Daculsi G, Bouler JM, LeGeros RZ. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials.
INTERNATIONAL REVIEW OF CYTOLOGY 1997;
172:129-91. [PMID:
9102393 DOI:
10.1016/s0074-7696(08)62360-8]
[Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mineralization and crystal deposition are natural phenomena widely distributed in biological systems from protozoa to mammals. In mammals, normal and pathological calcifications are observed in bones, teeth, and soft tissues or cartilage. We review studies on the adaptive apatite crystal formation in enamel compared with those in other calcified tissues (e.g., dentin, bone, and fish enameloids) and in pathological calcifications, demonstrating the adaptation of these crystals (in terms of crystallinity and orientation) to specific tissues that vary in functions or vary in normal or diseased conditions. The roles of minor elements, such as carbonate, magnesium, fluoride, hydrogen phosphate, pyrophosphate, and strontium ions, on the formation and transformation of biologically relevant calcium phosphates are summarized. Another adaptative process of crystals in biology concerns the recent development of calcium phosphate ceramics and other related biomaterials for bone graft. Bone graft materials are available as alternatives to autogeneous bone for repair, substitution, or augmentation. This paper discusses the adaptive crystal formation in mineralized tissues induced by calcium phosphate and related bone graft biomaterials during bone repair.
Collapse