1
|
Zhuk AS, Shiriaeva AA, Andreychuk YV, Kochenova OV, Tarakhovskaya ER, Bure VM, Pavlov YI, Inge-Vechtomov SG, Stepchenkova EI. Detection of Primary DNA Lesions by Transient Changes in Mating Behavior in Yeast Saccharomyces cerevisiae Using the Alpha-Test. Int J Mol Sci 2023; 24:12163. [PMID: 37569542 PMCID: PMC10418631 DOI: 10.3390/ijms241512163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Spontaneous or induced DNA lesions can result in stable gene mutations and chromosomal aberrations due to their inaccurate repair, ultimately resulting in phenotype changes. Some DNA lesions per se may interfere with transcription, leading to temporary phenocopies of mutations. The direct impact of primary DNA lesions on phenotype before their removal by repair is not well understood. To address this question, we used the alpha-test, which allows for detecting various genetic events leading to temporary or hereditary changes in mating type α→a in heterothallic strains of yeast Saccharomyces cerevisiae. Here, we compared yeast strains carrying mutations in DNA repair genes, mismatch repair (pms1), base excision repair (ogg1), and homologous recombination repair (rad52), as well as mutagens causing specific DNA lesions (UV light and camptothecin). We found that double-strand breaks and UV-induced lesions have a stronger effect on the phenotype than mismatches and 8-oxoguanine. Moreover, the loss of the entire chromosome III leads to an immediate mating type switch α→a and does not prevent hybridization. We also evaluated the ability of primary DNA lesions to persist through the cell cycle by assessing the frequency of UV-induced inherited and non-inherited genetic changes in asynchronous cultures of a wild-type (wt) strain and in a cdc28-4 mutant arrested in the G1 phase. Our findings suggest that the phenotypic manifestation of primary DNA lesions depends on their type and the stage of the cell cycle in which it occurred.
Collapse
Affiliation(s)
- Anna S. Zhuk
- Institute of Applied Computer Science, ITMO University, 191002 St. Petersburg, Russia
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (E.R.T.); (S.G.I.-V.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Anna A. Shiriaeva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.S.); (O.V.K.)
| | - Yulia V. Andreychuk
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Olga V. Kochenova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.S.); (O.V.K.)
- Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Elena R. Tarakhovskaya
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (E.R.T.); (S.G.I.-V.)
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir M. Bure
- Faculty of Applied Mathematics and Control Processes, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, the University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sergey G. Inge-Vechtomov
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (E.R.T.); (S.G.I.-V.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.S.); (O.V.K.)
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (E.R.T.); (S.G.I.-V.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.S.); (O.V.K.)
| |
Collapse
|
2
|
Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 8007955 DOI: 10.1128/mcb.14.7.4493] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction enzyme-mediated events (REM events; integration of transforming DNA catalyzed by in vivo action of a restriction enzyme) and illegitimate recombination events (IR events; integration of transforming DNA that shares no homology with the host genomic sequences) have been previously characterized in Saccharomyces cerevisiae. This study determines the effect of mutations in genes that are involved in homologous recombination and/or in the repair of double-stranded DNA breaks on these recombination events. Surprisingly, REM events are completely independent of the double-strand-break repair functions encoded by the RAD51, RAD52, and RAD57 genes but require the RAD50 gene product. IR events are under different genetic control than homologous integration events. In the rad50 mutant, homologous integration occurred at wild-type frequency, whereas the frequency of IR events was 20- to 100-fold reduced. Conversely, the rad52 mutant was grossly deficient in homologous integration (at least 1,000-fold reduced) but showed only a 2- to 8-fold reduction in IR frequency.
Collapse
|
3
|
Schiestl RH, Zhu J, Petes TD. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:4493-500. [PMID: 8007955 PMCID: PMC358821 DOI: 10.1128/mcb.14.7.4493-4500.1994] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Restriction enzyme-mediated events (REM events; integration of transforming DNA catalyzed by in vivo action of a restriction enzyme) and illegitimate recombination events (IR events; integration of transforming DNA that shares no homology with the host genomic sequences) have been previously characterized in Saccharomyces cerevisiae. This study determines the effect of mutations in genes that are involved in homologous recombination and/or in the repair of double-stranded DNA breaks on these recombination events. Surprisingly, REM events are completely independent of the double-strand-break repair functions encoded by the RAD51, RAD52, and RAD57 genes but require the RAD50 gene product. IR events are under different genetic control than homologous integration events. In the rad50 mutant, homologous integration occurred at wild-type frequency, whereas the frequency of IR events was 20- to 100-fold reduced. Conversely, the rad52 mutant was grossly deficient in homologous integration (at least 1,000-fold reduced) but showed only a 2- to 8-fold reduction in IR frequency.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | | |
Collapse
|
4
|
Fasullo M, Dave P. Mating type regulates the radiation-associated stimulation of reciprocal translocation events in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:63-70. [PMID: 8190072 DOI: 10.1007/bf00283877] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Both ultraviolet (UV) and ionizing radiation were observed to stimulate mitotic, ectopic recombination between his3 recombinational substrates, generating reciprocal translocations in Saccharomyces cerevisiae (yeast). The stimulation was greatest in diploid strains competent for sporulation and depends upon both the ploidy of the strain and heterozygosity at the MATlocus. The difference in levels of stimulation between MATa/MAT alpha diploid and MAT alpha haploid strains increases when cells are exposed to higher levels of UV radiation (sevenfold at 150 J/m2), whereas when cells are exposed to higher levels of ionizing radiation (23.4 krad), only a twofold difference is observed. When the MAT alpha gene was introduced by DNA transformation into a MATa/mat alpha::LEU2+ diploid, the levels of radiation-induced ectopic recombination approach those obtained in a strain that is heterozygous at MAT. Conversely, when the MATa gene was introduced by DNA transformation into a MAT alpha haploid, no enhanced stimulation of ectopic recombination was observed when cells were irradiated with ionizing radiation but a threefold enhancement was observed when cells were irradiated with UV. The increase in radiation-stimulated ectopic recombination resulting from heterozygosity at MAT correlated with greater spontaneous ectopic recombination and higher levels of viability after irradiation. We suggest that MAT functions that have been previously shown to control the level of mitotic, allelic recombination (homolog recombination) also control the level of mitotic, radiation-stimulated ectopic recombination between short dispersed repetitive sequences on non-homologous chromosomes.
Collapse
Affiliation(s)
- M Fasullo
- Department of Radiotherapy, Loyola University Medical Center, Maywood, IL 60153
| | | |
Collapse
|
5
|
Abstract
Haploid cells of the yeast Saccharomyces cerevisiae are able to undergo a differentiation-like process: they can switch their mating type between the a and the alpha state. The molecular mechanism of this interconversion of mating types is intrachromosomal gene conversion. It has been shown in a variety of studies that mating type switching in heterothallic strains can be induced by DNA damaging agents, and that different DNA damaging agents differ in the length of incubation after treatment required for induction. Because X-rays induce switching immediately after irradiation and because the DNA double-strand break repair pathway is required for switching, the event initiating heterothallic mating type switching is likely to be a DNA double-strand break. Therefore the assay for heterothallic mating type switching may screen for the induction of DNA double-strand breaks. Several aspects indicating a relationship of mating type switching to mechanisms associated with carcinogenesis are discussed.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Molecular and Cellular Toxicology, Harvard University, School of Public Health, Boston, MA 02115
| | | |
Collapse
|
6
|
Schiestl RH, Petes TD. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1991; 88:7585-9. [PMID: 1881899 PMCID: PMC52346 DOI: 10.1073/pnas.88.17.7585] [Citation(s) in RCA: 253] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA fragments (generated by BamHI treatment) with no homology to the yeast genome were transformed into Saccharomyces cerevisiae. When the fragments were transformed in the presence of the BamHI enzyme, they integrated into genomic BamHI sites. When the fragments were transformed in the absence of the enzyme, they integrated into genomic G-A-T-C sites. Since the G-A-T-C sequence is present at the ends of BamHI fragments, this results indicates that four base pairs of homology are sufficient for some types of mitotic recombination.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Biology, University of North Carolina, Chapel Hill 27599
| | | |
Collapse
|
7
|
Gietz RD, Schiestl RH. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 1991; 7:253-63. [PMID: 1882550 DOI: 10.1002/yea.320070307] [Citation(s) in RCA: 351] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The highly efficient yeast lithium acetate transformation protocol of Schiestl and Gietz (1989) was tested for its applicability to some of the most important needs of current yeast molecular biology. The method allows efficient cloning of genes by direct transformation of gene libraries into yeast. When a random gene pool ligation reaction was transformed into yeast, the LEU2, HIS3, URA3, TRP1 and ARG4 genes were found among the primary transformants at a frequency of approximately 0.1%. The RAD4 gene, which is toxic to Escherichia coli, was also identified among the primary transformants of a ligation library at a frequency of 0.18%. Non-selective transformation using this transformation protocol was shown to increase the frequency of gene disruption three-fold. Co-transformation showed that 30-40% of the transformation-competent cells take up more than one DNA molecule which can be used to enrich for integration and deletion events 30- to 60-fold. Co-transformation was used in the construction of simultaneous double gene disruptions as well as disrupting both copies of one gene in a diploid which occurred at 2-5% the frequency of the single event.
Collapse
Affiliation(s)
- R D Gietz
- Department of Biology, University of Rochester, New York 14627
| | | |
Collapse
|
8
|
RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Mol Cell Biol 1990. [PMID: 2188090 DOI: 10.1128/mcb.10.6.2485] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.
Collapse
|
9
|
Schiestl RH, Prakash S. RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Mol Cell Biol 1990; 10:2485-91. [PMID: 2188090 PMCID: PMC360605 DOI: 10.1128/mcb.10.6.2485-2491.1990] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Biology, University of Rochester, New York 14627
| | | |
Collapse
|
10
|
Schiestl RH, Gietz RD, Hastings PJ, Wintersberger U. Interchromosomal and intrachromosomal recombination in rad 18 mutants of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1990; 222:25-32. [PMID: 2233677 DOI: 10.1007/bf00283018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The frequency of intra- and interchromosomal recombination was determined in RAD18 and rad18 deletion and rad18-3 mutant strains. It was found that spontaneous interchromosomal recombination at trp5, his1, ade2, and MAT was elevated 10- to 70-fold in the rad18-3 and rad18 delta mutants as compared to the RAD+ strains. On the other hand the frequencies of spontaneous intrachromosomal recombination for the his3 delta 3', his3 delta 5' and the his4C-, his4A- duplications and for heterothallic mating type switching were only marginally elevated in the rad18 deletion mutant, and recombination between ribosomal DNA repeats was only 2-fold elevated in the rad18-3 mutant. These differences may be due to a haploid versus diploid specific difference. However interchromosomal recombination was elevated 40-fold and intrachromosomal recombination was only marginally (1.5-fold) elevated in a diploid homozygous for rad18 delta, arguing against a haploid versus diploid specific difference. Possible explanations for the difference in the elevated levels of intra- versus interchromosomal spontaneous recombination are discussed.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Tumor Biology-Cancer Research, University of Vienna, Wien, Austria
| | | | | | | |
Collapse
|
11
|
Schiestl RH. DNA-damaging agents show different kinetics in induction of heterothallic mating-type switching during growth after treatment in yeast. Mutat Res 1989; 227:269-74. [PMID: 2685596 DOI: 10.1016/0165-7992(89)90109-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heterothallic mating-type switching in Saccharomyces cerevisiae has been shown to be inducible by DNA-damaging agents (Schiestl and Wintersberger, 1983). Different DNA-damaging agents differ greatly in their kinetics of induction during incubation after treatment. Irradiation with X-rays resulted in an increase in the frequency immediately after exposure and no further increase was seen during incubation after treatment. Nitrous acid and 4-nitroquinoline-N-oxide, on the other hand, did not show any increase in frequency immediately after treatment, but require post-treatment incubation to produce an increased frequency of heterothallic mating-type switching. UV irradiation and ethyl methanesulfonate result in induction to certain levels immediately after treatment, but further induction was seen during post-treatment incubation. The results may indicate that certain kinds of DNA damage require repair of replication to be converted into recombinogenic lesions.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Molecular Genetics, University of Vienna, Austria
| |
Collapse
|
12
|
Schiestl RH, Chan WS, Gietz RD, Mehta RD, Hastings PJ. Safrole, eugenol and methyleugenol induce intrachromosomal recombination in yeast. Mutat Res 1989; 224:427-36. [PMID: 2685589 DOI: 10.1016/0165-1218(89)90067-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Deletion of an integrated plasmid, a specific type of intrachromosomal recombination, was evaluated for inducibility with the phenylpropenes safrole, eugenol and methyleugenol in the yeast Saccharomyces cerevisiae. These phenylpropenes are found in food products, spices, pharmaceuticals and clove cigarettes. Safrole and eugenol are known carcinogens in animals and methyleugenol is a suspected carcinogen. These phenylpropenes are not detectable by the Ames assay and most other short-term tests used currently in predictive carcinogenesis. Like safrole, which has been shown to be nonmutagenic with the Ames assay, eugenol and methyleugenol were found to be nonmutagenic with the Ames assay. In contrast, with the yeast assays which screen for intra- and inter-chromosomal recombination in logarithmic phase cultures, all 3 compounds gave a positive dose-related response. These results demonstrate further that the yeast system can be modified easily to detect various genetic endpoints and that it deserves serious consideration as a test system for predictive carcinogenesis.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Genetics, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
13
|
Schiestl RH, Gietz RD. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 1989; 16:339-46. [PMID: 2692852 DOI: 10.1007/bf00340712] [Citation(s) in RCA: 1710] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A method, using LiAc to yield competent cells, is described that increased the efficiency of genetic transformation of intact cells of Saccharomyces cerevisiae to more than 1 X 10(5) transformants per microgram of vector DNA and to 1.5% transformants per viable cell. The use of single stranded, or heat denaturated double stranded, nucleic acids as carrier resulted in about a 100 fold higher frequency of transformation with plasmids containing the 2 microns origin of replication. Single stranded DNA seems to be responsible for the effect since M13 single stranded DNA, as well as RNA, was effective. Boiled carrier DNA did not yield any increased transformation efficiency using spheroplast formation to induce DNA uptake, indicating a difference in the mechanism of transformation with the two methods.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Biology, University of Rochester, NY 14627
| | | |
Collapse
|
14
|
Schiestl RH, Prakash S. Interactions of the RAD7 and RAD23 excision repair genes of Saccharomyces cerevisiae with DNA repair genes in different epistasis groups. Curr Genet 1989; 16:219-23. [PMID: 2697464 DOI: 10.1007/bf00422107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAD7 and RAD23 genes of S. cerevisiae affect the efficiency of excision repair of UV-damaged DNA. We have examined the UV survival of strains carrying the rad7 and rad23 deletion mutation in combination with deletion mutations in genes affecting different DNA repair pathways. As expected, the rad7 delta and rad23 delta mutations interact epistatically with the excision repair defective rad1 delta mutation, and synergistically with the rad6 delta and rad52 delta mutations that affect the postreplication repair and recombinational repair pathways, respectively. However, the rad7 delta rad6 delta and the rad23 delta rad6 delta mutants exhibit the same level of UV sensitivity as the rad1 delta rad6 delta mutant. This observation is of interest since, in contrast to the rad7 delta or the rad23 delta mutations, the rad1 delta mutant is very UV sensitive and highly excision defective. This observation suggest that RAD6 and RAD7 and RAD23 genes complete for the same substrate during DNA repair.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Biology, University of Rochester, NY 14627
| | | |
Collapse
|
15
|
Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol Cell Biol 1989. [PMID: 2664461 DOI: 10.1128/mcb.9.5.1882] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Procaryotic and eucaryotic cells possess mechanisms for arresting cell division in response to DNA damage. Eucaryotic cells arrest division in the G2 stage of the cell cycle, and various observations suggest that this arrest is necessary to ensure the completion of repair of damaged DNA before the entry of cells into mitosis. Here, we provide evidence that the Saccharomyces cerevisiae RAD9 gene, mutations of which confer sensitivity to DNA-damaging agents, is necessary for the cell cycle arrest phenomenon. Our studies with the rad9 delta mutation show that RAD9 plays a role in the cell cycle arrest of methyl methanesulfonate-treated cells and is absolutely required for the cell cycle arrest in the temperature-sensitive cdc9 mutant, which is defective in DNA ligase. At the restrictive temperature, cell cycle progression of cdc9 cells is blocked sometime after the DNA chain elongation step, whereas cdc9 rad9 delta cells do not arrest at this point and undergo one or two additional divisions. Upon transfer from the restrictive to the permissive temperature, a larger proportion of the cdc9 cells than of the cdc9 rad9 delta cells forms viable colonies, indicating that RAD9-mediated cell cycle arrest allows for proper ligation of DNA breaks before the entry of cells into mitosis. The rad9 delta mutation does not affect the frequency of spontaneous or UV-induced mutation and recombination, suggesting that RAD9 is not directly involved in mutagenic or recombinational repair processes. The RAD9 gene encodes a transcript of approximately 4.2 kilobases and a protein of 1,309 amino acids of Mr 148,412. We suggest that RAD9 may be involved in regulating the expression of genes required for the transition from G2 to mitosis.
Collapse
|
16
|
Schiestl RH, Reynolds P, Prakash S, Prakash L. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol Cell Biol 1989; 9:1882-96. [PMID: 2664461 PMCID: PMC362979 DOI: 10.1128/mcb.9.5.1882-1896.1989] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Procaryotic and eucaryotic cells possess mechanisms for arresting cell division in response to DNA damage. Eucaryotic cells arrest division in the G2 stage of the cell cycle, and various observations suggest that this arrest is necessary to ensure the completion of repair of damaged DNA before the entry of cells into mitosis. Here, we provide evidence that the Saccharomyces cerevisiae RAD9 gene, mutations of which confer sensitivity to DNA-damaging agents, is necessary for the cell cycle arrest phenomenon. Our studies with the rad9 delta mutation show that RAD9 plays a role in the cell cycle arrest of methyl methanesulfonate-treated cells and is absolutely required for the cell cycle arrest in the temperature-sensitive cdc9 mutant, which is defective in DNA ligase. At the restrictive temperature, cell cycle progression of cdc9 cells is blocked sometime after the DNA chain elongation step, whereas cdc9 rad9 delta cells do not arrest at this point and undergo one or two additional divisions. Upon transfer from the restrictive to the permissive temperature, a larger proportion of the cdc9 cells than of the cdc9 rad9 delta cells forms viable colonies, indicating that RAD9-mediated cell cycle arrest allows for proper ligation of DNA breaks before the entry of cells into mitosis. The rad9 delta mutation does not affect the frequency of spontaneous or UV-induced mutation and recombination, suggesting that RAD9 is not directly involved in mutagenic or recombinational repair processes. The RAD9 gene encodes a transcript of approximately 4.2 kilobases and a protein of 1,309 amino acids of Mr 148,412. We suggest that RAD9 may be involved in regulating the expression of genes required for the transition from G2 to mitosis.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Biology, University of Rochester, River Campus Station, New York 14627
| | | | | | | |
Collapse
|
17
|
RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol Cell Biol 1989. [PMID: 3065620 DOI: 10.1128/mcb.8.9.3619] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RAD1 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of damaged DNA. In this paper, we report our observations on the effect of the RAD1 gene on genetic recombination. Mitotic intrachromosomal and interchromosomal recombination in RAD+, rad1, rad52, and other rad mutant strains was examined. The rad1 deletion mutation and some rad1 point mutations reduced the frequency of intrachromosomal recombination of a his3 duplication, in which one his3 allele is deleted at the 3' end while the other his3 allele is deleted at the 5' end. Mutations in the other excision repair genes, RAD2, RAD3, and RAD4, did not lower recombination frequencies in the his3 duplication. As expected, recombination between the his3 deletion alleles in the duplication was reduced in the rad52 mutant. The frequency of HIS3+ recombinants fell synergistically in the rad1 rad52 double mutant, indicating that the RAD1 and RAD52 genes affect this recombination via different pathways. In contrast to the effect of mutations in the RAD52 gene, mutations in the RAD1 gene did not lower intrachromosomal and interchromosomal recombination between heteroalleles that carry point mutations rather than partial deletions; however, the rad1 delta mutation did lower the frequency of integration of linear plasmids and DNA fragments into homologous genomic sequences. We suggest that RAD1 plays a role in recombination after the formation of the recombinogenic substrate.
Collapse
|
18
|
Klein F, Karwan A, Wintersberger U. After a single treatment with EMS the number of non-colony-forming cells increases for many generations in yeast populations. Mutat Res 1989; 210:157-64. [PMID: 2642601 DOI: 10.1016/0027-5107(89)90055-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The course of lethal events occurring in populations of haploid Saccharomyces cerevisiae after DNA-damaging treatments was studied. After X-irradiation and after incubation with methyl methanesulfonate (MMS) populations recovered according to expectation, if one assumes successive dilution of killed cells by the proliferating survivors. However, populations treated with ethyl methanesulfonate (EMS) for many generations of proliferation contained more inviable cells than expected. This behaviour was not due to EMS or toxic reaction products remaining with the cells after treatment but to residual divisions of lethally mutated cells. In addition the data suggest that lethal fixations may occur in cells originating from later than the first generation after EMS treatment.
Collapse
Affiliation(s)
- F Klein
- Department of Molecular Genetics, University of Vienna, Austria
| | | | | |
Collapse
|
19
|
Determination of mating-type conversion rates of heterothallic Saccharomyces cerevisiae with the fluctuation assay. Curr Genet 1988. [DOI: 10.1007/bf00419993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Schiestl RH, Prakash S. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol Cell Biol 1988; 8:3619-26. [PMID: 3065620 PMCID: PMC365417 DOI: 10.1128/mcb.8.9.3619-3626.1988] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The RAD1 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of damaged DNA. In this paper, we report our observations on the effect of the RAD1 gene on genetic recombination. Mitotic intrachromosomal and interchromosomal recombination in RAD+, rad1, rad52, and other rad mutant strains was examined. The rad1 deletion mutation and some rad1 point mutations reduced the frequency of intrachromosomal recombination of a his3 duplication, in which one his3 allele is deleted at the 3' end while the other his3 allele is deleted at the 5' end. Mutations in the other excision repair genes, RAD2, RAD3, and RAD4, did not lower recombination frequencies in the his3 duplication. As expected, recombination between the his3 deletion alleles in the duplication was reduced in the rad52 mutant. The frequency of HIS3+ recombinants fell synergistically in the rad1 rad52 double mutant, indicating that the RAD1 and RAD52 genes affect this recombination via different pathways. In contrast to the effect of mutations in the RAD52 gene, mutations in the RAD1 gene did not lower intrachromosomal and interchromosomal recombination between heteroalleles that carry point mutations rather than partial deletions; however, the rad1 delta mutation did lower the frequency of integration of linear plasmids and DNA fragments into homologous genomic sequences. We suggest that RAD1 plays a role in recombination after the formation of the recombinogenic substrate.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Biology, University of Rochester, New York 14627
| | | |
Collapse
|
21
|
Luggen-Hölscher J, Kiefer J. Radiation-induced mating-type switching in the yeast Saccharomyces cerevisiae. Int J Radiat Biol 1988; 54:367-80. [PMID: 2900859 DOI: 10.1080/09553008814551761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Haploid yeast cells possess two different mating types which are controlled genetically by the MAT locus. Information of the opposite mating type is stored on the same chromosome but not expressed. Radiation may initiate a gene conversion event leading to 'mating-type switching'. This was studied by using X-rays and 254 nm ultraviolet light. X-ray-induced mating type switching shows an oxygen enhancement ratio of 2.9 which is higher than that for survival (1.8) and equals that for double-strand break induction. Mating-type switching by UV is not photoreactivable and depends on a functioning excision repair system. The results are compatible with the interpretation that mating type switching is initiated by a double-strand break in the MAT coding region.
Collapse
|
22
|
Wintersberger U, Klein F. Yeast-mating-type switching: a model system for the study of genome rearrangements induced by carcinogens. Ann N Y Acad Sci 1988; 534:513-20. [PMID: 3291715 DOI: 10.1111/j.1749-6632.1988.tb30142.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- U Wintersberger
- Institute of Tumor Biology-Cancer Research, University of Vienna, Austria
| | | |
Collapse
|
23
|
|
24
|
Séraphin B, Boulet A, Simon M, Faye G. Construction of a yeast strain devoid of mitochondrial introns and its use to screen nuclear genes involved in mitochondrial splicing. Proc Natl Acad Sci U S A 1987; 84:6810-4. [PMID: 3309947 PMCID: PMC299174 DOI: 10.1073/pnas.84.19.6810] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have constructed a respiring yeast strain devoid of mitochondrial introns to screen nuclear pet- mutants for those that play a direct role in mitochondrial intron excision. Intron-less mitochondria are introduced by cytoduction into pet- strains that have been made rho0; cytoductants therefrom recover respiratory competency if the original pet- mutation is required only for mitochondrial splicing. By this means, we have identified 11 complementation groups of such genes. Their total number may be estimated as about 18.
Collapse
Affiliation(s)
- B Séraphin
- Institut Curie, Centre Universitaire, Orsay, France
| | | | | | | |
Collapse
|
25
|
Wintersberger U, Karwan A. Retardation of cell cycle progression in yeast cells recovering from DNA damage: a study at the single cell level. MOLECULAR & GENERAL GENETICS : MGG 1987; 207:320-7. [PMID: 3302599 DOI: 10.1007/bf00331596] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pedigree analyses of individual yeast cells recovering from DNA damage were performed and time intervals between morphological landmark events during the cell cycle (bud emergence and cell separation), were recorded for three generations. The associated nuclear behavior was monitored with the aid of DAPI staining. The following observations were made: All agents tested (X-rays, MMS, EMS, MNNG, nitrous acid) delayed the first bud emergence after treatment, which indicates inhibition of the initiation of DNA replication. Cells that survived X-irradiation progressed further through the cell cycle in a similar way to control cells. Progress of chemically treated cells became extremely asynchronous because surviving cells stayed undivided for periods of varying length. Prolongation of the time between bud emergence and cell separation was most pronounced for cells treated with the alkylating agents MMS and EMS. This is interpreted as retardation of ongoing DNA synthesis by persisting DNA adducts. Cell cycle prolongation in the second and third generation after treatment was observed only with MMS treated cells. In all experiments, individual cells of uniformly treated populations exhibited highly variable responses.
Collapse
|
26
|
Heterothallic mating type switching in Saccharomyces cerevisiae is RAD52 dependent. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf00331031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Kunz BA, Taylor GR, Haynes RH. Mating-type switching in yeast is induced by thymine nucleotide depletion. MOLECULAR & GENERAL GENETICS : MGG 1985; 199:540-2. [PMID: 3897786 DOI: 10.1007/bf00330772] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thymidylate biosynthesis was inhibited in a haploid heterothallic strain of Saccharomyces cerevisiae. When the treated cells were mixed with a haploid strain of the same mating-type, there was an increase in the recovery of diploid colonies. Genetic and biochemical analyses demonstrated that the diploid clones arose as a consequence of induced mating-type interconversion.
Collapse
|
28
|
Doi S, Yoshimura M. Alpha mating type-specific expression of mutations leading to constitutive agglutinability in Saccharomyces cerevisiae. J Bacteriol 1985; 161:596-601. [PMID: 3881403 PMCID: PMC214924 DOI: 10.1128/jb.161.2.596-601.1985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two mutants of Saccharomyces cerevisiae have been isolated and characterized. The mutants were constitutively agglutinable at 36 degrees C, the temperature at which wild-type cells agglutinate only after induction by mating pheromone. The mutant cells had other properties specific for the normal alpha cell type, i.e., conjugation with a cells, response to a mating pheromone, and production of alpha mating pheromone. The two mutations, cag1 and cag2, were recessive and expressed only in alpha cells. cag1 is linked very closely to the MAT locus, but cag2 is unlinked to the MAT locus. These cag mutations complemented ste3-1. These results indicate that CAG genes are novel alpha-specific genes involved in the regulation of sex agglutinin synthesis.
Collapse
|
29
|
Wintersberger U. The selective advantage of cancer cells: a consequence of genome mobilization in the course of the induction of DNA repair processes? (Model studies on yeast). ADVANCES IN ENZYME REGULATION 1984; 22:311-23. [PMID: 6382954 DOI: 10.1016/0065-2571(84)90020-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Schiestl R, Wintersberger U. Induction of mating type interconversion in a heterothallic strain of Saccharomyces cerevisiae by DNA damaging agents. MOLECULAR & GENERAL GENETICS : MGG 1983; 191:59-65. [PMID: 6412039 DOI: 10.1007/bf00330890] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mating type interconversion of the yeast, Saccharomyces cerevisiae, is an example of a directed genome rearrangement leading to a change in gene expression and in the differentiation state of a cell. In heterothallic haploid cells this switching of the mating type from a to alpha or vice versa, which is accomplished by an intrachromosomal gene conversion mechanism, is a rare event, happening about once per 10(6) cells per generation. Those cells that have changed their mating type can be trapped as diploid colonies by making them mate with tester cells possessing complementary markers. We found that treating haploids with UV light or with chemical carcinogens before they could mate resulted in a significant and dose-dependent enhancement of the numbers of diploid colonies. By genetic as well as by DNA hybridization analyses, these diploid clones were proved to be descendants of haploids which had changed their mating type by the bona fide gene conversion process. Thus, the DNA damaging agents had caused the induction of a directed gene rearrangement. It is suggested that induction of genome rearrangements might be part of a general response to DNA damage, at least in yeast cells. If similar responses also took place in cell populations constituting multicellular organisms, induced gene rearrangements and a generally enhanced mobility of the genome as a consequence of DNA damage might play a determining role in chemical and radiation-induced carcinogenesis.
Collapse
|