-1 that accounts for 90% of the total protein found in the purified virions is synthesized by posttranslational processing of the product of the open reading frame (ORF) orf9. Cloning of different ORFs of the Cp-1 genome in Escherichia coli and Streptococcus pneumoniae combined with Western blot analysis of the expressed products led to the conclusion that the product of orf13 is an endoprotease that cleaves off the first 48 amino acid residues of the major head protein. This protease appears to be a key enzyme in the morphopoietic pathway of the Cp-1 phage head. To our knowledge, this is the first case of a bacteriophage infecting gram-positive bacteria that encodes a protease involved in phage maturation.
Collapse
Affiliation(s)
- A C Martín
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
20
|
Muñoz R, López R, García E. Characterization of IS1515, a functional insertion sequence in Streptococcus pneumoniae. J Bacteriol 1998; 180:1381-8. [PMID: 9580131 PMCID: PMC107034 DOI: 10.1128/jb.180.6.1381-1388.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We describe the characterization of a new insertion sequence, IS1515, identified in the genome of Streptococcus pneumoniae I41R, an unencapsulated mutant isolated many years ago (R. Austrian, H. P. Bernheimer, E. E. B. Smith, and G. T. Mills, J. Exp. Med. 110:585-602, 1959). A copy of this element located in the cap1EI41R gene was sequenced. The 871-bp-long IS1515 element possesses 12-bp perfect inverted repeats and generates a 3-bp target duplication upon insertion. The IS encodes a protein of 271 amino acid residues similar to the putative transposases of other insertion sequences, namely IS1381 from S. pneumoniae, ISL2 from Lactobacillus helveticus, IS702 from the cyanobacterium Calothrix sp. strain PCC 7601, and IS112 from Streptomyces albus G. IS1515 appears to be present in the genome of most type 1 pneumococci in a maximum of 13 copies, although it has also been found in the chromosome of pneumococcal isolates belonging to other serotypes. We have found that the unencapsulated phenotype of strain 141R is the result of both the presence of an IS1515 copy and a frameshift mutation in the cap1EI41R gene. Precise excision of the IS was observed in the type 1 encapsulated transformants isolated in experiments designed to repair the frameshift. These results reveal that IS1515 behaves quite differently from other previously described pneumococcal insertion sequences. Several copies of IS1515 were also able to excise and move to another locations in the chromosome of S. pneumoniae. To our knowledge, this is the first report of a functional IS in pneumococcus.
Collapse
Affiliation(s)
- R Muñoz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
21
|
Lunsford RD. Streptococcal transformation: essential features and applications of a natural gene exchange system. Plasmid 1998; 39:10-20. [PMID: 9473442 DOI: 10.1006/plas.1997.1323] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- R D Lunsford
- Smith Kline Beecham Pharmaceuticals, Collegeville, Pennsylvania 19426, USA
| |
Collapse
|
22
|
Martín AC, López R, García P. Functional analysis of the two-gene lysis system of the pneumococcal phage Cp-1 in homologous and heterologous host cells. J Bacteriol 1998; 180:210-7. [PMID: 9440507 PMCID: PMC106873 DOI: 10.1128/jb.180.2.210-217.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The two lysis genes cph1 and cpl1 of the Streptococcus pneumoniae bacteriophage Cp-1 coding for holin and lysozyme, respectively, have been cloned and expressed in Escherichia coli. Synthesis of the Cph1 holin resulted in bacterial cell death but not lysis. The cph1 gene was able to complement a lambda Sam mutation in the nonsuppressing E. coli HB101 strain to produce phage progeny, suggesting that the holins encoded by both phage genes have analogous functions and that the pneumococcal holin induces a nonspecific lesion in the cytoplasmic membrane. Concomitant expression of both holin and lysin of Cp-1 in E. coli resulted in cell lysis, apparently due to the ability of the Cpl1 lysozyme to hydrolyze the peptidoglycan layer of this bacterium. The functional analysis of the cph1 and cpl1 genes cloned in a pneumococcal mutant with a complete deletion of the lytA gene, which codes for the S. pneumoniae main autolysin, provided the first direct evidence that, in this gram-positive-bacterium system, the Cpl1 endolysin is released to its murein substrate through the activity of the Cph1 holin. Demonstration of holin function was achieved by proving the release of pneumolysin to the periplasmic fraction, which strongly suggested that the holin produces a lesion in the pneumococcal membrane.
Collapse
Affiliation(s)
- A C Martín
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
23
|
Muñoz R, De La Campa AG. ParC subunit of DNA topoisomerase IV of Streptococcus pneumoniae is a primary target of fluoroquinolones and cooperates with DNA gyrase A subunit in forming resistance phenotype. Antimicrob Agents Chemother 1996; 40:2252-7. [PMID: 8891124 PMCID: PMC163513 DOI: 10.1128/aac.40.10.2252] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The genes encoding the ParC and ParE subunits of topoisomerase IV of Streptococcus pneumoniae, together with the region encoding amino acids 46 to 172 (residue numbers are as in Escherichia coli) of the pneumococcal GyrA subunit, were partially characterized. The gyrA gene maps to a physical location distant from the gyrB and parC loci on the chromosome, whereas parC is closely linked to parE. Ciprofloxacin-resistant (Cpr) clinical isolates of S. pneumoniae had mutations affecting amino acid residues of the quinolone resistance-determining region of ParC (low-level Cpr) or in both quinolone resistance-determining regions of ParC and GyrA (high-level Cpr). Mutations were found in residue positions equivalent to the serine at position 83 and the aspartic acid at position 87 of the E. coli GyrA subunit. Transformation experiments suggest that ParC is the primary target of ciprofloxacin. Mutation in parC appears to be a prerequisite before mutations in gyrA can influence resistance levels.
Collapse
Affiliation(s)
- R Muñoz
- (Consejo Superior de Investigaciones Cientificas), Centro Nacional de Biologia Celular y Retrovirus, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
24
|
Arrecubieta C, López R, García E. Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J Exp Med 1996; 184:449-55. [PMID: 8760798 PMCID: PMC2192726 DOI: 10.1084/jem.184.2.449] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The cap3B gene, which is involved in the formation of the capsule of Streptococcus pneumoniae type 3, encodes a 49-kD protein that has been identified as a polysaccharide synthase. Escherichia coli cells harboring the recombinant plasmid pTBP3 (cap3B) produced pneumococcal type 3 polysaccharide, as demonstrated by immunological tests. Biochemical and cell fractionation analyses revealed that this polysaccharide had a high molecular mass and was localized in substantial amounts in the periplasmic space of E. coli. Unencapsulated (S-2), laboratory pneumococcal strains synthesized type 3 polysaccharide by transformation with plasmid pLSE3B harboring cap3B. In addition, encapsulated pneumococci of types 1, 2, 5, or 8 transformed with pLSE3B can direct the synthesis of pneumococcal type 3 polysaccharide, leading to the formation of strains that display binary type of capsule.
Collapse
Affiliation(s)
- C Arrecubieta
- Centro de Investigaciones Biológicas, Cousejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
25
|
Martín AC, López R, García P. Analysis of the complete nucleotide sequence and functional organization of the genome of Streptococcus pneumoniae bacteriophage Cp-1. J Virol 1996; 70:3678-87. [PMID: 8648702 PMCID: PMC190243 DOI: 10.1128/jvi.70.6.3678-3687.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cp-1, a bacteriophage infecting Streptococcus pneumoniae, has a linear double-stranded DNA genome, with a terminal protein covalently linked to its 5' ends, that replicates by the protein-priming mechanism. We describe here the complete DNA sequence and transcriptional map of the Cp-1 genome. These analyses have led to the firm assignment of 10 genes and the localization of 19 additional open reading frames in the 19,345-bp Cp-1 DNA. Striking similarities and differences between some of these proteins and those of the Bacillus subtilis phage phi 29, a system that also replicates its DNA by the protein-priming mechanism, have been revealed. The genes coding for structural proteins and assembly factors are located in the central part of the Cp-1 genome. Several proteins corresponding to the predicted gene products were identified by in vitro and in vivo expression of the cloned genes. Mature major head protein from the virion particles results from hydrolysis of the primary gene product at the His-49 residue, whereas the phage gene is expressed in Escherichia coli without modification. We have also identified two open reading frames coding for proteins that show high degrees of similarity to the N- and C-terminal regions, respectively, of the single tail protein identified in phi 29. Sequencing and primer extension analysis suggest transcription of a small RNA showing a secondary structure similar to that of the prohead RNA required for the ATP-dependent packaging of phi 29 DNA. On the basis of its temporal expression, transcription of the Cp-1 genome takes place in two stages, early and late. Combined Northern (RNA) blot and primer extension experiments allowed us to map the 5' initiation sites of the transcripts, and we found that only three genes were transcribed from right to left. These analyses reveal that there are also noticeable differences between Cp-l and phi 29 in transcriptional organization. Considered together, the observations reported here provide new tangible evidence on phylogenetic relationships between B. subtilis and S. pneumoniae.
Collapse
Affiliation(s)
- A C Martín
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
26
|
Martin B, García P, Castanié MP, Claverys JP. The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol Microbiol 1995; 15:367-79. [PMID: 7538190 DOI: 10.1111/j.1365-2958.1995.tb02250.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The recently identified recA gene of the naturally transformable bacterium Streptococcus pneumoniae has been further characterized by constructing a recA null mutation and by investigating its regulation. The recA mutation has been shown to confer both DNA repair (as judged from sensitivity to u.v. and methyl methane sulphonate) and recombination deficiencies. Plasmid transformation into the recA mutant was also drastically reduced. Western blotting established that recA gene expression is increased several fold at the onset of competence for genetic transformation. Increased expression was associated with the appearance of a recA-specific transcript, approximately 5.7 kb long. This transcript indicated that recA is part of a competence-inducible (cin) operon. The major (about 4.3 kb) transcript detected from non-competent cells did not include cinA, the first gene in the operon, suggesting that this gene could be specifically required at some stage in the transformation process. Detection of small amounts of the 5.7 kb polycistronic mRNA in cells treated with mitomycin C suggested that the operon could also be damage inducible. In addition, mitomycin C treatment of a recA- lysogenic strain did not lead to prophage induction and cell lysis. This is unlike the situation of a recA+ lysogen. Together these results demonstrate that RecA controls lysogenic induction and suggest the existence of a SOS repair system in S. pneumoniae.
Collapse
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Chromosome Mapping
- Chromosomes, Bacterial
- DNA Repair/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Lysogeny/genetics
- Mitomycin/pharmacology
- Molecular Sequence Data
- Mutagenesis
- Operon
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rec A Recombinases/genetics
- Recombination, Genetic/genetics
- SOS Response, Genetics/genetics
- Sequence Homology
- Species Specificity
- Streptococcus pneumoniae/drug effects
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/metabolism
- Transformation, Bacterial/genetics
Collapse
Affiliation(s)
- B Martin
- Microbiologie et Génétique Moléculaire CNRS-UPR, Université Paul Sabatier, Toulouse, France
| | | | | | | |
Collapse
|
27
|
Fenoll A, Muñoz R, García E, de la Campa AG. Molecular basis of the optochin-sensitive phenotype of pneumococcus: characterization of the genes encoding the F0 complex of the Streptococcus pneumoniae and Streptococcus oralis H(+)-ATPases. Mol Microbiol 1994; 12:587-98. [PMID: 7934882 DOI: 10.1111/j.1365-2958.1994.tb01045.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The gene responsible for the optochin-sensitive (OptS) phenotype of Streptococcus pneumoniae has been characterized. Sequence comparisons indicated that the genes involved encoded the subunits of the F0 complex of an H(+)-ATPase. Sequence analysis and transformation experiments showed that the atpC gene is responsible for the optochin-sensitive resistant (OptS/OptR) phenotype. Our results also show that natural as well as laboratory OptR isolates have arisen by point mutations that produce different amino acid changes at positions 48, 49 or 50 of the ATPase c subunit. The nucleotide sequence of the F0 complex of the Streptococcus oralis ATPase has also been determined. In addition, comparison of the sequence of the atpCAB genes of S. pneumoniae R6 (OptS) and M222 (an OptR strain produced by interspecies recombination between pneumococcus and S. oralis), and S. oralis revealed that, in M222, an interchange of atpC and atpA had occurred. We also demonstrate that optochin specifically inhibited the membrane-bound ATPase activity of the S. pneumoniae wild-type (OptS) strains, and found a 100-fold difference between OptS and OptR strains, both in growth inhibition and in membrane ATPase resistance.
Collapse
Affiliation(s)
- A Fenoll
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | | | | | | |
Collapse
|
28
|
García E, García P, López R. Cloning and sequencing of a gene involved in the synthesis of the capsular polysaccharide of Streptococcus pneumoniae type 3. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:188-95. [PMID: 8510646 DOI: 10.1007/bf00281617] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 4.5 kb ScaI chromosomal DNA fragment of a clinical isolate of Streptococcus pneumoniae serotype 3 was cloned in Escherichia coli. Combined genetic and molecular analyses have allowed the localization, in a 781 bp EcoRV subfragment, of a gene (cap3-1) directly responsible for the transformation of an unencapsulated, serotype 3 mutant to the capsulated phenotype. Comparison of the deduced amino acid sequence of CAP3-1 with the protein sequences compiled in the data banks revealed that the CAP3-1 polypeptide was highly similar to the amino-terminus of the GDP-mannose dehydrogenase of Pseudomonas aeruginosa, an enzyme that participates in the synthesis of the mucoid polysaccharide of this species. In addition, the 32 N-terminal amino acids of CAP3-1 perfectly matched structures common to NAD(+)-binding domains of many dehydrogenases. Our results indicate that the 4.5 kb ScaI fragment might also contain genes common to 13 different pneumococcal serogroups or serotypes tested. To the best of our knowledge, this is the first time that a gene of the capsular complex of S. pneumoniae has been cloned and sequenced. The findings reported here provide new insights for the study of the molecular biology of the main virulence factor responsible for the pathogenesis of pneumococcal infections and might represent a basic step in the identification of cross-reactive antigens that should allow the preparation of new and improved vaccines.
Collapse
Affiliation(s)
- E García
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
29
|
Romero A, López R, GarcÃa P. Lytic action of cloned pneumococcal phage lysis genes in Streptococcus pneumoniae. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06078.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Díaz E, López R, García JL. Role of the major pneumococcal autolysin in the atypical response of a clinical isolate of Streptococcus pneumoniae. J Bacteriol 1992; 174:5508-15. [PMID: 1355082 PMCID: PMC206493 DOI: 10.1128/jb.174.17.5508-5515.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The autolytic enzyme (an N-acetylmuramyl-L-alanine amidase) of a clinical isolate, strain 101/87, which is classified as an atypical pneumococcus, has been studied for the first time. The lytA101 gene coding for this amidase (LYTA101) has been cloned, sequenced, and expressed in Escherichia coli. The LYTA101 amidase has been purified and shown to be similar to the main autolytic enzyme (LYTA) present in the wild-type strain of Streptococcus pneumoniae, although it exhibits a lower specific activity, a higher sensitivity to inhibition by free choline, and a modified thermosensitivity with respect to LYTA. Most important, in contrast with the LYTA amidase, the activity of the LYTA101 amidase was inhibited by sodium deoxycholate. This property is most probably responsible of the deoxycholate-insensitive phenotype shown by strain 101/87. Phenotypic curing of strain 101/87 by externally adding purified LYTA or LYTA101 amidase restored in this strain some typical characteristics of the wild-type strain of pneumococcus (e.g., formation of diplo cells and sensitization to lysis by sodium deoxycholate), although the amount of the LYTA101 amidase required to restore these properties was much higher than in the case of the LYTA amidase. Our results indicate that modifications in the primary structure or in the mechanisms that control the activity of cell wall lytic enzymes seem to be responsible for the characteristics exhibited by some strains of S. pneumoniae that have been classically misclassified and should be now considered atypical pneumococcal strains.
Collapse
Affiliation(s)
- E Díaz
- Unidad de Genética Bacteriana, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
31
|
Ronda C, Luis GarcÃa J, López R. Teichoic acid choline esterase, a novel hydrolytic activity inStreptococcus oralis. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04677.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Chimeric pneumococcal cell wall lytic enzymes reveal important physiological and evolutionary traits. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67618-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
Fenoll A, Martinez-Suarez JV, Muñoz R, Casal J, Garcia JL. Identification of atypical strains of Streptococcus pneumoniae by a specific DNA probe. Eur J Clin Microbiol Infect Dis 1990; 9:396-401. [PMID: 2387292 DOI: 10.1007/bf01979468] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A specific DNA probe containing a 0.65 Kb fragment coding for the aminoterminal region of the major pneumococcal autolysin (amidase) was constructed, deleting the region involved in the specific recognition of cell wall choline residues. The high specificity of this probe was demonstrated in tests with Streptococcus pneumoniae related species including Streptococcus oralis, which contains choline in its cell wall. The probe was used to characterize pneumococcal isolates showing atypical responses in conventional identification tests. The hybridization obtained with 27 atypical pneumococci and 11 of 17 isolates presumptively identified as viridans streptococci confirmed that the probe is suitable for diagnostic use.
Collapse
Affiliation(s)
- A Fenoll
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
Abstract
A promoter-probe plasmid, pLSE4, containing the promoterless lytA gene that encodes the major pneumococcal autolysin, was developed to isolate and characterize nucleotide sequences of Streptococcus pneumoniae involved in transcriptional regulation. This vector was derived from the broad-host-range plasmid pLS1 and is suitable for the transformation of Gram- and Gram+ bacteria. An array of unique restriction sites was placed upstream from the lytA coding region. Pneumococcal promoters can be screened from random DNA fragments cloned in these sites for the ability to direct the expression of the autolysin in transformed autolysin-deficient pneumococcal cells. Transformants showing a Lyt+ phenotype were selected on agar plates using a simple filter technique. Relative promoter strength was determined by direct assay of the cell wall lytic activity in cell extracts.
Collapse
|
35
|
Sanz JM, Garcia JL. Structural studies of the lysozyme coded by the pneumococcal phage Cp-1. Conformational changes induced by choline. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 187:409-16. [PMID: 2404766 DOI: 10.1111/j.1432-1033.1990.tb15319.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The CPL-1 lysozyme coded by the pneumococcal phage Cp-1 has been overproduced in Escherichia coli under the control of a modified lipoprotein lactose promoter. This result has provided the conditions to analyse the CPL-1 secondary structure by circular dichroism (CD). The CD spectra recorded in the far-ultraviolet region showed, at neutral pH, two minima at 210 nm and 230 nm and a shoulder at 217 nm, whereas two bands at 260 nm and 295 nm were observed in the near-ultraviolet region. It has been estimated, by using the CDPROT program, that the protein is composed of 19% alpha-helix, 32% beta-sheet, 28% beta-turn and 21% random coil. Minor changes in the CD spectra were detected either when the pH was varied over 6-10 or when the ionic strength was increased to 1 M NaCl. Choline, a well known modulator of the enzyme activity that is present in the pneumococcal cell wall, induced remarkable changes in the intensities of the bands at 210, 230 and 295 nm, with the appearance of an unusual positive band at 225 nm. The conformational change was reversible and correlated with the competitive inhibitory effect of choline on the lysozyme activity, supporting, by a new and direct experimental approach, the basic role of choline in the recognition of the cell wall substrate. The analyses of the secondary structure prediction and the CD data reported here are compatible with the two-domain structure of CPL-1 reinforce our hypothesis that the C-terminal region is directly involved in the binding of the enzyme to the pneumococcal teichoic and lipoteichoic acids.
Collapse
Affiliation(s)
- J M Sanz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid. Spain
| | | |
Collapse
|
36
|
Ronda C, GarcÃa J, López R. Infection ofStreptococcus oralisNCTC 11427 by pneumococcal phages. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03620.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|