1
|
Malik M, Malik F, Fatma T, Qasim Hayat M, Jamal A, Gul A, Faraz Bhatti M. The complete mitochondrial genome of Penicillium expansum: Insights into the fungal evolution and phylogeny. Gene 2024; 910:148315. [PMID: 38417689 DOI: 10.1016/j.gene.2024.148315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Penicillium expansum is an important phytopathogenic fungus that causes blue mold disease. In this study, the novel mitochondrial genome of P. expansum was sequenced, assembled, annotated, and compared with the previously published Penicillium mitogenomes. P. expansum mitogenome is composed of circular DNA molecules with a genome size of 25,496 bp. It encodes 16 protein-encoding genes (PCGs), two rRNA genes, and 25 tRNA genes. Comparative analysis with six other Penicillium species revealed that gene length, GC content, AT skew, and GC skew were variable among the core protein-coding genes. The Penicillium species' gene synteny analysis identified several gene rearrangements. Among the core 15 PCGs, atp8 had the lowest K2P genetic distance, which shows that this gene is highly conserved. The Ka/Ks value of most PCGs was less than 1, which shows that these genes have undergone purifying selection. Phylogenetic analysis based on 14 concatenated core mitochondrial genes revealed that P. expansum shares a close relationship with P. solitum. This study served as a first report on the complete mitochondrial genome of P. expansum and its comparative analysis that will contribute to population genetics and rapid evolutionary studies among Penicillium species.
Collapse
Affiliation(s)
- Mahnoor Malik
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Fatima Malik
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Tehsin Fatma
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Muhammad Qasim Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| |
Collapse
|
2
|
Osiewacz HD. Impact of Mitochondrial Architecture, Function, Redox Homeostasis, and Quality Control on Organismic Aging: Lessons from a Fungal Model System. Antioxid Redox Signal 2024; 40:948-967. [PMID: 38019044 DOI: 10.1089/ars.2023.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: Mitochondria are eukaryotic organelles with various essential functions. They are both the source and the targets of reactive oxygen species (ROS). Different branches of a mitochondrial quality control system (mQCS), such as ROS balancing, degradation of damaged proteins, or whole mitochondria, can mitigate the adverse effects of ROS stress. However, the capacity of mQCS is limited. Overwhelming this capacity leads to dysfunctions and aging. Strategies to interfere into mitochondria-dependent human aging with the aim to increase the healthy period of life, the health span, rely on the precise knowledge of mitochondrial functions. Experimental models such as Podospora anserina, a filamentous fungus with a clear mitochondrial aging etiology, proved to be instrumental to reach this goal. Recent Advances: Investigations of the P. anserina mQCS revealed that it is constituted by a complex network of different branches. Moreover, mitochondrial architecture and lipid homeostasis emerged to affect aging. Critical Issues: The regulation of the mQCS is only incompletely understood. Details about the involved signaling molecules and interacting pathways remain to be elucidated. Moreover, most of the currently generated experimental data were generated in well-controlled experiments that do not reflect the constantly changing natural life conditions and bear the danger to miss relevant aspects leading to incorrect conclusions. Future Directions: In P. anserina, the precise impact of redox signaling as well as of molecular damaging for aging remains to be defined. Moreover, natural fluctuation of environmental conditions needs to be considered to generate a realistic picture of aging mechanisms as they developed during evolution.
Collapse
|
3
|
Ogaji YO, Lee RC, Sawbridge TI, Cocks BG, Daetwyler HD, Kaur S. De Novo Long-Read Whole-Genome Assemblies and the Comparative Pan-Genome Analysis of Ascochyta Blight Pathogens Affecting Field Pea. J Fungi (Basel) 2022; 8:884. [PMID: 36012871 PMCID: PMC9410150 DOI: 10.3390/jof8080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ascochyta Blight (AB) is a major disease of many cool-season legumes globally. In field pea, three fungal pathogens have been identified to be responsible for this disease in Australia, namely Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga. Limited genomic resources for these pathogens have been generated, which has hampered the implementation of effective management strategies and breeding for resistant cultivars. Using Oxford Nanopore long-read sequencing, we report the first high-quality, fully annotated, near-chromosome-level nuclear and mitochondrial genome assemblies for 18 isolates from the Australian AB complex. Comparative genome analysis was performed to elucidate the differences and similarities between species and isolates using phylogenetic relationships and functional diversity. Our data indicated that P. pinodella and P. koolunga are heterothallic, while P. pinodes is homothallic. More homology and orthologous gene clusters are shared between P. pinodes and P. pinodella compared to P. koolunga. The analysis of the repetitive DNA content showed differences in the transposable repeat composition in the genomes and their expression in the transcriptomes. Significant repeat expansion in P. koolunga's genome was seen, with strong repeat-induced point mutation (RIP) activity being evident. Phylogenetic analysis revealed that genetic diversity can be exploited for species marker development. This study provided the much-needed genetic resources and characterization of the AB species to further drive research in key areas such as disease epidemiology and host-pathogen interactions.
Collapse
Affiliation(s)
- Yvonne O. Ogaji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robert C. Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Tim I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Benjamin G. Cocks
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
4
|
Prince S, Munoz C, Filion-Bienvenue F, Rioux P, Sarrasin M, Lang BF. Refining Mitochondrial Intron Classification With ERPIN: Identification Based on Conservation of Sequence Plus Secondary Structure Motifs. Front Microbiol 2022; 13:866187. [PMID: 35369492 PMCID: PMC8971849 DOI: 10.3389/fmicb.2022.866187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial genomes—in particular those of fungi—often encode genes with a large number of Group I and Group II introns that are conserved at both the sequence and the RNA structure level. They provide a rich resource for the investigation of intron and gene structure, self- and protein-guided splicing mechanisms, and intron evolution. Yet, the degree of sequence conservation of introns is limited, and the primary sequence differs considerably among the distinct intron sub-groups. It makes intron identification, classification, structural modeling, and the inference of gene models a most challenging and error-prone task—frequently passed on to an “expert” for manual intervention. To reduce the need for manual curation of intron structures and mitochondrial gene models, computational methods using ERPIN sequence profiles were initially developed in 2007. Here we present a refinement of search models and alignments using the now abundant publicly available fungal mtDNA sequences. In addition, we have tested in how far members of the originally proposed sub-groups are clearly distinguished and validated by our computational approach. We confirm clearly distinct mitochondrial Group I sub-groups IA1, IA3, IB3, IC1, IC2, and ID. Yet, IB1, IB2, and IB4 ERPIN models are overlapping substantially in predictions, and are therefore combined and reported as IB. We have further explored the conversion of our ERPIN profiles into covariance models (CM). Current limitations and prospects of the CM approach will be discussed.
Collapse
|
5
|
Zhao Z, Zhu K, Tang D, Wang Y, Wang Y, Zhang G, Geng Y, Yu H. Comparative Analysis of Mitochondrial Genome Features among Four Clonostachys Species and Insight into Their Systematic Positions in the Order Hypocreales. Int J Mol Sci 2021; 22:ijms22115530. [PMID: 34073831 PMCID: PMC8197242 DOI: 10.3390/ijms22115530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
The mycoparasite fungi of Clonostachys have contributed to the biological control of plant fungal disease and nematodes. The Clonostachys fungi strains were isolated from Ophiocordyceps highlandensis, Ophiocordycepsnigrolla and soil, which identified as Clonostachyscompactiuscula, Clonostachysrogersoniana, Clonostachyssolani and Clonostachys sp. To explore the evolutionary relationship between the mentioned species, the mitochondrial genomes of four Clonostachys species were sequenced and assembled. The four mitogenomes consisted of complete circular DNA molecules, with the total sizes ranging from 27,410 bp to 42,075 bp. The GC contents, GC skews and AT skews of the mitogenomes varied considerably. Mitogenomic synteny analysis indicated that these mitogenomes underwent gene rearrangements. Among the 15 protein-coding genes within the mitogenomes, the nad4L gene exhibited the least genetic distance, demonstrating a high degree of conservation. The selection pressure analysis of these 15 PCGs were all below 1, indicating that PCGs were subject to purifying selection. Based on protein-coding gene calculation of the significantly supported topologies, the four Clonostachys species were divided into a group in the phylogenetic tree. The results supplemented the database of mitogenomes in Hypocreales order, which might be a useful research tool to conduct a phylogenetic analysis of Clonostachys. Additionally, the suitable molecular marker was significant to study phylogenetic relationships in the Bionectriaceae family.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Kongfu Zhu
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Dexiang Tang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Yuanbing Wang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Yao Wang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Guodong Zhang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Yupeng Geng
- College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- Correspondence: (Y.G.); (H.Y.)
| | - Hong Yu
- College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
- Correspondence: (Y.G.); (H.Y.)
| |
Collapse
|
6
|
Wang B, Liang X, Hao X, Dang H, Hsiang T, Gleason ML, Zhang R, Sun G. Comparison of mitochondrial genomes provides insights into intron dynamics and evolution in Botryosphaeria dothidea and B. kuwatsukai. Environ Microbiol 2021; 23:5320-5333. [PMID: 34029452 DOI: 10.1111/1462-2920.15608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/26/2023]
Abstract
Botryosphaeria dothidea is one of the most common fungal pathogens on a large number of hosts worldwide. Botryosphaeria dothidea and B. kuwatsukai are also the main causal agents of apple ring rot. In this study, we sequenced, assembled and annotated the circular mitogenomes of 12 diverse B. dothidea isolates (105.7-114.8 kb) infecting various plants including apple, and five diverse B. kuwatsukai isolates (118.0-124.6 kb) from apple. B. dothidea mitogenomes harboured a set of 29-31 introns and 48-52 ORFs. In contrast, B. kuwatsukai mitogenomes harboured more introns (32-34) and ORFs (51-54). The variation in mitogenome sizes was associated mainly with different numbers of introns and insertions of mobile genetic elements. Interestingly, B. dothidea and B. kuwatsukai displayed distinct intron distribution patterns, with three intron loci showing presence/absence dynamics in each species. Large numbers of introns (57% in B. dothidea and 49% in B. kuwatsukai) were most likely obtained through horizontal transfer from non-Dothideomycetes. The mitochondrial gene phylogeny supported the differentiation of the two species. Overall, this study sheds light into the mitochondrial evolution of the plant pathogens B. dothidea and B. kuwatsukai, and intron distribution patterns could be useful markers for studies on population diversity.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Hao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haiyue Dang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
7
|
Araújo DS, De-Paula RB, Tomé LMR, Quintanilha-Peixoto G, Salvador-Montoya CA, Del-Bem LE, Badotti F, Azevedo VAC, Brenig B, Aguiar ERGR, Drechsler-Santos ER, Fonseca PLC, Góes-Neto A. Comparative mitogenomics of Agaricomycetes: Diversity, abundance, impact and coding potential of putative open-reading frames. Mitochondrion 2021; 58:1-13. [PMID: 33582235 DOI: 10.1016/j.mito.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
The mitochondrion is an organelle found in eukaryote organisms, and it is vital for different cellular pathways. The mitochondrion has its own DNA molecule and, because its genetic content is relatively conserved, despite the variation of size and structure, mitogenome sequences have been widely used as a promising molecular biomarker for taxonomy and evolution in fungi. In this study, the mitogenomes of two fungal species of Agaricomycetes class, Phellinotus piptadeniae and Trametes villosa, were assembled and annotated for the first time. We used these newly sequenced mitogenomes for comparative analyses with other 55 mitogenomes of Agaricomycetes available in public databases. Mitochondrial DNA (mtDNA) size and content are highly variable and non-coding and intronic regions, homing endonucleases (HEGs), and unidentified ORFs (uORFs) significantly contribute to the total size of the mitogenome. Furthermore, accessory genes (most of them as HEGs) are shared between distantly related species, most likely as a consequence of horizontal gene transfer events. Conversely, uORFs are only shared between taxonomically related species, most probably as a result of vertical evolutionary inheritance. Additionally, codon usage varies among mitogenomes and the GC content of mitochondrial features may be used to distinguish coding from non-coding sequences. Our results also indicated that transposition events of mitochondrial genes to the nuclear genome are not common. Despite the variation of size and content of the mitogenomes, mitochondrial genes seemed to be reliable molecular markers in our time-divergence analysis, even though the nucleotide substitution rates of mitochondrial and nuclear genomes of fungi are quite different. We also showed that many events of mitochondrial gene shuffling probably happened amongst the Agaricomycetes during evolution, which created differences in the gene order among species, even those of the same genus. Altogether, our study revealed new information regarding evolutionary dynamics in Agaricomycetes.
Collapse
Affiliation(s)
- Daniel S Araújo
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ruth B De-Paula
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Luiz M R Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Quintanilha-Peixoto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Luiz-Eduardo Del-Bem
- Department of Botany, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Eric R G R Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Paula L C Fonseca
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Park J, Lee MK, Yu JH, Kim JH, Han KH. Complete mitochondrial genome sequence of Afla-Guard ®, commercially available non-toxigenic Aspergillus flavus. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:3590-3592. [PMID: 33367022 PMCID: PMC7594763 DOI: 10.1080/23802359.2020.1825129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Afla-Guard® is a commercial non-toxigenic Aspergillus flavus strain used to decrease aflatoxin contamination level in field. Its mitochondrial genome was sequenced, showing that its length is 29,208 bp with typical configuration of Aspergillus mitochondrial genome. 17 SNPs and 27 INDELs were identified by comparing with previous A. flavus mitochondrial genome. Phylogenetic trees present that A. flavus of Afla-Guard® was clustered with the previous A. flavus mitochondrial genome.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd, Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| | - Mi-Kyung Lee
- Department of Bacteriology, The University of Wisconsin-Madison, Madison, WI, USA.,Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, The University of Wisconsin-Madison, Madison, WI, USA
| | - Jong-Hwa Kim
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| |
Collapse
|
9
|
Fonseca PLC, Badotti F, De-Paula RB, Araújo DS, Bortolini DE, Del-Bem LE, Azevedo VA, Brenig B, Aguiar ERGR, Góes-Neto A. Exploring the Relationship Among Divergence Time and Coding and Non-coding Elements in the Shaping of Fungal Mitochondrial Genomes. Front Microbiol 2020; 11:765. [PMID: 32411111 PMCID: PMC7202290 DOI: 10.3389/fmicb.2020.00765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
The order Hypocreales (Ascomycota) is composed of ubiquitous and ecologically diverse fungi such as saprobes, biotrophs, and pathogens. Despite their phylogenetic relationship, these species exhibit high variability in biomolecules production, lifestyle, and fitness. The mitochondria play an important role in the fungal biology, providing energy to the cells and regulating diverse processes, such as immune response. In spite of its importance, the mechanisms that shape fungal mitogenomes are still poorly understood. Herein, we investigated the variability and evolution of mitogenomes and its relationship with the divergence time using the order Hypocreales as a study model. We sequenced and annotated for the first time Trichoderma harzianum mitochondrial genome (mtDNA), which was compared to other 34 mtDNAs species that were publicly available. Comparative analysis revealed a substantial structural and size variation on non-coding mtDNA regions, despite the conservation of copy number, length, and structure of protein-coding elements. Interestingly, we observed a highly significant correlation between mitogenome length, and the number and size of non-coding sequences in mitochondrial genome. Among the non-coding elements, group I and II introns and homing endonucleases genes (HEGs) were the main contributors to discrepancies in mitogenomes structure and length. Several intronic sequences displayed sequence similarity among species, and some of them are conserved even at gene position, and were present in the majority of mitogenomes, indicating its origin in a common ancestor. On the other hand, we also identified species-specific introns that advocate for the origin by different mechanisms. Investigation of mitochondrial gene transfer to the nuclear genome revealed that nuclear copies of the nad5 are the most frequent while atp8, atp9, and cox3 could not be identified in any of the nuclear genomes analyzed. Moreover, we also estimated the divergence time of each species and investigated its relationship with coding and non-coding elements as well as with the length of mitogenomes. Altogether, our results demonstrated that introns and HEGs are key elements on mitogenome shaping and its presence on fast-evolving mtDNAs could be mostly explained by its divergence time, although the intron sharing profile suggests the involvement of other mechanisms on the mitochondrial genome evolution, such as horizontal transference.
Collapse
Affiliation(s)
- Paula L. C. Fonseca
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Ruth B. De-Paula
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Daniel S. Araújo
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dener E. Bortolini
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz-Eduardo Del-Bem
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Botany, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A. Azevedo
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Eric R. G. R. Aguiar
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Liu W, Cai Y, Zhang Q, Chen L, Shu F, Ma X, Bian Y. The mitochondrial genome of Morchella importuna (272.2 kb) is the largest among fungi and contains numerous introns, mitochondrial non-conserved open reading frames and repetitive sequences. Int J Biol Macromol 2019; 143:373-381. [PMID: 31830457 DOI: 10.1016/j.ijbiomac.2019.12.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022]
Abstract
The complete mitochondrial genome of Morchella importuna, the famous edible and medicinal mushroom, was assembled as a 272,238 bp single circular dsDNA. As the largest mitogenome among fungi, it exhibits several distinct characteristics. The mitogenome of M. importuna encoded 14 core conserved mitochondrial protein-coding genes and 151 mitochondrial non-conserved open reading frames (ncORFs) were predicted, of which 61 were annotated as homing endonuclease genes, and 108 were confirmed to be expressed during the vegetative growth stages of M. importuna. In addition, 34 introns were identified in seven core genes (cob, cox1, cox2, cox3, nad1, nad4 and nad5) and two rRNA genes (rrnS and rrnL) with a length from 383 bp to 7453 bp, and eight large introns with a length range of 2340 bp to 7453 bp contained multiple intronic mtORFs. Moreover, 34 group I (IA, IB, IC1, IC2, ID and derived group I introns) and four group II intron domains were identified for the 34 introns, including five hybrid ones. Furthermore, the M. importuna mitogenome showed the presence of about 18.7% mitogenomic interspersed repeats. These and the aforementioned ncORFs and introns, contributed to the enlarged size of the mitogenome.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Cai
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Qianqian Zhang
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianfu Chen
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Shu
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolong Ma
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Yinbing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Zubaer A, Wai A, Hausner G. The fungal mitochondrial Nad5 pan-genic intron landscape. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:835-842. [PMID: 31698975 DOI: 10.1080/24701394.2019.1687691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An intron landscape was prepared for the fungal mitochondrial nad5 gene. A hundred and eighty-eight fungal species were examined and a total of 265 introns were noted to be located in 29 intron insertion sites within the examined nad5 genes. Two hundred and sixty-three introns could be classified as group I types and two group II introns were noted. One additional group II intron module was identified nested within a composite group I intron. Based on features related to RNA secondary structures, introns can be classified into different subtypes and it was observed that intron insertion-sites are biased towards phase 0 and they appear to be specific to an intron type. Intron landscapes could be used as a guide map to predict the location of fungal mtDNA mobile introns, which are composite elements that include a ribozyme component and in some instances open reading frames encoding homing endonucleases or reverse transcriptases and all of these have applications in biotechnology.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
12
|
The mitochondrial translocase of the inner membrane PaTim54 is involved in defense response and longevity in Podospora anserina. Fungal Genet Biol 2019; 132:103257. [PMID: 31351193 DOI: 10.1016/j.fgb.2019.103257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 11/20/2022]
Abstract
Fungi are very successful microorganisms capable of colonizing virtually any ecological niche where they must constantly cope with competitors including fungi, bacteria and nematodes. We have shown previously that the ascomycete Podopora anserina exhibits Hyphal Interference (HI), an antagonistic response triggered by direct contact of competing fungal hyphae. When challenged with Penicillium chrysogenum, P. anserina produces hydrogen peroxide at the confrontation and kills the hyphae of P. chrysogenum. Here, we report the characterization of the PDC2218 mutant affected in HI. When challenged with P. chrysogenum, the PDC2218 mutant produces a massive oxidative burst at the confrontation. However, this increased production of hydrogen peroxide is not correlated to increased cell death in P. chrysogenum. Hence, the oxidative burst and cell death in the challenger are uncoupled in PDC2218. The gene affected in PDC2218 is PaTim54, encoding the homologue of the budding yeast mitochondrial inner membrane import machinery component Tim54p. We show that PaTim54 is essential in P. anserina and that the phenotypes displayed by the PDC2218 mutant, renamed PaTim542218, are the consequence of a drastic reduction in the expression of PaTim54. Among these pleiotropic phenotypes, PDC2218-PaTim542218- displays increased lifespan, a phenotype in line with the observed mitochondrial defects in the mutant.
Collapse
|
13
|
Stone CL, Frederick RD, Tooley PW, Luster DG, Campos B, Winegar RA, Melcher U, Fletcher J, Blagden T. Annotation and analysis of the mitochondrial genome of Coniothyrium glycines, causal agent of red leaf blotch of soybean, reveals an abundance of homing endonucleases. PLoS One 2018; 13:e0207062. [PMID: 30403741 PMCID: PMC6221350 DOI: 10.1371/journal.pone.0207062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/24/2018] [Indexed: 11/19/2022] Open
Abstract
Coniothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the C. glycines mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.01%. It contains twelve of the mitochondrial genes typically involved in oxidative phosphorylation (atp6, cob, cox1-3, nad1-6, and nad4L), one for a ribosomal protein (rps3), four for hypothetical proteins, one for each of the small and large subunit ribosomal RNAs (rns and rnl) and a set of 30 tRNAs. Genes were encoded on both DNA strands with cox1 and cox2 occurring as adjacent genes having no intergenic spacers. Likewise, nad2 and nad3 are adjacent with no intergenic spacers and nad5 is immediately followed by nad4L with an overlap of one base. Thirty-two introns, comprising 54.1% of the total mt genome, were identified within eight protein-coding genes and the rnl. Eighteen of the introns contained putative intronic ORFs with either LAGLIDADG or GIY-YIG homing endonuclease motifs, and an additional eleven introns showed evidence of truncated or degenerate endonuclease motifs. One intron possessed a degenerate N-acetyl-transferase domain. C. glycines shares some conservation of gene order with other members of the Pleosporales, most notably nad6-rnl-atp6 and associated conserved tRNA clusters. Phylogenetic analysis of the twelve shared protein coding genes agrees with commonly accepted fungal taxonomy. C. glycines represents the second largest mt genome from a member of the Pleosporales sequenced to date. This research provides the first genomic information on C. glycines, which may provide targets for rapid diagnostic assays and population studies.
Collapse
Affiliation(s)
- Christine L. Stone
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Reid D. Frederick
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Paul W. Tooley
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Douglas G. Luster
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Brittany Campos
- MRIGlobal, Global Health Surveillance & Diagnostics, Palm Bay, Florida, United States of America
| | - Richard A. Winegar
- MRIGlobal, Global Health Surveillance & Diagnostics, Palm Bay, Florida, United States of America
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jacqueline Fletcher
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Trenna Blagden
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
14
|
Wang L, Zhang S, Li JH, Zhang YJ. Mitochondrial genome, comparative analysis and evolutionary insights into the entomopathogenic fungusHirsutella thompsonii. Environ Microbiol 2018; 20:3393-3405. [DOI: 10.1111/1462-2920.14379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Lin Wang
- School of Life Science; Shanxi University; Taiyuan 030006 China
- Institute of Biotechnology; Shanxi University; Taiyuan 030006 China
| | - Shu Zhang
- Institute of Applied Chemistry; Shanxi University; Taiyuan 030006 China
| | - Jian-Hui Li
- College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu 030801 China
| | - Yong-Jie Zhang
- School of Life Science; Shanxi University; Taiyuan 030006 China
| |
Collapse
|
15
|
Zhang YJ, Yang XQ, Zhang S, Humber RA, Xu J. Genomic analyses reveal low mitochondrial and high nuclear diversity in the cyclosporin-producing fungus Tolypocladium inflatum. Appl Microbiol Biotechnol 2017; 101:8517-8531. [PMID: 29034434 DOI: 10.1007/s00253-017-8574-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA is generally regarded to evolve faster than nuclear DNA in animals, whereas if this is also true in fungi remains unclear. Herein, we annotate the first complete mitochondrial genome (mitogenome) of the cyclosporin-producing fungus Tolypocladium inflatum and report the genome-wide sequence variations among five isolates originating from distantly separated localities. We found that T. inflatum has among the most compact of fungal mitogenomes; its 25 kb DNA molecule encodes all standard fungal mitochondrial genes and harbors only one intron. Transcriptional analyses validated the expression of most conserved genes. We found several uncommon repetitive elements and evidence of gene transfer from the mitochondrion to the nucleus. Phylogenetic analyses confirmed the placement of T. inflatum in the fungal order Hypocreales although there was uncertainty on its family-level affiliation. Comparative genomic analyses among the five isolates identified an overall lower level of intraspecific variation in mitogenomes than in nuclear genomes; however, both the nuclear and mitochondrial genomes revealed similar isolate relationships, not correlating with geographic sources of these isolates. Our study shed new insights into the evolution of the medicinally important ascomycete T. inflatum.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Xiao-Qing Yang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, China
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Shu Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Richard A Humber
- USDA, ARS Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853-2901, USA
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
16
|
Franco MEE, López SMY, Medina R, Lucentini CG, Troncozo MI, Pastorino GN, Saparrat MCN, Balatti PA. The mitochondrial genome of the plant-pathogenic fungus Stemphylium lycopersici uncovers a dynamic structure due to repetitive and mobile elements. PLoS One 2017; 12:e0185545. [PMID: 28972995 PMCID: PMC5626475 DOI: 10.1371/journal.pone.0185545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Stemphylium lycopersici (Pleosporales) is a plant-pathogenic fungus that has been associated with a broad range of plant-hosts worldwide. It is one of the causative agents of gray leaf spot disease in tomato and pepper. The aim of this work was to characterize the mitochondrial genome of S. lycopersici CIDEFI-216, to use it to trace taxonomic relationships with other fungal taxa and to get insights into the evolutionary history of this phytopathogen. The complete mitochondrial genome was assembled into a circular double-stranded DNA molecule of 75,911 bp that harbors a set of 37 protein-coding genes, 2 rRNA genes (rns and rnl) and 28 tRNA genes, which are transcribed from both sense and antisense strands. Remarkably, its gene repertoire lacks both atp8 and atp9, contains a free-standing gene for the ribosomal protein S3 (rps3) and includes 13 genes with homing endonuclease domains that are mostly located within its 15 group I introns. Strikingly, subunits 1 and 2 of cytochrome oxidase are encoded by a single continuous open reading frame (ORF). A comparative mitogenomic analysis revealed the large extent of structural rearrangements among representatives of Pleosporales, showing the plasticity of their mitochondrial genomes. Finally, an exhaustive phylogenetic analysis of the subphylum Pezizomycotina based on mitochondrial data reconstructed their relationships in concordance with several studies based on nuclear data. This is the first report of a mitochondrial genome belonging to a representative of the family Pleosporaceae.
Collapse
Affiliation(s)
- Mario Emilio Ernesto Franco
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Silvina Marianela Yanil López
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Rocio Medina
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - César Gustavo Lucentini
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Maria Inés Troncozo
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Graciela Noemí Pastorino
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Instituto de Fisiología Vegetal, Facultad de Ciencias Naturales y Museo-Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
17
|
Printzen C, Ekman S. Local population subdivision in the lichenCladonia subcervicornisas revealed by mitochondrial cytochrome oxidase subunit 1 intron sequences. Mycologia 2017. [DOI: 10.1080/15572536.2004.11833084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Stefan Ekman
- Universitetet i Bergen, Botanisk Institutt, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
18
|
Comparative mitochondrial genomics toward exploring molecular markers in the medicinal fungus Cordyceps militaris. Sci Rep 2017; 7:40219. [PMID: 28071691 PMCID: PMC5223169 DOI: 10.1038/srep40219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022] Open
Abstract
Cordyceps militaris is a fungus used for developing health food, but knowledge about its intraspecific differentiation is limited due to lack of efficient markers. Herein, we assembled the mitochondrial genomes of eight C. militaris strains and performed a comparative mitochondrial genomic analysis together with three previously reported mitochondrial genomes of the fungus. Sizes of the 11 mitochondrial genomes varied from 26.5 to 33.9 kb mainly due to variable intron contents (from two to eight introns per strain). Nucleotide variability varied according to different regions with non-coding regions showing higher variation frequency than coding regions. Recombination events were identified between some locus pairs but seemed not to contribute greatly to genetic variations of the fungus. Based on nucleotide diversity fluctuations across the alignment of all mitochondrial genomes, molecular markers with the potential to be used for future typing studies were determined.
Collapse
|
19
|
Leiter É, Park HS, Kwon NJ, Han KH, Emri T, Oláh V, Mészáros I, Dienes B, Vincze J, Csernoch L, Yu JH, Pócsi I. Characterization of the aodA, dnmA, mnSOD and pimA genes in Aspergillus nidulans. Sci Rep 2016; 6:20523. [PMID: 26846452 PMCID: PMC4742808 DOI: 10.1038/srep20523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/05/2016] [Indexed: 01/02/2023] Open
Abstract
Mitochondria play key roles in cellular energy generation and lifespan of most eukaryotes. To understand the functions of four nuclear-encoded genes predicted to be related to the maintenance of mitochondrial morphology and function in Aspergillus nidulans, systematic characterization was carried out. The deletion and overexpression mutants of aodA, dnmA, mnSOD and pimA encoding alternative oxidase, dynamin related protein, manganese superoxide dismutase and Lon protease, respectively, were generated and examined for their growth, stress tolerances, respiration, autolysis, cell death, sterigmatocystin production, hyphal morphology and size, and mitochondrial superoxide production as well as development. Overall, genetic manipulation of these genes had less effect on cellular physiology and ageing in A. nidulans than that of their homologs in another fungus Podospora anserina with a well-characterized senescence. The observed interspecial phenotypic differences can be explained by the dissimilar intrinsic stabilities of the mitochondrial genomes in A. nidulans and P. anserina. Furthermore, the marginally altered phenotypes observed in A. nidulans mutants indicate the presence of effective compensatory mechanisms for the complex networks of mitochondrial defense and quality control. Importantly, these findings can be useful for developing novel platforms for heterologous protein production, or on new biocontrol and bioremediation technologies based on Aspergillus species.
Collapse
Affiliation(s)
- Éva Leiter
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Hee-Soo Park
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA
| | - Nak-Jung Kwon
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA
| | - Kap-Hoon Han
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA.,Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Viktor Oláh
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ilona Mészáros
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Complete mitochondrial genome of the medicinal fungus Ophiocordyceps sinensis. Sci Rep 2015; 5:13892. [PMID: 26370521 PMCID: PMC4570212 DOI: 10.1038/srep13892] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022] Open
Abstract
As part of a genome sequencing project for Ophiocordyceps sinensis, strain 1229, a complete mitochondrial (mt) genome was assembled as a single circular dsDNA of 157,510 bp, one of the largest reported for fungi. Conserved genes including the large and small rRNA subunits, 27 tRNA and 15 protein-coding genes, were identified. In addition, 58 non-conserved open reading frames (ncORFs) in the intergenic and intronic regions were also identified. Transcription analyses using RNA-Seq validated the expression of most conserved genes and ncORFs. Fifty-two introns (groups I and II) were found within conserved genes, accounting for 68.5% of the genome. Thirty-two homing endonucleases (HEs) with motif patterns LAGLIDADG (21) and GIY-YIG (11) were identified in group I introns. The ncORFs found in group II introns mostly encoded reverse transcriptases (RTs). As in other hypocrealean fungi, gene contents and order were found to be conserved in the mt genome of O. sinensis, but the genome size was enlarged by longer intergenic regions and numerous introns. Intergenic and intronic regions were composed of abundant repetitive sequences usually associated with mobile elements. It is likely that intronic ncORFs, which encode RTs and HEs, may have contributed to the enlarged mt genome of O. sinensis.
Collapse
|
21
|
Abstract
The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank—an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission.
Collapse
|
22
|
Otten ABC, Smeets HJM. Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing. Hum Reprod Update 2015; 21:671-89. [PMID: 25976758 DOI: 10.1093/humupd/dmv024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The endosymbiosis of an alpha-proteobacterium and a eubacterium a billion years ago paved the way for multicellularity and enabled eukaryotes to flourish. The selective advantage for the host was the acquired ability to generate large amounts of intracellular hydrogen-dependent adenosine triphosphate. The price was increased reactive oxygen species (ROS) inside the eukaryotic cell, causing high mutation rates of the mitochondrial DNA (mtDNA). According to the Muller's ratchet theory, this accumulation of mutations in asexually transmitted mtDNA would ultimately lead to reduced reproductive fitness and eventually extinction. However, mitochondria have persisted over the course of evolution, initially due to a rapid, extreme evolutionary reduction of the mtDNA content. After the phylogenetic divergence of eukaryotes into animals, fungi and plants, differences in evolution of the mtDNA occurred with different adaptations for coping with the mutation burden within these clades. As a result, mitochondrial evolutionary mechanisms have had a profound effect on human adaptation, fertility, healthy reproduction, mtDNA disease manifestation and transmission and ageing. An understanding of these mechanisms might elucidate novel approaches for treatment and prevention of mtDNA disease. METHODS The scientific literature was investigated to determine how mtDNA evolved in animals, plants and fungi. Furthermore, the different mechanisms of mtDNA inheritance and of balancing Muller's ratchet in these species were summarized together with the consequences of these mechanisms for human health and reproduction. RESULTS Animal, plant and fungal mtDNA have evolved differently. Animals have compact genomes, little recombination, a stable number of genes and a high mtDNA copy number, whereas plants have larger genomes with variable gene counts, a low mtDNA copy number and many recombination events. Fungal mtDNA is somewhere in between. In plants, the mtDNA mutation rate is kept low by effective ROS defence and efficient recombination-mediated mtDNA repair. In animal mtDNA, these mechanisms are not or less well-developed and the detrimental mutagenesis events are controlled by a high mtDNA copy number in combination with a genetic bottleneck and purifying selection during transmission. The mtDNA mutation rates in animals are higher than in plants, which allow mobile animals to adapt more rapidly to various environmental conditions in terms of energy production, whereas static plants do not have this need. Although at the level of the species, these mechanisms have been extremely successful, they can have adverse effects for the individual, resulting, in humans, in severe or unpredictably segregating mtDNA diseases, as well as fertility problems and unhealthy ageing. CONCLUSIONS Understanding the forces and processes that underlie mtDNA evolution among different species increases our knowledge on the detrimental consequences that individuals can have from these evolutionary end-points. Alternative outcomes in animals, fungi and plants will lead to a better understanding of the inheritance of mtDNA disorders and mtDNA-related fertility problems. These will allow the development of options to ameliorate, cure and/or prevent mtDNA diseases and mtDNA-related fertility problems.
Collapse
Affiliation(s)
- Auke B C Otten
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
23
|
Comparison of mitochondrial genomes provides insights into intron dynamics and evolution in the caterpillar fungus Cordyceps militaris. Fungal Genet Biol 2015; 77:95-107. [PMID: 25896956 DOI: 10.1016/j.fgb.2015.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/16/2022]
Abstract
Intra-specific comparison of mitochondrial genomes can help elucidate the evolution of a species, however it has not been performed for hypocrealean fungi that form diverse symbiotic associations with other organisms. In this study, comparative analyses of three completely sequenced mitochondrial genomes of a hypocrealean fungus, Cordyceps militaris, the type species of Cordyceps genus, revealed that the introns were the main contributors to mitochondrial genome size variations among strains. Mitochondrial genes in C. militaris have been invaded by group I introns in at least eight positions. PCR assays of various C. militaris isolates showed abundant variations of intron presence/absence among strains at seven of the eight intronic loci. Although the ancestral intron pattern was inferred to contain all eight introns, loss and/or gain events occurred for seven of the eight introns. These introns invaded the C. militaris mitochondrial genome probably by horizontal transfer from other fungi, and intron insertions into intronless genes in C. militaris were accompanied by co-conversions of upstream exon sequences especially for those introns targeting protein-coding genes. We also detected phylogenetic congruence between the intron and exon trees at each individual locus, consistent with the ancestral mitochondria of C. militaris as having all eight introns. This study helps to explain the evolution of C. militaris mitochondrial genomes and will facilitate population genetic studies of this medicinally important fungus.
Collapse
|
24
|
Teixeira MM, de Almeida LGP, Kubitschek-Barreira P, Alves FL, Kioshima ÉS, Abadio AKR, Fernandes L, Derengowski LS, Ferreira KS, Souza RC, Ruiz JC, de Andrade NC, Paes HC, Nicola AM, Albuquerque P, Gerber AL, Martins VP, Peconick LDF, Neto AV, Chaucanez CB, Silva PA, Cunha OL, de Oliveira FFM, dos Santos TC, Barros ALN, Soares MA, de Oliveira LM, Marini MM, Villalobos-Duno H, Cunha MML, de Hoog S, da Silveira JF, Henrissat B, Niño-Vega GA, Cisalpino PS, Mora-Montes HM, Almeida SR, Stajich JE, Lopes-Bezerra LM, Vasconcelos ATR, Felipe MSS. Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics 2014; 15:943. [PMID: 25351875 PMCID: PMC4226871 DOI: 10.1186/1471-2164-15-943] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/25/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. RESULTS The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. CONCLUSIONS Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.
Collapse
Affiliation(s)
- Marcus M Teixeira
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | | | - Paula Kubitschek-Barreira
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Fernanda L Alves
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | - Érika S Kioshima
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR Brazil
| | - Ana KR Abadio
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Larissa Fernandes
- />Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Ceilândia, Brasília, DF Brazil
| | - Lorena S Derengowski
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Karen S Ferreira
- />Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, São Paulo, SP Brazil
| | - Rangel C Souza
- />Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil
| | - Jeronimo C Ruiz
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | - Nathalia C de Andrade
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Hugo C Paes
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - André M Nicola
- />Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF Brazil
- />Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF Brazil
| | - Patrícia Albuquerque
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF Brazil
| | | | - Vicente P Martins
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Luisa DF Peconick
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Alan Viggiano Neto
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Claudia B Chaucanez
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Patrícia A Silva
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Oberdan L Cunha
- />Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil
| | | | - Tayná C dos Santos
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Amanda LN Barros
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Marco A Soares
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Luciana M de Oliveira
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- />Programa de pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marjorie M Marini
- />Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Héctor Villalobos-Duno
- />Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Marcel ML Cunha
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Sybren de Hoog
- />CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - José F da Silveira
- />Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Bernard Henrissat
- />Centre National de la Recherche Scientifique, Aix-Marseille, Université, CNRS, Marseille, France
| | - Gustavo A Niño-Vega
- />Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Patrícia S Cisalpino
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | | | - Sandro R Almeida
- />Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, São Paulo, SP Brazil
| | - Jason E Stajich
- />Department of Plant Pathology & Microbiology, University of California, Riverside, CA USA
| | - Leila M Lopes-Bezerra
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | | | - Maria SS Felipe
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF Brazil
| |
Collapse
|
25
|
Mardanov AV, Beletsky AV, Kadnikov VV, Ignatov AN, Ravin NV. The 203 kbp mitochondrial genome of the phytopathogenic fungus Sclerotinia borealis reveals multiple invasions of introns and genomic duplications. PLoS One 2014; 9:e107536. [PMID: 25216190 PMCID: PMC4162613 DOI: 10.1371/journal.pone.0107536] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/19/2014] [Indexed: 01/13/2023] Open
Abstract
Here we report the complete sequence of the mitochondrial (mt) genome of the necrotrophic phytopathogenic fungus Sclerotinia borealis, a member of the order Helotiales of Ascomycetes. The 203,051 bp long mtDNA of S. borealis represents one of the largest sequenced fungal mt genomes. The large size is mostly determined by the presence of mobile genetic elements, which include 61 introns. Introns contain a total of 125,394 bp, are scattered throughout the genome, and are found in 12 protein-coding genes and in the ribosomal RNA genes. Most introns contain complete or truncated ORFs that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Integrations of mobile elements are also evidenced by the presence of two regions similar to fragments of inverton-like plasmids. Although duplications of some short genome regions, resulting in the appearance of truncated extra copies of genes, did occur, we found no evidences of extensive accumulation of repeat sequences accounting for mitochondrial genome size expansion in some other fungi. Comparisons of mtDNA of S. borealis with other members of the order Helotiales reveal considerable gene order conservation and a dynamic pattern of intron acquisition and loss during evolution. Our data are consistent with the hypothesis that horizontal DNA transfer has played a significant role in the evolution and size expansion of the S. borealis mt genome.
Collapse
Affiliation(s)
| | | | | | | | - Nikolai V. Ravin
- Centre “Bioengineering”, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
The intraspecific variability of mitochondrial genes of Agaricus bisporus reveals an extensive group I intron mobility combined with low nucleotide substitution rates. Curr Genet 2014; 61:87-102. [DOI: 10.1007/s00294-014-0448-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 12/16/2022]
|
27
|
Grimm C, Böhl L, Osiewacz HD. Overexpression of Pa_1_10620 encoding a mitochondrial Podospora anserina protein with homology to superoxide dismutases and ribosomal proteins leads to lifespan extension. Curr Genet 2014; 61:73-86. [PMID: 25151510 DOI: 10.1007/s00294-014-0446-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/01/2014] [Accepted: 08/17/2014] [Indexed: 11/27/2022]
Abstract
In biological systems, reactive oxygen species (ROS) represent 'double edged swords': as signaling molecules they are essential for proper development, as reactive agents they cause molecular damage and adverse effects like degeneration and aging. A well-coordinated control of ROS is therefore of key importance. Superoxide dismutases (SODs) are enzymes active in the detoxification of superoxide. The number of isoforms of these proteins varies among species. Here we report the characterization of the putative protein encoded by Pa_1_10620 that has been previously annotated to code for a mitochondrial ribosomal protein but shares also sequence domains with SODs. We report that the gene is transcribed in P. anserina cultures of all ages and that the encoded protein localizes to mitochondria. In strains overexpressing Pa_1_10620 in a genetic background in which PaSod3, the mitochondrial MnSOD of P. anserina, is deleted, no SOD activity could be identified in isolated mitochondria. However, overexpression of the gene leads to lifespan extension suggesting a pro-survival function of the protein in P. anserina.
Collapse
Affiliation(s)
- Carolin Grimm
- Faculty for Biosciences and Cluster of Excellence Frankfurt 'Macromolecular Complexes', Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | | | | |
Collapse
|
28
|
Torriani SF, Penselin D, Knogge W, Felder M, Taudien S, Platzer M, McDonald BA, Brunner PC. Comparative analysis of mitochondrial genomes from closely related Rhynchosporium species reveals extensive intron invasion. Fungal Genet Biol 2014; 62:34-42. [DOI: 10.1016/j.fgb.2013.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/08/2013] [Accepted: 11/01/2013] [Indexed: 01/07/2023]
|
29
|
Evolutionary dynamics of introns and their open reading frames in the U7 region of the mitochondrial rnl gene in species of Ceratocystis. Fungal Biol 2013; 117:791-806. [DOI: 10.1016/j.funbio.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022]
|
30
|
Youssar L, Grüning BA, Günther S, Hüttel W. Characterization and phylogenetic analysis of the mitochondrial genome of Glarea lozoyensis indicates high diversity within the order Helotiales. PLoS One 2013; 8:e74792. [PMID: 24086376 PMCID: PMC3783487 DOI: 10.1371/journal.pone.0074792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/07/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Glarea lozoyensis is a filamentous fungus used for the industrial production of non-ribosomal peptide pneumocandin B0. In the scope of a whole genome sequencing the complete mitochondrial genome of the fungus has been assembled and annotated. It is the first one of the large polyphyletic Helotiaceae family. A phylogenetic analysis was performed based on conserved proteins of the oxidative phosphorylation system in mitochondrial genomes. RESULTS The total size of the mitochondrial genome is 45,038 bp. It contains the expected 14 genes coding for proteins related to oxidative phosphorylation,two rRNA genes, six hypothetical proteins, three intronic genes of which two are homing endonucleases and a ribosomal protein rps3. Additionally there is a set of 33 tRNA genes. All genes are located on the same strand. Phylogenetic analyses based on concatenated mitochondrial protein sequences confirmed that G. lozoyensis belongs to the order of Helotiales and that it is most closely related to Phialocephala subalpina. However, a comparison with the three other mitochondrial genomes known from Helotialean species revealed remarkable differences in size, gene content and sequence. Moreover, it was found that the gene order found in P. subalpina and Sclerotinia sclerotiorum is not conserved in G. lozoyensis. CONCLUSION The arrangement of genes and other differences found between the mitochondrial genome of G. lozoyensis and those of other Helotiales indicates a broad genetic diversity within this large order. Further mitochondrial genomes are required in order to determine whether there is a continuous transition between the different forms of mitochondrial genomes or G. lozoyensis belongs to a distinct subgroup within Helotiales.
Collapse
Affiliation(s)
- Loubna Youssar
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences; University of Freiburg, Freiburg, Germany
| | - Björn Andreas Grüning
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences; University of Freiburg, Freiburg, Germany
| | - Stefan Günther
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences; University of Freiburg, Freiburg, Germany
| | - Wolfgang Hüttel
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Wibberg D, Jelonek L, Rupp O, Hennig M, Eikmeyer F, Goesmann A, Hartmann A, Borriss R, Grosch R, Pühler A, Schlüter A. Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. J Biotechnol 2013; 167:142-55. [PMID: 23280342 DOI: 10.1016/j.jbiotec.2012.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/03/2012] [Accepted: 12/09/2012] [Indexed: 10/27/2022]
Abstract
Anastomosis group AG1-IB isolates of the anamorphic basidiomycetous fungus Rhizoctonia solani Kühn affect various agricultural and horticultural important crops including bean, rice, soybean, figs, hortensia, cabbage and lettuce. To gain insights into the genome structure and content, the first draft genome sequence of R. solani AG1-IB isolate 7/3/14 was established. Four complete runs on the Genome Sequencer (GS) FLX platform (Roche Applied Science) yielding approx. a 25-fold coverage of the R. solani genome were accomplished. Assembly of the sequence reads by means of the gsAssembler software version 2.6 applying the heterozygotic mode resulted in numerous contigs and scaffolds and a predicted size of 87.1 Mb for the diploid status of the genome. 'Contig-length vs. read-count' analysis revealed that the assembled contigs can be classified into five different groups. Detailed BLAST-analysis revealed that most contigs of group II feature high-scoring matches to other contigs of the same group suggesting that distinguishable allelic variants exist for many genes. Due to the supposed diploid and heterokaryotic nature of R. solani AG1-IB 7/3/14, this result has been anticipated. However, the heterokaryotic character of the isolate is not really supported by sequencing data obtained for the isolate R. solani AG1-IB 7/3/14. Coverage of group III contigs is twice as high as for group II contigs which can also be explained by the diploid status of the genome and indistinguishable alleles on homologous chromosomes. Assembly of sequence data led to the identification of the rRNA unit (group V contigs) and the mitochondrial (mt) genome (group IV contigs) which is a circular molecule of 162,751 bp in size featuring a GC-content of 36.4%. The R. solani 7/3/14 mt-genome is one of the largest fungal mitochondrial genomes known to date. Its large size essentially is due to the presence of numerous non-conserved hypothetical ORFs and introns. Gene prediction for the R. solani AG1-IB 7/3/14 genome was conducted by the Augustus Gene Prediction Software for Eukaryotes (version 2.6.) applying the parameter set for the fungus Coprinopsis cinerea okayama 7#130. Gene prediction and annotation provided first insights into the R. solani AG1-IB 7/3/14 gene structure and content. In total, 12,422 genes were predicted. The average number of exons per gene is five. Exons have a mean length of 214 bp, whereas introns on average are 66 bp in length. Annotation of the genome revealed that 4169 of 12,422 genes could be assigned to KOG functional categories.
Collapse
Affiliation(s)
- Daniel Wibberg
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33501 Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Joardar V, Abrams NF, Hostetler J, Paukstelis PJ, Pakala S, Pakala SB, Zafar N, Abolude OO, Payne G, Andrianopoulos A, Denning DW, Nierman WC. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability. BMC Genomics 2012; 13:698. [PMID: 23234273 PMCID: PMC3562157 DOI: 10.1186/1471-2164-13-698] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/29/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. RESULTS Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25-36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. CONCLUSIONS The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population studies. Despite the conservation of the core genes, the mitochondrial genomes of Aspergillus and Penicillium species examined here exhibit significant amount of interspecies variation. Most of this variation can be attributed to accessory genes and mobile introns, presumably acquired by horizontal gene transfer of mitochondrial plasmids and intron homing.
Collapse
Affiliation(s)
- Vinita Joardar
- The J. Craig Venter Institute, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
van de Sande WWJ. Phylogenetic analysis of the complete mitochondrial genome of Madurella mycetomatis confirms its taxonomic position within the order Sordariales. PLoS One 2012; 7:e38654. [PMID: 22701687 PMCID: PMC3368884 DOI: 10.1371/journal.pone.0038654] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Madurella mycetomatis is the most common cause of human eumycetoma. The genus Madurella has been characterized by overall sterility on mycological media. Due to this sterility and the absence of other reliable morphological and ultrastructural characters, the taxonomic classification of Madurella has long been a challenge. Mitochondria are of monophyletic origin and mitochondrial genomes have been proven to be useful in phylogenetic analyses. RESULTS The first complete mitochondrial DNA genome of a mycetoma-causative agent was sequenced using 454 sequencing. The mitochondrial genome of M. mycetomatis is a circular DNA molecule with a size of 45,590 bp, encoding for the small and the large subunit rRNAs, 27 tRNAs, 11 genes encoding subunits of respiratory chain complexes, 2 ATP synthase subunits, 5 hypothetical proteins, 6 intronic proteins including the ribosomal protein rps3. In phylogenetic analyses using amino acid sequences of the proteins involved in respiratory chain complexes and the 2 ATP synthases it appeared that M. mycetomatis clustered together with members of the order Sordariales and that it was most closely related to Chaetomium thermophilum. Analyses of the gene order showed that within the order Sordariales a similar gene order is found. Furthermore also the tRNA order seemed mostly conserved. CONCLUSION Phylogenetic analyses of fungal mitochondrial genomes confirmed that M. mycetomatis belongs to the order of Sordariales and that it was most closely related to Chaetomium thermophilum, with which it also shared a comparable gene and tRNA order.
Collapse
Affiliation(s)
- Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
35
|
Xavier BB, Miao VPW, Jónsson ZO, Andrésson ÓS. Mitochondrial genomes from the lichenized fungi Peltigera membranacea and Peltigera malacea: features and phylogeny. Fungal Biol 2012; 116:802-14. [PMID: 22749167 DOI: 10.1016/j.funbio.2012.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 12/15/2022]
Abstract
Mitochondrial genomes from the fungal partners of two terricolous foliose lichen symbioses, Peltigera membranacea and Peltigera malacea, have been determined using metagenomic approaches, including RNA-seq. The roughly 63 kb genomes show all the major features found in other Pezizomycotina, such as unidirectional transcription, 14 conserved protein genes, genes for the two subunit rRNAs and for a set of 26 tRNAs used in translating the 62 amino acid codons. In one of the tRNAs a CAU anticodon is proposed to be modified, via the action of the nuclear-encoded enzyme, tRNA Ile lysidine synthase, so that it recognizes the codon AUA (Ile) instead of AUG (Met). The overall arrangements and sequences of the two circular genomes are similar, the major difference being the inversion and deterioration of a gene encoding a type B DNA polymerase. Both genomes encode the RNA component of RNAse P, a feature seldom found in ascomycetes. The difference in genome size from the minimal ascomycete mitochondrial genomes is largely due to 17 and 20 group I introns, respectively, most associated with homing endonucleases and all found within protein-coding genes and the gene encoding the large subunit rRNA. One new intron insertion point was found, and an unusually small exon of seven nucleotides (nt) was identified and verified by RNA sequencing. Comparative analysis of mitochondrion-encoded proteins places the Peltigera spp., representatives of the class Lecanoromycetes, close to Leotiomycetes, Dothidiomycetes, and Sordariomycetes, in contrast to phylogenies found using nuclear genes.
Collapse
Affiliation(s)
- Basil Britto Xavier
- Department of Life and Environmental Sciences, University of Iceland, 101 Reykjavík, Iceland
| | | | | | | |
Collapse
|
36
|
Duò A, Bruggmann R, Zoller S, Bernt M, Grünig CR. Mitochondrial genome evolution in species belonging to the Phialocephala fortinii s.l. - Acephala applanata species complex. BMC Genomics 2012; 13:166. [PMID: 22559219 PMCID: PMC3434094 DOI: 10.1186/1471-2164-13-166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 05/04/2012] [Indexed: 01/01/2023] Open
Abstract
Background Mitochondrial (mt) markers are successfully applied in evolutionary biology and systematics because mt genomes often evolve faster than the nuclear genomes. In addition, they allow robust phylogenetic analysis based on conserved proteins of the oxidative phosphorylation system. In the present study we sequenced and annotated the complete mt genome of P. subalpina, a member of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC). PAC belongs to the Helotiales, which is one of the most diverse groups of ascomycetes including more than 2,000 species. The gene order was compared to deduce the mt genome evolution in the Pezizomycotina. Genetic variation in coding and intergenic regions of the mtDNA was studied for PAC to assess the usefulness of mt DNA for species diagnosis. Results The mt genome of P. subalpina is 43,742 bp long and codes for 14 mt genes associated with the oxidative phosphorylation. In addition, a GIY-YIG endonuclease, the ribosomal protein S3 (Rps3) and a putative N-acetyl-transferase were recognized. A complete set of tRNA genes as well as the large and small rRNA genes but no introns were found. All protein-coding genes were confirmed by EST sequences. The gene order in P. subalpina deviated from the gene order in Sclerotinia sclerotiorum, the only other helotialean species with a fully sequenced and annotated mt genome. Gene order analysis within Pezizomycotina suggests that the evolution of gene orders is mostly driven by transpositions. Furthermore, sequence diversity in coding and non-coding mtDNA regions in seven additional PAC species was pronounced and allowed for unequivocal species diagnosis in PAC. Conclusions The combination of non-interrupted ORFs and EST sequences resulted in a high quality annotation of the mt genome of P. subalpina, which can be used as a reference for the annotation of other mt genomes in the Helotiales. In addition, our analyses show that mtDNA loci will be the marker of choice for future analysis of PAC communities.
Collapse
Affiliation(s)
- Angelo Duò
- Forest Pathology and Dendrology, Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Eldarov MA, Mardanov AV, Beletsky AV, Dzhavakhiya VV, Ravin NV, Skryabin KG. Complete mitochondrial genome of compactin-producing fungus Penicillium solitum and comparative analysis of Trichocomaceae mitochondrial genomes. FEMS Microbiol Lett 2012; 329:9-17. [PMID: 22239643 DOI: 10.1111/j.1574-6968.2012.02497.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/08/2011] [Accepted: 01/01/2012] [Indexed: 11/30/2022] Open
Abstract
We determined the complete mitochondrial genome sequence of the compactin-producing fungus Penicillium solitum strain 20-01. The 28 601-base pair circular-mapping DNA molecule encodes a characteristic set of mitochondrial proteins and RNA genes and is intron-free. All 46 protein- and RNA-encoding genes are located on one strand and apparently transcribed in one direction. Comparative analysis of this mtDNA and previously sequenced but unannotated mitochondrial genomes of several medically and industrially important species of the Aspergillus/Penicillium group revealed their extensive similarity in terms of size, gene content and sequence, which is also reflected in the almost perfect conservation of mitochondrial gene order in Penicillium and Aspergillus. Phylogenetic analysis based on concatenated mitochondrial protein sequences confirmed the monophyletic origin of Eurotiomycetes.
Collapse
Affiliation(s)
- Michael A Eldarov
- Centre 'Bioengineering,' Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
38
|
Hydrogenosomes and Mitosomes: Mitochondrial Adaptations to Life in Anaerobic Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
The highly variable mitochondrial small-subunit ribosomal RNA gene of Ophiostoma minus. Fungal Biol 2011; 115:1122-37. [DOI: 10.1016/j.funbio.2011.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 05/28/2011] [Accepted: 07/15/2011] [Indexed: 12/18/2022]
|
40
|
Haas BJ, Zeng Q, Pearson MD, Cuomo CA, Wortman JR. Approaches to Fungal Genome Annotation. Mycology 2011; 2:118-141. [PMID: 22059117 PMCID: PMC3207268 DOI: 10.1080/21501203.2011.606851] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fungal genome annotation is the starting point for analysis of genome content. This generally involves the application of diverse methods to identify features on a genome assembly such as protein-coding and non-coding genes, repeats and transposable elements, and pseudogenes. Here we describe tools and methods leveraged for eukaryotic genome annotation with a focus on the annotation of fungal nuclear and mitochondrial genomes. We highlight the application of the latest technologies and tools to improve the quality of predicted gene sets. The Broad Institute eukaryotic genome annotation pipeline is described as one example of how such methods and tools are integrated into a sequencing center's production genome annotation environment.
Collapse
Affiliation(s)
- Brian J Haas
- Genome Sequencing and Analysis Program, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, U.S.A
| | | | | | | | | |
Collapse
|
41
|
Bidard F, Aït Benkhali J, Coppin E, Imbeaud S, Grognet P, Delacroix H, Debuchy R. Genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PLoS One 2011; 6:e21476. [PMID: 21738678 PMCID: PMC3125171 DOI: 10.1371/journal.pone.0021476] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/29/2011] [Indexed: 12/15/2022] Open
Abstract
Background Mating-type loci in yeasts and ascomycotan filamentous fungi (Pezizomycotina) encode master transcriptional factors that play a critical role in sexual development. Genome-wide analyses of mating-type-specification circuits and mating-type target genes are available in Saccharomyces cerevisiae and Schizosaccharomyces pombe; however, no such analyses have been performed in heterothallic (self-incompatible) Pezizomycotina. The heterothallic fungus Podospora anserina serves as a model for understanding the basic features of mating-type control. Its mat+ and mat− mating types are determined by dissimilar allelic sequences. The mat− sequence contains three genes, designated FMR1, SMR1 and SMR2, while the mat+ sequence contains one gene, FPR1. FMR1 and FPR1 are the major regulators of fertilization, and this study presents a genome-wide view of their target genes and analyzes their target gene regulation. Methodology/Principal Findings The transcriptomic profiles of the mat+ and mat− strains revealed 157 differentially transcribed genes, and transcriptomic analysis of fmr1− and fpr1− mutant strains was used to determine the regulatory actions exerted by FMR1 and FPR1 on these differentially transcribed genes. All possible combinations of transcription repression and/or activation by FMR1 and/or FPR1 were observed. Furthermore, 10 additional mating-type target genes were identified that were up- or down-regulated to the same level in mat+ and mat− strains. Of the 167 genes identified, 32 genes were selected for deletion, which resulted in the identification of two genes essential for the sexual cycle. Interspecies comparisons of mating-type target genes revealed significant numbers of orthologous pairs, although transcriptional profiles were not conserved between species. Conclusions/Significance This study represents the first comprehensive genome-wide analysis of mating-type direct and indirect target genes in a heterothallic filamentous fungus. Mating-type transcription factors have many more target genes than are found in yeasts and exert a much greater diversity of regulatory actions on target genes, most of which are not directly related to mating.
Collapse
Affiliation(s)
- Frédérique Bidard
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Jinane Aït Benkhali
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Evelyne Coppin
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Sandrine Imbeaud
- CNRS, Centre de Génétique Moléculaire FRE3144, GODMAP, Gif sur Yvette, France
| | - Pierre Grognet
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- UFR des Sciences du Vivant, Université Paris 7-Denis Diderot, Paris, France
| | - Hervé Delacroix
- CNRS, Centre de Génétique Moléculaire FRE3144, GODMAP, Gif sur Yvette, France
- Univ Paris-Sud, Orsay, France
| | - Robert Debuchy
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- * E-mail:
| |
Collapse
|
42
|
Dequard-Chablat M, Sellem CH, Golik P, Bidard F, Martos A, Bietenhader M, di Rago JP, Sainsard-Chanet A, Hermann-Le Denmat S, Contamine V. Two Nuclear Life Cycle-Regulated Genes Encode Interchangeable Subunits c of Mitochondrial ATP Synthase in Podospora anserina. Mol Biol Evol 2011; 28:2063-75. [DOI: 10.1093/molbev/msr025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
43
|
Bridges HR, Fearnley IM, Hirst J. The subunit composition of mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Pichia pastoris. Mol Cell Proteomics 2010; 9:2318-26. [PMID: 20610779 PMCID: PMC2953923 DOI: 10.1074/mcp.m110.001255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory complex I (NADH:quinone oxidoreductase) is an entry point to the electron transport chain in the mitochondria of many eukaryotes. It is a large, multisubunit enzyme with a hydrophilic domain in the matrix and a hydrophobic domain in the mitochondrial inner membrane. Here we present a comprehensive analysis of the protein composition and post-translational modifications of complex I from Pichia pastoris, using a combination of proteomic and bioinformatic approaches. Forty-one subunits were identified in P. pastoris complex I, comprising the 14 core (conserved) subunits and 27 supernumerary subunits; seven of the core subunits are mitochondrial encoded. Three of the supernumerary subunits (named NUSM, NUTM, and NUUM) have not been observed previously in any species of complex I. However, homologues to all three of them are present in either Yarrowia lipolytica or Pichia angusta complex I. P. pastoris complex I has 39 subunits in common with Y. lipolytica complex I, 37 in common with N. crassa complex I, and 35 in common with the bovine enzyme. The mitochondrial encoded subunits (translated by the mold mitochondrial genetic code) retain their N-α-formyl methionine residues. At least eight subunits are N-α-acetylated, but the N-terminal modifications of the nuclear encoded subunits are not well-conserved. A combination of two methods of protein separation (SDS-PAGE and HPLC) and three different mass spectrometry techniques (peptide mass fingerprinting, tandem MS and molecular mass measurements) were required to define the protein complement of P. pastoris complex I. This requirement highlights the need for inclusive and comprehensive strategies for the characterization of challenging membrane-bound protein complexes containing both hydrophilic and hydrophobic components.
Collapse
Affiliation(s)
- Hannah R Bridges
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
44
|
Ghikas DV, Kouvelis VN, Typas MA. Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol 2010; 10:174. [PMID: 20553589 PMCID: PMC2896372 DOI: 10.1186/1471-2180-10-174] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/16/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The entomopathogenic fungi of the genus Beauveria are cosmopolitan with a variety of different insect hosts. The two most important species, B. bassiana and B. brongniartii, have already been used as biological control agents of pests in agriculture and as models for the study of insect host - pathogen interactions. Mitochondrial (mt) genomes, due to their properties to evolve faster than the nuclear DNA, to contain introns and mobile elements and to exhibit extended polymorphisms, are ideal tools to examine genetic diversity within fungal populations and genetically identify a species or a particular isolate. Moreover, mt intergenic region can provide valuable phylogenetic information to study the biogeography of the fungus. RESULTS The complete mt genomes of B. bassiana (32,263 bp) and B. brongniartii (33,920 bp) were fully analysed. Apart from a typical gene content and organization, the Beauveria mt genomes contained several introns and had longer intergenic regions when compared with their close relatives. The phylogenetic diversity of a population of 84 Beauveria strains -mainly B. bassiana (n = 76) - isolated from temperate, sub-tropical and tropical habitats was examined by analyzing the nucleotide sequences of two mt intergenic regions (atp6-rns and nad3-atp9) and the nuclear ITS1-5.8S-ITS2 domain. Mt sequences allowed better differentiation of strains than the ITS region. Based on mt and the concatenated dataset of all genes, the B. bassiana strains were placed into two main clades: (a) the B. bassiana s. l. and (b) the "pseudobassiana". The combination of molecular phylogeny with criteria of geographic and climatic origin showed for the first time in entomopathogenic fungi, that the B. bassiana s. l. can be subdivided into seven clusters with common climate characteristics. CONCLUSIONS This study indicates that mt genomes and in particular intergenic regions provide molecular phylogeny tools that combined with criteria of geographic and climatic origin can subdivide the B. bassiana s.l. entomopathogenic fungi into seven clusters with common climate characteristics.
Collapse
Affiliation(s)
- Dimitri V Ghikas
- Department of Genetics, Faculty of Biology, University of Athens, Panepistimiopolis 15701, Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics, Faculty of Biology, University of Athens, Panepistimiopolis 15701, Athens, Greece
| | - Milton A Typas
- Department of Genetics, Faculty of Biology, University of Athens, Panepistimiopolis 15701, Athens, Greece
| |
Collapse
|
45
|
Kerscher S, Durstewitz G, Casaregola S, Gaillardin C, Brandt U. The complete mitochondrial genome of yarrowia lipolytica. Comp Funct Genomics 2010; 2:80-90. [PMID: 18628906 PMCID: PMC2447202 DOI: 10.1002/cfg.72] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2001] [Accepted: 02/10/2001] [Indexed: 11/16/2022] Open
Abstract
We here report the complete nucleotide sequence of the 47.9 kb mitochondrial (mt) genome
from the obligate aerobic yeast Yarrowia lipolytica. It encodes, all on the same strand,
seven subunits of NADH: ubiquinone oxidoreductase (ND1-6, ND4L), apocytochrome
b (COB), three subunits of cytochrome oxidase (COX1, 2, 3), three subunits of ATP
synthetase (ATP6, 8 and 9), small and large ribosomal RNAs and an incomplete set of
tRNAs. The Y. lipolytica mt genome is very similar to the Hansenula wingei mt genome,
as judged from blocks of conserved gene order and from sequence homology. The extra
DNA in the Y. lipolytica mt genome consists of 17 group 1 introns and stretches of A+Trich
sequence, interspersed with potentially transposable GC clusters. The usual mould mt
genetic code is used. Interestingly, there is no tRNA able to read CGN (arginine) codons.
CGN codons could not be found in exonic open reading frames, whereas they do occur in
intronic open reading frames. However, several of the intronic open reading frames have
accumulated mutations and must be regarded as pseudogenes. We propose that this may
have been triggered by the presence of untranslatable CGN codons. This sequence is
available under EMBL Accession No. AJ307410.
Collapse
Affiliation(s)
- S Kerscher
- Universitätsklinikum Frankfurt, Institut für Biochemie I, Zentrum der Biologischen Chemie, Frankfurt am Main D-60590, Germany.
| | | | | | | | | |
Collapse
|
46
|
van Diepeningen AD, Goedbloed DJ, Slakhorst SM, Koopmanschap AB, Maas MFPM, Hoekstra RF, Debets AJM. Mitochondrial recombination increases with age in Podospora anserina. Mech Ageing Dev 2010; 131:315-22. [PMID: 20226205 DOI: 10.1016/j.mad.2010.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 12/15/2022]
Abstract
With uniparental inheritance of mitochondria, there seems little reason for homologous recombination in mitochondria, but the machinery for mitochondrial recombination is quite well-conserved in many eukaryote species. In fungi and yeasts heteroplasmons may be formed when strains fuse and transfer of organelles takes place, making it possible to study mitochondrial recombination when introduced mitochondria contain different markers. A survey of wild-type isolates from a local population of the filamentous fungus Podospora anserina for the presence of seven optional mitochondrial introns indicated that mitochondrial recombination does take place in nature. Moreover the recombination frequency appeared to be correlated with age: the more rapidly ageing fraction of the population had a significantly lower linkage disequilibrium indicating more recombination. Direct confrontation experiments with heterokaryon incompatible strains with different mitochondrial markers at different (relative) age confirmed that mitochondrial recombination increases with age. We propose that with increasing mitochondrial damage over time, mitochondrial recombination - even within a homoplasmic population of mitochondria - is a mechanism that may restore mitochondrial function.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Woloszynska M. Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes--though this be madness, yet there's method in't. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:657-71. [PMID: 19995826 DOI: 10.1093/jxb/erp361] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondrial heteroplasmy is defined as the coexistence of divergent mitochondrial genotypes in a cell. The ratio of the alternative genomes may be variable, but in plants, the usually prevalent main genome is accompanied by sublimons--substoichiometric mitochondrial DNA (mtDNA) molecules. Plant mitochondrial heteroplasmy was originally viewed as being associated with pathological mutations or was found in non-natural plant populations. Currently, it is considered to be a common situation in plants. Recent years have changed the previous view on the role of homologous recombination, small-scale mutations, and paternal leakage of mtDNA in the generation of heteroplasmy. Newly developed sensitive techniques have allowed the precise estimation of mtDNA stoichiometry. Mechanisms of maintenance and transmission of heteroplasmic genomes, including DNA recombination and replication, as well as mitochondrial fusion and fission, have been studied. This review describes the high level of plant mitochondrial genome complication--the 'madness' resulting from the heteroplasmic state and explains the method hidden in this madness. Heteroplasmy is described as the evolutionary strategy of uniparentally inherited plant mitochondrial genomes which do not undergo sexual recombination. In order to compensate for this deficiency, alternative types of mtDNA are substoichiometrically accumulated as a reservoir of genetic variability and may undergo accelerated evolution. Occasionally, sublimons are selected and amplified in the process called substoichiometric shifting, to take over the role of the main genome. Alternative mitochondrial genomes may recombine, yielding new mtDNA variants, or segregate during plant growth resulting in plants with mosaic phenotypes. Two opposite roles of mitochondrial heteroplasmy with respect to acceleration or counteracting of mutation accumulation are also discussed. Finally, nuclear control of heteroplasmy and substoichiometric shifting is described.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Laboratory of Molecular Cell Biology, Faculty of Biotechnology, University of Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
48
|
Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 2010; 27:1436-48. [PMID: 20118192 DOI: 10.1093/molbev/msq029] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.
Collapse
|
49
|
Jung PP, Schacherer J, Souciet JL, Potier S, Wincker P, de Montigny J. The complete mitochondrial genome of the yeastPichia sorbitophila. FEMS Yeast Res 2009; 9:903-10. [DOI: 10.1111/j.1567-1364.2009.00540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Suppression of mitochondrial DNA instability of autosomal dominant forms of progressive external ophthalmoplegia-associated ANT1 mutations in Podospora anserina. Genetics 2009; 183:861-71. [PMID: 19687137 DOI: 10.1534/genetics.109.107813] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintenance and expression of mitochondrial DNA (mtDNA) are essential for the cell and the organism. In humans, several mutations in the adenine nucleotide translocase gene ANT1 are associated with multiple mtDNA deletions and autosomal dominant forms of progressive external ophthalmoplegia (adPEO). The mechanisms underlying the mtDNA instability are still obscure. A current hypothesis proposes that these pathogenic mutations primarily uncouple the mitochondrial inner membrane, which secondarily causes mtDNA instability. Here we show that the three adPEO-associated mutations equivalent to A114P, L98P, and V289M introduced into the Podospora anserina ANT1 ortholog dominantly cause severe growth defects, decreased reactive oxygen species production (ROS), decreased mitochondrial inner membrane potential (Deltapsi), and accumulation of large-scale mtDNA deletions leading to premature death. Interestingly, we show that, at least for the adPEO-type M106P and A121P mutant alleles, the associated mtDNA instability cannot be attributed only to a reduced membrane potential or to an increased ROS level since it can be suppressed without restoration of the Deltapsi or modification of the ROS production. Suppression of mtDNA instability due to the M106P and A121P mutations was obtained by an allele of the rmp1 gene involved in nucleo-mitochondrial cross- talk and also by an allele of the AS1 gene encoding a cytosolic ribosomal protein. In contrast, the mtDNA instability caused by the S296M mutation was not suppressed by these alleles.
Collapse
|