1
|
Xavier BB, Miao VPW, Jónsson ZO, Andrésson ÓS. Mitochondrial genomes from the lichenized fungi Peltigera membranacea and Peltigera malacea: features and phylogeny. Fungal Biol 2012; 116:802-14. [PMID: 22749167 DOI: 10.1016/j.funbio.2012.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 12/15/2022]
Abstract
Mitochondrial genomes from the fungal partners of two terricolous foliose lichen symbioses, Peltigera membranacea and Peltigera malacea, have been determined using metagenomic approaches, including RNA-seq. The roughly 63 kb genomes show all the major features found in other Pezizomycotina, such as unidirectional transcription, 14 conserved protein genes, genes for the two subunit rRNAs and for a set of 26 tRNAs used in translating the 62 amino acid codons. In one of the tRNAs a CAU anticodon is proposed to be modified, via the action of the nuclear-encoded enzyme, tRNA Ile lysidine synthase, so that it recognizes the codon AUA (Ile) instead of AUG (Met). The overall arrangements and sequences of the two circular genomes are similar, the major difference being the inversion and deterioration of a gene encoding a type B DNA polymerase. Both genomes encode the RNA component of RNAse P, a feature seldom found in ascomycetes. The difference in genome size from the minimal ascomycete mitochondrial genomes is largely due to 17 and 20 group I introns, respectively, most associated with homing endonucleases and all found within protein-coding genes and the gene encoding the large subunit rRNA. One new intron insertion point was found, and an unusually small exon of seven nucleotides (nt) was identified and verified by RNA sequencing. Comparative analysis of mitochondrion-encoded proteins places the Peltigera spp., representatives of the class Lecanoromycetes, close to Leotiomycetes, Dothidiomycetes, and Sordariomycetes, in contrast to phylogenies found using nuclear genes.
Collapse
Affiliation(s)
- Basil Britto Xavier
- Department of Life and Environmental Sciences, University of Iceland, 101 Reykjavík, Iceland
| | | | | | | |
Collapse
|
2
|
Férandon C, Moukha S, Callac P, Benedetto JP, Castroviejo M, Barroso G. The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group i introns. PLoS One 2010; 5:e14048. [PMID: 21124976 PMCID: PMC2987802 DOI: 10.1371/journal.pone.0014048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/29/2010] [Indexed: 11/21/2022] Open
Abstract
In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a “Homing Endonuclease Gene” (heg) encoding a DNA endonuclease acting in transfer and site-specific integration (“homing”) and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote.
Collapse
Affiliation(s)
- Cyril Férandon
- UMR 5234 CNRS (Centre National de la Recherche Scientifique) – Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Serge Moukha
- Laboratoire de Toxicologie et Hygiène Appliquée, UFR des Sciences Pharmaceutiques, Université Victor Segalen Bordeaux 2, Bordeaux, France
- INRA (Institut National de la Recherche Agronomique) UR 1264 Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Philippe Callac
- INRA (Institut National de la Recherche Agronomique) UR 1264 Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Jean-Pierre Benedetto
- UMR 5234 CNRS (Centre National de la Recherche Scientifique) – Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Michel Castroviejo
- UMR 5234 CNRS (Centre National de la Recherche Scientifique) – Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Gérard Barroso
- UMR 5234 CNRS (Centre National de la Recherche Scientifique) – Université Victor Segalen Bordeaux 2, Bordeaux, France
- * E-mail:
| |
Collapse
|
3
|
Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements. BMC Evol Biol 2009; 9:303. [PMID: 20043855 PMCID: PMC2814812 DOI: 10.1186/1471-2148-9-303] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/31/2009] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Inteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life. RESULTS To determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fisher's combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites. CONCLUSIONS These findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to evolve immunity to the homing endonuclease. Therefore, these elements will better survive and propagate as molecular parasites in conserved sites. In contrast, spliceosomal introns and group II introns do not show significant preference for conserved sites and appear to have adopted a different strategy to evade loss.
Collapse
|
4
|
Lang BF, Laforest MJ, Burger G. Mitochondrial introns: a critical view. Trends Genet 2007; 23:119-25. [PMID: 17280737 DOI: 10.1016/j.tig.2007.01.006] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 12/14/2006] [Accepted: 01/18/2007] [Indexed: 11/17/2022]
Abstract
Although group I and group II introns were discovered more than 25 years ago, they are still difficult to identify. Modeling their RNA structure also remains particularly challenging for organelle sequences, owing to their great diversity. In fact, accelerated evolution in organelles often results in a reduced RNA structure and a loss of autocatalytic splicing and intron mobility. We set out to identify all mitochondrial group I and II introns in published sequences, and, to this end, we developed and applied a new search approach: RNAweasel. On the basis of the results, we focus here on building a comprehensive picture of mitochondrial group I introns, including a modified (reduced) consensus RNA secondary structure and a concise phylogeny-based subclassification.
Collapse
Affiliation(s)
- B Franz Lang
- Robert Cedergren Centre, Program in Evolutionary Biology, Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec, Canada.
| | | | | |
Collapse
|
5
|
Gibb EA, Hausner G. Optional mitochondrial introns and evidence for a homing-endonuclease gene in the mtDNA rnl gene in Ophiostoma ulmi s. lat. ACTA ACUST UNITED AC 2005; 109:1112-26. [PMID: 16279406 DOI: 10.1017/s095375620500376x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Strains of Ophiostoma ulmi, O. novo-ulmi subsp. americana, O. novo-ulmi subsp. novo-ulmi and O. himal-ulmi were examined for optional introns/insertions within the following mitochondrial genes: small subunit RNA gene (rns), large ribosomal subunit gene (rnl) and the cytochrome oxidase subunit I gene (coxI). Insertions were noted in the rns and coxI genes in strains of O. ulmi, the less aggressive species, but absent in strains of the more aggressive O. novo-ulmi subsp. americana. Strains of all species examined had a group I intron present in the U11 region of the mitochondrial-rnl gene. In all but two strains of O. novo-ulmi subsp. americana, this rnl-U11 intron was about 1.5 kb in length whereas a 2.6 kb version of this element was present in all strains representing O. ulmi, O. novo-ulmi subsp. novo-ulmi, and Ophiostoma himal-ulmi. Irrespective of size, this intron based on RNA folds is a class IA1 group I intron and it encodes a putative ORF for the rps3 ribosomal protein. The size variation of the rnl-U11 intron was examined in detail for two strains of O. novo-ulmi subsp. americana and sequence data suggests the presence of a complex ORF within the 2.6 kb version of this intron; here a homing endonuclease-like gene has been inserted in frame and fused to the carboxyl-terminus of the putative rps3 coding region. The mitochondrial optional introns/insertions in combination with nuclear markers might be useful in distinguishing among the various species and subspecies of the O. ulmi s. lat. complex.
Collapse
Affiliation(s)
- Ewan A Gibb
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
6
|
|
7
|
Lundblad EW, Einvik C, Rønning S, Haugli K, Johansen S. Twelve Group I introns in the same pre-rRNA transcript of the myxomycete Fuligo septica: RNA processing and evolution. Mol Biol Evol 2004; 21:1283-93. [PMID: 15034133 DOI: 10.1093/molbev/msh126] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ribosomal DNA region of the myxomycete Fuligo septica was investigated and found to contain 12 group I introns (four in the small subunit and eight in the large subunit ribosomal RNAs). We have performed molecular and phylogenetic analyses to provide insight into intron structure and function, intron-host biology, and intron origin and evolution. The introns vary in size from 398 to 943 nt, all lacking detectable open reading frames. Secondary structure models revealed considerable structural diversity, but all, except one (subclass IB), represent the common group IC1 intron subclass. In vitro splicing analysis revealed that 10 of the 12 introns were able to self-splice as naked RNA, but all 12 introns were able to splice out from the precursor rRNA in vivo as evaluated by reverse transcription PCR analysis on total F. septica RNA. Furthermore, RNA processing analyses in vitro and in vivo showed that 10 of 12 introns perform hydrolytic cleavage at the 3' splice site, as well as intron circularization. Full-length intron RNA circles were detected in vivo. The order of splicing was analyzed by a reverse transcription PCR approach on cellular RNA, but no strict order of intron excision could be detected. Phylogenetic analysis indicated that most Fuligo introns were distantly related to each other and were independently gained in ribosomal DNA during evolution.
Collapse
Affiliation(s)
- Eirik W Lundblad
- Department of Molecular Biotechnology, RNA research group, Institute of Medical Biology, University of Tromso, Tromso, Norway
| | | | | | | | | |
Collapse
|
8
|
Bullerwell CE, Leigh J, Forget L, Lang BF. A comparison of three fission yeast mitochondrial genomes. Nucleic Acids Res 2003; 31:759-68. [PMID: 12527786 PMCID: PMC140500 DOI: 10.1093/nar/gkg134] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fission yeasts are members of the fungal order Schizosaccharomycetales, a candidate deep-diverging group within Ascomycota. Although a great deal of molecular information is available from Schizosaccharomyces pombe, a model eukaryote, very little is available from other members of this group. In order to better characterize mitochondrial genome evolution in this fungal lineage, the mitochondrial DNA (mtDNA) of two additional fission yeasts, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus var. japonicus, was sequenced. Whereas the mtDNA of S.pombe is only 19 431 bp, the mtDNA of S.octosporus is 44 227 bp, and that of S.japonicus var. japonicus is over 80 kb. The size variation of these mtDNAs is due largely to non-coding regions. The gene content in the latter two mtDNAs is almost identical to that of the completely sequenced S.pombe mtDNA, which encodes 25 tRNA species, the large and small mitochondrial ribosomal RNAs (rnl and rns), the RNA component of mitochondrial RNaseP (rnpB), mitochondrial small subunit ribosomal protein 3 (rps3), cytochrome oxidase subunits 1, 2 and 3 (cox1, cox2 and cox3) and ATP-synthase subunits 6, 8 and 9 (atp6, atp8 and atp9). However, trnI2(cau) (C modified to lysidine) is absent in the S.octosporus mtDNA, as are corresponding ATA codons in its protein-coding genes, and rps3 and rnpB are not found in the mtDNA of S.japonicus var. japonicus. The mtDNA of S.octosporus contains five double hairpin elements, the first report of these elements in an ascomycete. This study provides further evidence in favor of the mobility of these elements, and supports their role in mitochondrial genome rearrangement. The results of our phylogenetic analysis support the monophyly of the Schizosaccharomycetales, but question their grouping within the Archiascomycota.
Collapse
Affiliation(s)
- C E Bullerwell
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
9
|
|
10
|
Evolution of the Fungi and their Mitochondrial Genomes. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1874-5334(03)80010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Aono N, Shimizu T, Inoue T, Shiraishi H. Palindromic repetitive elements in the mitochondrial genome of Volvox. FEBS Lett 2002; 521:95-9. [PMID: 12067734 DOI: 10.1016/s0014-5793(02)02832-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Group I introns were found in the cob and cox I genes of Volvox carteri. These introns contain tandem arrays of short palindromic sequences that are related to each other. Inspection of other regions in the mtDNA revealed that similar palindromic repetitive sequences are dispersed in the non-protein coding regions of the mitochondrial genome. Analysis of the group I intron in the cob gene of another member of Volvocaceae, Volvox aureus, has shown that its sequence is highly homologous to its counterpart in V. carteri with the exception of a cluster of palindromic sequences not found in V. carteri. This indicates that the palindromic clusters were inserted into the introns after divergence of the two species, presumably due to frequent insertions of the palindromic elements during evolution of the Volvocaceae. Possible involvement of the palindromic repetitive elements in the molecular evolution of functional RNAs is discussed.
Collapse
Affiliation(s)
- Naoki Aono
- Graduate School of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
12
|
Watanabe KI, Ehara M, Inagaki Y, Ohama T. Distinctive origins of group I introns found in the COXI genes of three gree algae. Gene 1998; 213:1-7. [PMID: 9714606 DOI: 10.1016/s0378-1119(98)00235-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Upon surveying the cytochrome c oxidase subunit I (COXI) gene of green algae, we found group I introns in three species of algae, Chlorella vulgaris (Cv), Scenedesmus quadricauda (Sq) and Protosiphon botryoides (Pb). The comparative analysis of these nucleotide sequences and their secondary structures revealed that the introns of Cv, Sq, and Pb belong to groups IB1, ID, and IB2, respectively. Each of the three introns contained an open reading frame (ORF) that showed a similarity to the sequence of the LAGLIDADG endonuclease family. However, each of the intronic ORFs in Sq and Pb had a discontinuity in the middle of' the sequences coding for the LAGLIDADG endonuclease. Either of the two ORFs could be restored to a sequence homologous to the LAGLIDADG endonuclease by the insertion of a nucleotide in the appropriate position. In Sq, a putative pseudo-knot structure was detected in the intronic ORF This suggests the occurrence of a ribosomal frameshift in the translation of the ORF. because such pseudo-knot structures are common in viral ORFs employing a (-1) ribosomal frameshift. In the phylogenetic tree that was inferred from the amino acid sequences of algal and non-algal intronic ORFs, the three algal ORFs did not make a cluster, but were scattered throughout the tree. In addition. each of the three algal ORFs showed a close relationship to the ORFs of non-algal introns that were inserted at the corresponding site of the COX] gene, suggesting distinctive origins of the three algal introns via independent horizontal transfers.
Collapse
Affiliation(s)
- K I Watanabe
- Department of Biology, Faculty of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
13
|
Fontaine JM, Goux D, Kloareg B, Loiseaux-de Goër S. The reverse-transcriptase-like proteins encoded by group II introns in the mitochondrial genome of the brown alga Pylaiella littoralis belong to two different lineages which apparently coevolved with the group II ribosyme lineages. J Mol Evol 1997; 44:33-42. [PMID: 9010134 DOI: 10.1007/pl00006119] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mitochondrial genome of the brown alga Pylaiella littoralis contains two different types of group II introns. They each encode complete complex proteins, i.e., with a reverse transcriptase domain, a maturase or X domain, and an endonuclease or H-N-H/zinc finger domain. To our knowledge, this is the first example of the presence in the same genome of introns belonging to subgroups IIA and IIB which both contain multidomained RT-like proteins. We describe the group IIA introns that interrupt the cox1 gene. The RT-like proteins contained in these introns were compared to those of the LSU rDNA group IIB introns. The phylogenetic relationships of these intron ORFs were investigated and the possible evolution of group II introns is discussed.
Collapse
Affiliation(s)
- J M Fontaine
- Centre d'Etudes d'Océanographie et de Biologie Marine, Station Biologique de Roscoff, CNRS (UPR 9042), UPMC, BP 74, 29682 Roscoff Cedex, France
| | | | | | | |
Collapse
|
14
|
Sper-Whitis GL, Moody JL, Vaughn JC. Universality of mitochondrial RNA editing in cytochrome-c oxidase subunit I (coxI) among the land plants. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:301-8. [PMID: 8688465 DOI: 10.1016/0167-4781(96)00041-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plant mitochondrial pre-mRNAs often undergo C-to-U conversions, a phenomenon termed RNA editing. The molecular source of specificity and phylogenetic depth of the editing machinery remain to be determined. We amplified coxI gene fragments via the polymerase chain reaction from a diversity of taxa within the land plants, and sequenced each. Alignment and comparison of 25 homologous coxI gene sequences with those from plant species having known RNA editing sites which restore amino acid sequence consensus was used to infer sites of C-to-U conversions. Our results, derived using the comparative approach, imply that the plant mitochondrial editing machinery extends throughout vascular plant phylogeny, and also that this phenomenon is present in every major branch of the (non-vascular) Bryophyta: liverworts (Hepaticae), hornworts (Anthocerotae), and mosses (Musci). These results have important consequences for our thoughts on the evolutionary history of the plant RNA editing process, as they imply that editing is older than was previously believed.
Collapse
Affiliation(s)
- G L Sper-Whitis
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
15
|
Mills DA, McKay LL, Dunny GM. Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J Bacteriol 1996; 178:3531-8. [PMID: 8655550 PMCID: PMC178122 DOI: 10.1128/jb.178.12.3531-3538.1996] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Analysis of a region involved in the conjugative transfer of the lactococcal conjugative element pRS01 has revealed a bacteria] group II intron. Splicing of this lactococcal intron (designated Ll.ltrB) in vivo resulted in the ligation of two exon messages (ltrBE1 and ltrBE2) which encoded a putative conjugative relaxase essential for the transfer of pRS01. Like many group II introns, the Ll.ltrB intron possessed an open reading frame (ltrA) with homology to reverse transcriptases. Remarkably, sequence analysis of ltrA suggested a greater similarity to open reading frames encoded by eukaryotic mitochondrial group II introns than to those identified to date from other bacteria. Several insertional mutations within ltrA resulted in plasmids exhibiting a conjugative transfer-deficient phenotype. These results provide the first direct evidence for splicing of a prokaryotic group II intron in vivo and suggest that conjugative transfer is a mechanism for group II intron dissemination in bacteria.
Collapse
Affiliation(s)
- D A Mills
- Department of Microbiology and Institute for Advanced Studies in Biological Process Technology, University of Minnesota, Minneapolis 55455-0312, USA
| | | | | |
Collapse
|
16
|
Fsihi H, Vincent V, Cole ST. Homing events in the gyrA gene of some mycobacteria. Proc Natl Acad Sci U S A 1996; 93:3410-5. [PMID: 8622949 PMCID: PMC39622 DOI: 10.1073/pnas.93.8.3410] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The A subunit of DNA gyrase in Mycobacterium leprae, unlike its counterpart in Mycobacterium tuberculosis, is produced by protein splicing as its gene, gyrA, harbors a 1260-bp in-frame insertion encoding an intein, a putative homing endonuclease. Analysis of the gyrA locus from different mycobacterial species revealed the presence of inteins in Mycobacterium flavescens, Mycobacterium gordonae and Mycobacterium kansasii but not in 10 other pathogenic or saprophytic mycobacteria. In all four cases where intein coding sequences were found, they were localized in the same position in gyrA, immediately downstream of the codon for the key active-site residue Tyr-130. The intein products were similar, but not identical, in sequence and the splice junctions displayed all the features found in other polypeptides known to be produced by protein splicing from a precursor protein. Paired motifs, found in homing endonucleases encoded by some group I RNA introns, and inteins showing endonuclease activity, were present in the gyrA inteins as were other intein-specific signatures. Some strains of M. flavescens, M. gordonae, and M. kansasii were shown by PCR analysis to have inteinless gyrA genes, in contrast to the situation in M. leprae where all the isolates possessed insertions in gyrA. Sequencing of the corresponding regions revealed that, although the GyrA protein sequence was conserved, the nucleotide sequences differed in gyrA genes with and without inteins, suggesting that the homing endonuclease displays sequence specificity.
Collapse
Affiliation(s)
- H Fsihi
- Unite de Genetique Moleculaire Bacterienne, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
17
|
Antaramian A, Coria R, Ramírez J, González-Halphen D. The deduced primary structure of subunit I from cytochrome c oxidase suggests that the genus Polytomella shares a common mitochondrial origin with Chlamydomonas. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1273:198-202. [PMID: 8616156 DOI: 10.1016/0005-2728(95)00158-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We cloned and sequenced the mitochondrial gene encoding subunit I of cytochrome c oxidase (coxI) of Polytomella spp., a colorless alga related to Chlamydomonas. The purpose was to explore whether homology between the two species also exists at the level of a mitochondrial enzyme. The gene is 1512 bp long and contains no introns. The translated protein sequence exhibits 73.8% identity with its Chlamydomonas reinhardtii counterpart. The data obtained support the hypothesis that the separation of the colorless alga from the Chlamydomonas lineage was a late event in evolution, that occurred after the endosymbiotic process that gave rise to mitochondria.
Collapse
Affiliation(s)
- A Antaramian
- Departamento de Bioenergética, Instituto de Fisiología Celular, U.N.A.M., Mexico City 045100, Mexico
| | | | | | | |
Collapse
|
18
|
Charter N, Buck K, Brasier C. Multiple insertions and deletions determine the size differences between the mitochondrial DNAs of the EAN and NAN races of Ophiostoma novo-ulmi. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0953-7562(96)80171-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Hur M, Waring RB. Two group I introns with a C.G basepair at the 5' splice-site instead of the very highly conserved U.G basepair: is selection post-translational? Nucleic Acids Res 1995; 23:4466-70. [PMID: 7501471 PMCID: PMC307405 DOI: 10.1093/nar/23.21.4466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In virtually all of the 200 group I introns sequenced thus far, the specificity of 5' splice-site cleavage is determined by a basepair between a uracil base at the end of the 5' exon and a guanine in an intron guide sequence which pairs with the nucleotides flanking the splice-site. It has been reported that two introns in the cytochrome oxidase subunit I gene of Aspergillus nidulans and Podospora anserina are exceptions to this rule and have a C.G basepair in this position. We have confirmed the initial reports and shown for one of them that RNA editing does not convert the C to a U. Both introns autocatalytically cleave the 5' splice-site. Mutation of the C to U in one intron reduces the requirement for Mg2+ and leads to an increase in the rate of cleavage. As the C base encodes a highly conserved amino acid, we propose that it is selected post-translationally at the level of protein function, despite its inferior splicing activity.
Collapse
Affiliation(s)
- M Hur
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
20
|
Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P, Palmer JD. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia. J Mol Evol 1995; 41:563-72. [PMID: 7490770 DOI: 10.1007/bf00175814] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants.
Collapse
Affiliation(s)
- J C Vaughn
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | | | | | |
Collapse
|
21
|
Carbone I, Anderson JB, Kohn LM. A group-I intron in the mitochondrial small subunit ribosomal RNA gene of Sclerotinia sclerotiorum. Curr Genet 1995; 27:166-76. [PMID: 7788720 DOI: 10.1007/bf00313431] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 1,380-bp intervening sequence within the mitochondrial small subunit ribosomal RNA (mt SSU rRNA) gene of the fungus Sclerotinia sclerotiorum has been sequenced and identified as a group-I intron. This is the first report of an intron in the mt SSU rRNA gene. The intron shows close similarity in secondary structure to the subgroup-IC2 introns from Podospora (ND3i1, ND5i2, and COIi5) and Neurospora (ND5i1). The intron has an open reading frame (ORF) that encodes a putative protein of 420 amino acids which contains two copies of the LAGLI-DADG motif. The ORF belongs to a family of ORFs identified in Podospora (ND3i1, ND4Li1, ND4Li2, ND5i2, and COIi5) and Neurospora (ND5i1). The putative 420-aa polypeptide is also similar to a site-specific endonuclease in the chloroplast large subunit ribosomal RNA (LSU rRNA) gene of the green alga Chlamydomonas eugametos. In each clone of S. sclerotiorum examined, including several clones which were sampled over a 3-year period from geographically separated sites, all isolates either had the intron or lacked the intron within the mt SSU rRNA gene. Screening by means of Southern hybridization and PCR amplification detected the intron in the mt SSU rRNA genes of S. minor, S. trifoliorum and Sclerotium cepivorum, but not in other members of the Sclerotiniaceae, such as Botrytis anamorphs of Botryotinia spp., or in other ascomycetous and basidiomycetous fungi.
Collapse
Affiliation(s)
- I Carbone
- Department of Botany, University of Toronto, Erindale College, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
22
|
Goodrich-Blair H, Shub DA. The DNA polymerase genes of several HMU-bacteriophages have similar group I introns with highly divergent open reading frames. Nucleic Acids Res 1994; 22:3715-21. [PMID: 7937082 PMCID: PMC308352 DOI: 10.1093/nar/22.18.3715] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A previous report described the discovery of a group I, self-splicing intron in the DNA polymerase gene of the Bacillus subtilis bacteriophage SPO1 (1). In this study, the DNA polymerase genes of three close relatives of SPO1: SP82, 2C and phi e, were also found to be interrupted by an intron. All of these introns have group I secondary structures that are extremely similar to one another in primary sequence. Each is interrupted by an open reading frame (ORF) that, unlike the intron core or exon sequences, are highly diverged. Unlike the relatives of Escherichia coli bacteriophage T4, most of which do not have introns (2), this intron seems to be common among the relatives of SPO1.
Collapse
Affiliation(s)
- H Goodrich-Blair
- Department of Biological Sciences, University at Albany, SUNY 12222
| | | |
Collapse
|
23
|
Jamet-Vierny C, Shechter E. Senescence-specific mitochondrial DNA molecules in P. anserina: evidence for transcription and normal processing of the RNA. Curr Genet 1994; 25:538-44. [PMID: 8082206 DOI: 10.1007/bf00351675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Podospora anserina the phenomenon of senescence was previously shown to be correlated with the presence of senescence-specific circular DNAs (senDNAs), resulting from the amplification of distinct regions (alpha, beta, gamma and epsilon) of the mitochondrial chromosome. The beta region gives rise to senDNAs with variable sizes, but sharing a 1-kb common sequence. Here, we present a molecular analysis of five beta senDNAs. We have determined the nucleotide sequence around the circularization site of each senDNA monomer. In two cases, the presence of a tRNA gene, very close to the 3' end of the monomer, has been observed. This suggests that some beta senDNAs could be generated via a reverse transcription step. We have furthermore shown that the beta senDNAs produce specific transcripts which undergo normal processing of their introns. We propose that a transcription start site, located in the beta common region, is involved in mitochondrial replication allowing the amplification of the beta senDNAs.
Collapse
Affiliation(s)
- C Jamet-Vierny
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
24
|
Ohta E, Oda K, Yamato K, Nakamura Y, Takemura M, Nozato N, Akashi K, Ohyama K, Michel F. Group I introns in the liverwort mitochondrial genome: the gene coding for subunit 1 of cytochrome oxidase shares five intron positions with its fungal counterparts. Nucleic Acids Res 1993; 21:1297-305. [PMID: 7681945 PMCID: PMC309296 DOI: 10.1093/nar/21.5.1297] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The complete nucleotide sequence of the mitochondrial DNA (mtDNA) from a liverwort, Marchantia polymorpha, contains thirty-two introns. Twenty-five of these introns possess the characteristic secondary structures and consensus sequences of group II introns. The remaining seven are group I introns, six of which happen to interrupt the gene coding for subunit 1 of cytochrome oxidase (cox1). Interestingly, the insertion sites of one group II and four group I introns in the cox1 gene coincide with those of the respective fungal mitochondrial interns. Moreover, comparison of the four group I introns with their fungal counterparts shows that group I introns inserted at identical genomic sites in different organisms are indeed related to one another, in terms of the peptide sequences generated from the complete or fragmental ORFs encoded by these introns. At the same time, the liverwort introns turned out to be more divergent from their fungal cognates than the latter are from one another. We therefore conclude that vertical transmission from a common ancestor organism is the simplest explanation for the presence of cognate introns in liverwort and fungal mitochondrial genomes.
Collapse
Affiliation(s)
- E Ohta
- Department of Agricultural Chemistry, Faculty of Agriculture, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tian GL, Michel F, Macadre C, Lazowska J. Sequence of the mitochondrial gene encoding subunit I of cytochrome oxidase in Saccharomyces douglasii. Gene 1993; 124:153-63. [PMID: 8383070 DOI: 10.1016/0378-1119(93)90389-k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have determined the complete sequence of the mitochondrial (mt) gene (COXI) coding for cytochrome oxidase subunit I of Saccharomyces douglasii. This gene is 7238 bp long and includes four introns. The salient feature of the S. douglasii COXI gene is the presence of two introns, Sd.ai1 and Sd.ai2, which have not been observed in S. cerevisiae genes. Both are group-I introns and are located at novel positions compared with the S. cerevisiae COXI. Interestingly, one of these introns (the second one) is inserted at the same position as intron 2 of COXI of Kluyveromyces lactis and also as intron 8 of the same gene in Podospora anserina. The ORFs contained in these three introns display a high degree of similarity. Comparisons of exonic and intronic sequences of the COXI of two Saccharomyces species reinforces our previous conclusions: the evolution of mt genes in yeast obeys different rules to those found in vertebrates.
Collapse
Affiliation(s)
- G L Tian
- Centre de Génétique Moléculaire du CNRS, Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
26
|
Wolff G, Burger G, Lang BF, Kück U. Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns. Nucleic Acids Res 1993; 21:719-26. [PMID: 7680126 PMCID: PMC309174 DOI: 10.1093/nar/21.3.719] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mitochondrial DNA from the colourless alga Prototheca wickerhamii contains two mosaic genes as was revealed from complete sequencing of the circular extranuclear genome. The genes for the large subunit of the ribosomal RNA (LSUrRNA) as well as for subunit I of the cytochrome oxidase (coxI) carry two and three intronic sequences respectively. On the basis of their canonical nucleotide sequences they can be classified as group I introns. Phylogenetic comparisons of the coxI protein sequences allow us to conclude that the P.wickerhamii mtDNA is much closer related to higher plant mtDNAs than to those of the chlorophyte alga C.reinhardtii. The comparison of the intron sequences revealed several unusual features: (1) The P.wickerhamii introns are structurally related to mitochondrial introns from various ascomycetous fungi. (2) Phylogenetic analyses indicate a close relationship between fungal and algal intronic sequences. (3) The P. wickerhamii introns are located at positions within the structural genes which can be considered as preferred intron insertion sites in homologous mitochondrial genes from fungi or liverwort. In all cases, the sequences adjacent to the insertion sites are very well conserved over large evolutionary distances. Our finding of highly similar introns in fungi and algae is consistent with the idea that introns have already been present in the bacterial ancestors of present day mitochondria and evolved concomitantly with the organelles.
Collapse
Affiliation(s)
- G Wolff
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
27
|
Velasco AM, Medrano L, Lazcano A, Oró J. A redefinition of the Asp-Asp domain of reverse transcriptases. J Mol Evol 1992; 35:551-6. [PMID: 1282162 DOI: 10.1007/bf00160216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The rules defining the Asp-Asp domain of RNA-dependent polymerases deduced by Argos (1988) were tested in a set of 53 putative reverse transcriptases (RTs) sequences. Since it was found that some of these rules are not followed by RTs coded by bacteria, group II introns, and non-LTR retrotransposons, we present here a more strict definition of the Asp-Asp domain.
Collapse
|
28
|
Affiliation(s)
- D A Shub
- Department of Biological Sciences, State University of New York, Albany 12222
| | | |
Collapse
|
29
|
Clark-Walker GD. Evolution of mitochondrial genomes in fungi. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 141:89-127. [PMID: 1452434 DOI: 10.1016/s0074-7696(08)62064-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- G D Clark-Walker
- Molecular and Population Genetics Group, Research School of Biological Sciences, Australian National University, Canberra City
| |
Collapse
|
30
|
Marshall P, Lemieux C. Cleavage pattern of the homing endonuclease encoded by the fifth intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos. Gene 1991; 104:241-5. [PMID: 1916294 DOI: 10.1016/0378-1119(91)90256-b] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The fifth group-I intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos (CeLSU.5) is mobile during interspecific crosses between C. eugametos and Chlamydomonas moewusii. Like the six other mobile introns that have been well characterized so far, CeLSU.5 contains a long open reading frame (ceuIR) coding for a site-specific endonuclease (I-CeuI) that cleaves the C. moewusii intronless gene in the vicinity of the intron-insertion site. This stimulates gap repair and mediates efficient transfer of the intron at its cognate site. By expressing the ceuIR gene in the Escherichia coli vectors pKK233-2 and pTRC-99A, we recently demonstrated that the endonuclease is highly toxic to E. coli [Gauthier et al., Curr. Genet. 19 (1991) 43-47]. To eliminate this problem and characterize the cleavage pattern and recognition sequence of the I-CeuI endonuclease, we have expressed the ceuIR gene in E. coli under the control of a bacteriophage T7 promoter in a tightly regulated M13 system, and developed an in vitro system to assay partially purified I-CeuI activity. This allowed us to determine that I-CeuI recognizes a sequence of less than 26 bp centered around the insertion site and produces a staggered cut 5 bp downstream from this site, yielding 4-nucleotide (CTAA), 3'-OH overhangs.
Collapse
Affiliation(s)
- P Marshall
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | | |
Collapse
|
31
|
Hardy CM, Clark-Walker GD. Nucleotide sequence of the COX1 gene in Kluyveromyces lactis mitochondrial DNA: evidence for recent horizontal transfer of a group II intron. Curr Genet 1991; 20:99-114. [PMID: 1657415 DOI: 10.1007/bf00312772] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cytochrome oxidase subunit 1 gene (COX1) in K. lactis K8 mtDNA spans 8,826 bp and contains five exons (termed E1-E5) totalling 1,602 bp that show 88% nucleotide base matching and 91% amino acid homology to the equivalent gene in S. cerevisiae. The four introns (termed K1 cox1.1-1.4) contain open reading frames encoding proteins of 786, 333, 319 and 395 amino acids respectively that potentially encode maturase enzymes. The first intron belongs to group II whereas the remaining three are group I type B. Introns K1 cox1.1, 1.3, and 1.4 are found at identical locations to introns Sc cox1.2, 1.5 a, and 1.5 b respectively from S. cerevisiae. Horizontal transfer of an intron between recent progenitors of K. lactis and S. cerevisiae is suggested by the observation that K1 cox1.1 and Sc cox1.2 show 96% base matching. Sequence comparisons between K1 cox1.3/Sc cox1.5 a and K1 cox1.4/Sc cox1.5 b suggest that these introns are likely to have been present in the ancestral COX1 gene of these yeasts. Intron K1 cox1.2 is not found in S. cerevisiae and appears at an unique location in K. lactis. A feature of the DNA sequences of the group I introns K1 cox1.2, 1.3, and 1.4 is the presence of 11 GC-rich clusters inserted into both coding and noncoding regions. Immediately downstream of the COX1 gene is the ATPase subunit 8 gene (A8) that shows 82.6% base matching to its counterpart in S. cerevisiae mtDNA.
Collapse
Affiliation(s)
- C M Hardy
- Molecular and Population Genetics Group, Research School of Biological Sciences, Australian National University, Canberra
| | | |
Collapse
|
32
|
Tian GL, Michel F, Macadre C, Slonimski PP, Lazowska J. Incipient mitochondrial evolution in yeasts. II. The complete sequence of the gene coding for cytochrome b in Saccharomyces douglasii reveals the presence of both new and conserved introns and discloses major differences in the fixation of mutations in evolution. J Mol Biol 1991; 218:747-60. [PMID: 1708831 DOI: 10.1016/0022-2836(91)90263-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have determined the complete sequence of the mitochondrial gene coding for cytochrome b in Saccharomyces douglasii. The gene is 6310 base-pairs long and is interrupted by four introns. The first one (1311 base-pairs) belongs to the group ID of secondary structure, contains a fragment open reading frame with a characteristic GIY ... YIG motif, is absent from Saccharomyces cerevisiae and is inserted in the same site in which introns 1 and 2 are inserted in Neurospora crassa and Podospora anserina, respectively. The next three S. douglasii introns are homologous to the first three introns of S. cerevisiae, are inserted at the same positions and display various degrees of similarity ranging from an almost complete identity (intron 2 and 4) to a moderate one (intron 3). We have compared secondary structures of intron RNAs, and nucleotide and amino acid sequences of cytochrome b exons and intron open reading frames in the two Saccharomyces species. The rules that govern fixation of mutations in exon and intron open reading frames are different: the relative proportion of mutations occurring in synonymous codons is low in some introns and high in exons. The overall frequency of mutations in cytochrome b exons is much smaller than in nuclear genes of yeasts, contrary to what has been found in vertebrates, where mitochondrial mutations are more frequent. The divergence of the cytochrome b gene is modular: various parts of the gene have changed with a different mode and tempo of evolution.
Collapse
Affiliation(s)
- G L Tian
- Centre de Génétique Moléculaire du C.N.R.S., Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
33
|
Manna F, Massardo DR, Del Giudice L, Buonocore A, Nappo AG, Alifano P, Schäfer B, Wolf K. The mitochondrial genome of Schizosaccharomyces pombe. Stimulation of intra-chromosomal recombination in Escherichia coli by the gene product of the first cox1 intron. Curr Genet 1991; 19:295-9. [PMID: 1651177 DOI: 10.1007/bf00355058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The open reading frame of the first intron of the mitochondrial cox1 gene (cox1I1) was expressed in Escherichia coli. The putative intron-encoded protein stimulated the formation of intra-chromosomal lac(+)-recombinants about threefold. No stimulation was found when the reading frame was inserted in the opposite direction, or when it was interrupted by a deletion. The intronic open reading frame did not complement recA- or recB- mutants of E. coli. In S. pombe, elimination of this intron did not abolish homologous recombination in mitochondria. A possible role of the recombinase activity in yeast mitochondria will be discussed.
Collapse
Affiliation(s)
- F Manna
- Istituto Internazionale di Genetica e Biofisica, CNR, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Turmel M, Boulanger J, Schnare MN, Gray MW, Lemieux C. Six group I introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos. J Mol Biol 1991; 218:293-311. [PMID: 1849178 DOI: 10.1016/0022-2836(91)90713-g] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chloroplast large subunit rRNA gene of Chlamydomonas eugametos and its 5' flanking region encoding tRNA(Ile) (GAU) and tRNA(Ala) (UGC) have been sequenced. The DNA sequence data along with the results of a detailed RNA analysis disclosed two unusual features of this green algal large subunit rRNA gene: (1) the presence of six group I introns (CeLSU.1-CeLSU.6) whose insertion positions have not been described previously, and (2) the presence of three short internal transcribed spacers that are post-transcriptionally excised to yield four rRNA species of 280, 52, 810 and 1720 nucleotides, positioned in this order (5' to 3') in the primary transcript. Together, these RNA species can assume a secondary structure that is almost identical to that proposed for the 23 S rRNA of Escherichia coli. All three internal transcribed spacers map to variable regions of primary sequence and/or potential secondary structure, whereas all six introns lie within highly conserved regions. The first three introns are inserted within the sequence encoding the 810 nucleotide rRNA species and map within domain II of the large subunit rRNA structure; the remaining introns, found in the sequence encoding the 1720 nucleotide rRNA species, lie within either domain IV or V, as is the case for all other large subunit rDNA introns that have been documented to date. CeLSU.5 and CeLSU.6 each contain a long open reading frame (ORF) of more than 200 codons. While the CeLSU.6 ORF is not related to any known ORFs, the CeLSU.5 ORF belongs to a family of ORFs that have been identified in Podospora and Neurospora mitochondrial group I introns. The finding that a polymorphic marker showing unidirectional gene conversion during crosses between C. eugametos and Chlamydomonas moewusii is located within the CeLSU.5 ORF makes it likely that this intron is a mobile element and that its ORF encodes a site-specific endonuclease promoting the transfer of the intron DNA sequence.
Collapse
Affiliation(s)
- M Turmel
- Département de biochimie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
35
|
Gauthier A, Turmel M, Lemieux C. A group I intron in the chloroplast large subunit rRNA gene of Chlamydomonas eugametos encodes a double-strand endonuclease that cleaves the homing site of this intron. Curr Genet 1991; 19:43-7. [PMID: 2036685 DOI: 10.1007/bf00362086] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During interspecific crosses between Chlamydomonas eugametos and Chlamydomonas moewusii, an optional group I intron of 955 base pairs (CeLSU.5) in the C. eugametos chloroplast large subunit rRNA gene undergoes a duplicative transposition event which is associated with frequent co-conversion of flanking cpDNA sequences. In the present study, we show that the basic protein of 218 amino acids encoded by CeLSU.5 could mediate the phenomenon of intron transposition, also called intron homing. We overexpressed the ORF specifying this protein in E. coli using expression vectors that contain a C. moewusii cpDNA sequence encompassing the intron homing site. The expression product was found to exhibit a double-strand DNA endonuclease activity that is specific for the homing site. This activity was detected in vivo by self-linearization of the expression plasmids.
Collapse
Affiliation(s)
- A Gauthier
- Départment de biochimie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | | | | |
Collapse
|
36
|
Schäfer B, Merlos-Lange AM, Anderl C, Welser F, Zimmer M, Wolf K. The mitochondrial genome of fission yeast: inability of all introns to splice autocatalytically, and construction and characterization of an intronless genome. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:158-67. [PMID: 1705653 DOI: 10.1007/bf00282654] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this paper we report the inability of four group I introns in the gene encoding subunit I of cytochrome c oxidase (cox1) and the group II intron in the apocytochrome b gene (cob) to splice autocatalytically. Furthermore we present the characterization of the first cox1 intron in the mutator strain anar-14 and the construction and characterization of strains with intronless mitochondrial genomes. We provide evidence that removal of introns at the DNA level (termed DNA splicing) is dependent on an active RNA maturase. Finally we demonstrate that the absence of introns does not abolish homologous mitochondrial recombination.
Collapse
Affiliation(s)
- B Schäfer
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität, Mainz, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
37
|
Michel F, Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 1990; 216:585-610. [PMID: 2258934 DOI: 10.1016/0022-2836(90)90386-z] [Citation(s) in RCA: 914] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alignment of the 87 available sequences of group I self-splicing introns reveals numerous instances of covariation between distant sites. Some of these covariations cannot be ascribed to historical coincidences or the known secondary structure of group I introns, and are, therefore, best explained as reflecting tertiary contacts. With the help of stereochemical modelling, we have taken advantage of these novel interactions to derive a three-dimensional model of the conserved core of group I introns. Two noteworthy features of that model are its extreme compactness and the fact that all of the most evolutionarily conserved residues happen to converge around the two helices that constitute the substrate of the core ribozyme and the site that binds the guanosine cofactor necessary for self-splicing. Specific functional implications are discussed, both with regard to the way the substrate helices are recognized by the core and possible rearrangements of the introns during the self-splicing process. Concerning potential long-range interactions, emphasis is put on the possible recognition of two consecutive purines in the minor groove of a helix by a GAAA or related terminal loop.
Collapse
Affiliation(s)
- F Michel
- Centre de Génétique Moléculaire du CNRS, Laboratoire associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | |
Collapse
|
38
|
Lambowitz AM, Perlman PS. Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem Sci 1990; 15:440-4. [PMID: 2278103 DOI: 10.1016/0968-0004(90)90283-h] [Citation(s) in RCA: 184] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Group I and group II introns catalyse their own splicing, but depend on protein factors for efficient splicing in vivo. Some of these proteins, termed maturases, are encoded by the introns themselves and may also function in intron mobility. Other proteins are encoded by host chromosomal genes and include aminoacyl-tRNA synthetases and various proteins that function in protein synthesis. The splicing factors identified thus far appear to be idiosyncratic, even in closely related organisms. We suggest that some of these protein-assisted splicing reactions evolved relatively recently, possibly reflecting the recent dispersal of the introns themselves.
Collapse
Affiliation(s)
- A M Lambowitz
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | |
Collapse
|
39
|
Goodrich-Blair H, Scarlato V, Gott JM, Xu MQ, Shub DA. A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1. Cell 1990; 63:417-24. [PMID: 2119891 DOI: 10.1016/0092-8674(90)90174-d] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a self-splicing intron in bacteriophage SPO1, whose host is the gram-positive Bacillus subtilis. The intron contains all the conserved features of primary sequence and secondary structure previously described for the group IA introns of eukaryotic organelles and the gram-negative bacteriophage T4. The SPO1 intron contains an open reading frame of 522 nucleotides. As in the T4 introns, this open reading frame begins in a region that is looped out of the secondary structure, but ends in a highly conserved region of the intron core. The exons encode SPO1 DNA polymerase, which is highly similar to E. coli DNA polymerase I. The demonstration of self-splicing introns in viruses of both gram-positive and gram-negative eubacteria lends further evidence for their early origin in evolution.
Collapse
Affiliation(s)
- H Goodrich-Blair
- Department of Biological Sciences, State University of New York, Albany 12222
| | | | | | | | | |
Collapse
|
40
|
Silliker ME, Cummings DJ. A mitochondrial DNA rearrangement and three new mitochondrial plasmids from long-lived strains of Podospora anserina. Plasmid 1990; 24:37-44. [PMID: 2270228 DOI: 10.1016/0147-619x(90)90023-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The excision-junction sites of a mtDNA rearrangement of a long-lived strain of Podospora anserina, Mn19, were cloned and sequenced. Analysis of sequence and hybridization data lead to the conclusion that the Mn19 mtDNA consists of two nonoverlapping circular molecules. Three plasmids, LMt-2, LMt-3, and LMt-4, cloned from long-lived progeny of crosses between the Mn19 strain and wild type were cloned and sequenced. These plasmids share features and excision-junction sites with previously described longevity and senescence plasmids. The Mn19 mtDNA rearrangement and plasmids LMt-2, LMt-3, and LMt-4 are described. The possible significance of similarities to previously described plasmids is discussed.
Collapse
Affiliation(s)
- M E Silliker
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | |
Collapse
|
41
|
Cummings DJ, Michel F, McNally KL. DNA sequence analysis of the apocytochrome b gene of Podospora anserina: a new family of intronic open reading frame. Curr Genet 1989; 16:407-18. [PMID: 2611913 DOI: 10.1007/bf00340720] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 5,969 bp (base pair) DNA sequence of the apocytochrome b mitochondrial (mt) gene of race A Podospora anserina was located in a 8.5 Kbp region. This gene contained a 2,499 bp subgroup IB and a 1,306 bp subgroup ID intron as well as a 990 bp subgroup IB intron which is present in race A but not race s. The large subgroup IB intron and the race A specific IB intron both contained potential alternate splice sites which brought their open reading frames into phase with their upstream exon sequences. All three introns were compared with regard to their secondary structures and open reading frames to the other 30 group I introns in Podospora anserina, as well as to other fungal introns. We detected a new family of intronic ORFs comprising seven P. anserina introns, several N. crassa introns, as well as the T4td bacteriophage intron. Sequence similarities to intron-encoded endonucleases were noteworthy. The DNA sequences reported here and in the accompanying paper complete the analysis of race s and race A mitochondrial DNA.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|