1
|
Positron emission tomography in multiple sclerosis - straight to the target. Nat Rev Neurol 2021; 17:663-675. [PMID: 34545219 DOI: 10.1038/s41582-021-00537-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Following the impressive progress in the treatment of relapsing-remitting multiple sclerosis (MS), the major challenge ahead is the development of treatments to prevent or delay the irreversible accumulation of clinical disability in progressive forms of the disease. The substrate of clinical progression is neuro-axonal degeneration, and a deep understanding of the mechanisms that underlie this process is a precondition for the development of therapies for progressive MS. PET imaging involves the use of radiolabelled compounds that bind to specific cellular and metabolic targets, thereby enabling direct in vivo measurement of several pathological processes. This approach can provide key insights into the clinical relevance of these processes and their chronological sequence during the disease course. In this Review, we focus on the contribution that PET is making to our understanding of extraneuronal and intraneuronal mechanisms that are involved in the pathogenesis of irreversible neuro-axonal damage in MS. We consider the major challenges with the use of PET in MS and the steps necessary to realize clinical benefits of the technique. In addition, we discuss the potential of emerging PET tracers and future applications of existing compounds to facilitate the identification of effective neuroprotective treatments for patients with MS.
Collapse
|
2
|
Zhang Q, Li W, Novak EK, Karim A, Mishra VS, Kingsmore SF, Roe BA, Suzuki T, Swank RT. The gene for the muted (mu) mouse, a model for Hermansky-Pudlak syndrome, defines a novel protein which regulates vesicle trafficking. Hum Mol Genet 2002; 11:697-706. [PMID: 11912185 PMCID: PMC2847475 DOI: 10.1093/hmg/11.6.697] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The muted (mu) mouse is a model for Hermansky-Pudlak Syndrome (HPS), an inherited disorder of humans causing hypopigmentation, hemorrhaging and early death due to lung abnormalities. The mu gene regulates the synthesis of specialized mammalian organelles such as melanosomes, platelet dense granules and lysosomes. Further, balance defects indicate that it controls the synthesis of otoliths of the inner ear. The mu gene has been identified by a positional/candidate approach involving large mouse interspecific backcrosses. It encodes a novel ubiquitously expressed transcript, specifying a predicted 185 amino acid protein, whose expression is abrogated in the mu allele which contains an insertion of an early transposon (ETn) retrotransposon. Expression is likewise expected to be lost in the mu( J) allele which contains a deletion of a single base pair within the coding region. The presence of structurally aberrant melanosomes within the eyes of mutant mice together with localization of the muted protein within vesicles in both the cell body and dendrites of transfected melan-a melanocytes emphasizes the role of the mu gene in vesicle trafficking. The mu gene is present only in mice and humans among analyzed genomes. As is true for several other recently identified mouse HPS genes, the mu gene is absent in lower eukaryotes. Therefore, the mu gene is a member of the novel gene set that has evolved in higher eukaryotes to regulate the synthesis/function of highly specialized subcellular organelles such as melanosomes and platelet dense granules.
Collapse
Affiliation(s)
| | | | | | | | - Vishnu S. Mishra
- Department of Medicine, University of Florida, Gainesville, FL 32610 USA
| | | | - Bruce A. Roe
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Tamio Suzuki
- Human Medical Genetics Program, University of Colorado, Denver, CO 80262, USA
| | - Richard T. Swank
- To whom correspondence should be addressed. Tel: +1 716 845 3429; Fax: +1 716 845 5908;
| |
Collapse
|
3
|
Abnormal Expression and Subcellular Distribution of Subunit Proteins of the AP-3 Adaptor Complex Lead to Platelet Storage Pool Deficiency in the Pearl Mouse. Blood 1999. [DOI: 10.1182/blood.v94.1.146.413k39_146_155] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pearl mouse is a model for Hermansky Pudlak Syndrome (HPS), whose symptoms include hypopigmentation, lysosomal abnormalities, and prolonged bleeding due to platelet storage pool deficiency (SPD). The gene for pearl has recently been identified as the beta3A subunit of the AP-3 adaptor complex. The objective of these experiments was to determine if the expression and subcellular distribution of the AP-3 complex were altered in pearl platelets and other tissues. The beta3A subunit was undetectable in all pearl cells and tissues. Also, expression of other subunit proteins of the AP-3 complex was decreased. The subcellular distribution of the remaining AP-3 subunits in platelets, macrophages, and a melanocyte-derived cell line of pearl mice was changed from the normal punctate, probably endosomal, pattern to a diffuse cytoplasmic pattern. Ultrastructural abnormalities in mutant lysosomes were likewise apparent in mutant kidney and a cultured mutant cell line. Genetically distinct mouse HPS models had normal expression of AP-3 subunits. These and related experiments strongly suggest that the AP-3 complex regulates the biogenesis/function of organelles of platelets and other cells and that abrogation of expression of the AP-3 complex leads to platelet SPD.
Collapse
|
4
|
Hong HK, Lass JH, Chakravarti A. Pleiotropic skeletal and ocular phenotypes of the mouse mutation congenital hydrocephalus (ch/Mf1) arise from a winged helix/forkhead transcriptionfactor gene. Hum Mol Genet 1999; 8:625-37. [PMID: 10072431 DOI: 10.1093/hmg/8.4.625] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Congenital hydrocephalus is an etiologically diverse, poorly understood, but relatively common birth defect. Most human cases are sporadic with familial forms showing considerable phenotypic and etiologic heterogeneity. We have studied the autosomal recessive mouse mutation congenital hydrocephalus ( ch ) to identify candidate human hydrocephalus genes and their modifiers. ch mice have a congenital, lethal hydrocephalus in association with multiple developmental defects, notably skeletal defects, in tissues derived from the cephalic neural crest. We utilized positional cloning methods to map ch in the vicinity of D13Mit294 and confirm that the ch phenotype is caused by homozygosity for a nonsense mutation in a gene encoding a winged helix/forkhead transcription factor ( Mf1 ). Based on linked genetic markers, we performed detailed phenotypic characterization of mutant homozygotes and heterozygotes to demonstrate the pleiotropic effects of the mutant gene. Surprisingly, ch heterozygotes have the glaucoma-related distinct phenotype of multiple anterior segment defects resembling Axenfeld-Rieger anomaly. We also localized a second member of this gene family ( Hfh1 ), a candidate for other developmental defects, approximately 470 kb proximal to Mf1.
Collapse
Affiliation(s)
- H K Hong
- Department of Genetics BRB 721 and Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | | | |
Collapse
|
5
|
Swank RT, Novak EK, McGarry MP, Rusiniak ME, Feng L. Mouse models of Hermansky Pudlak syndrome: a review. PIGMENT CELL RESEARCH 1998; 11:60-80. [PMID: 9585243 DOI: 10.1111/j.1600-0749.1998.tb00713.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hermansky Pudlak Syndrome (HPS) is a recessively inherited disease affecting the contents and/or the secretion of several related subcellular organelles including melanosomes, lysosomes, and platelet dense granules. It presents with disorders of pigmentation, prolonged bleeding, and ceroid deposition, often accompanied by severe fibrotic lung disease and colitis. In the mouse, the disorder is clearly multigenic, caused by at least 14 distinct mutations. Studies on the mouse mutants have defined the granule abnormalities of HPS and have shown that the disease is associated with a surprising variety of phenotypes affecting many tissues. This is an exciting time in HPS research because of the recent molecular identification of the gene causing a major form of human HPS and the expected identifications of several mouse HPS genes. Identifications of mouse HPS genes are expected to increase our understanding of intracellular vesicle trafficking, lead to discovery of new human HPS genes, and suggest diagnostic and therapeutic approaches toward the more severe clinical consequences of the disease.
Collapse
Affiliation(s)
- R T Swank
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | | | | | |
Collapse
|
6
|
Sagai T, Koide T, Endo M, Tanoue K, Kikkawa Y, Yonekawa H, Ishiguro S, Tamai M, Matsuda Y, Wakana S, Shiroishi T. rim2 (recombination-induced mutation 2) is a new allele of pearl and a mouse model of human Hermansky-Pudlak syndrome (HPS): genetic and physical mapping. Mamm Genome 1998; 9:2-7. [PMID: 9434937 DOI: 10.1007/s003359900670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A mouse mutation, rim2, is one of a series of spontaneous mutations that arose from the intra-MHC recombinants between Japanese wild mouse-derived wm7 and laboratory MHC haplotypes. This mutation is single recessive and characterized by diluted coat color and hypo-pigmentation of the eyes. We mapped the rim2 gene close to an old coat color mutation, pearl (pe), on Chromosome (Chr) 13 by the high-density linkage analysis. The pearl mutant is known to have abnormalities similar to Hermansky-Pudlak syndrome (HPS), a human hemorrhagic disorder, characterized by albinism and storage pool deficiency (SPD) of dense granules in platelets. A mating cross of C57BL10/Slc-rim2/rim2 and C57BL/6J-pe/pe showed no complementation of coat color. Additionally, characteristics similar to SPD were also observed in rim2. Thus, rim2 appeared to be a new allele of the pe locus and serves as a mouse model for human HPS. We have made a YAC contig covering the rim2/pe locus toward positional cloning of the causative gene.
Collapse
Affiliation(s)
- T Sagai
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Seymour AB, Yanak BL, O'Brien EP, Rusiniak ME, Novak EK, Pinto LH, Swank RT, Gorin MB. An integrated genetic map of the pearl locus of mouse chromosome 13. Genome Res 1996; 6:538-44. [PMID: 8828042 DOI: 10.1101/gr.6.6.538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have used a Mus domesticus/spretus congenic animal and two interspecific backcross panels to map genetically 30 sequence-tagged sites (STSs) and 13 genes to the vicinity of the pearl locus on mouse chromosome 13. The STSs defining the mapped region are from D13Mit9 to D13Mit37, spanning 10.6 cM. Genes mapped to this region include Versican (Cspg2), GTPase activating protein (Rasa), dihydrofolate reductase (Dhfr), arylsulfatase (As-1), thrombin receptor (Cf2r), hexosaminidase b(Hexb), 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr), microtubule associated protein 5/1b (Mtap5), phosphodiesterase (Pde), phosphatidylinositol 3' kinase (Pik3rl), rat integrin a1-subunit (Itga1), collagen receptor a2-subunit (Itga2), and 5-hydroxytryptamine 1a receptor (Htr1a). This high resolution genetic map of the pearl region of chromosome 13 establishes the order of multiple markers, including genes whose human homologs are located within a limited region of human chromosome 5, with respect to the phenotypic anchor marker pearl.
Collapse
Affiliation(s)
- A B Seymour
- Department of Human Genetics, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Poirier C, O'Brien EP, Bueno Brunialti AL, Chambard J, Swank RT, Guénet J. The gene encoding the thrombin receptor (Cf2r) maps to mouse chromosome 13. Mamm Genome 1996; 7:322. [PMID: 8661713 DOI: 10.1007/bf03035441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C Poirier
- Unité de Génétique des Mammifères, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
9
|
O'Brien EP, Zhen L, Jiang SY, Novak EK, Swank RT. High-resolution genetic mapping of the gunmetal gene which regulates platelet production. Mamm Genome 1996; 7:206-8. [PMID: 8833241 DOI: 10.1007/s003359900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- E P O'Brien
- Roswell Park Cancer Institute, Molecular and Cellular Biology Department, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
10
|
Rusiniak ME, O'Brien EP, Novak EK, Barone SM, McGarry MP, Reddington M, Swank RT. Molecular markers near the mouse brachymorphic (bm) gene, which affects connective tissues and bleeding time. Mamm Genome 1996; 7:98-102. [PMID: 8835524 DOI: 10.1007/s003359900027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several inherited skeletal/connective tissue defects are associated with hemorrhagic disorders in humans. Accordingly, three mouse mutants (brachymorphic [bm], hemimelic extra toes [Hx], and ulnaless [Ul]), with inherited skeletal abnormalities, were analyzed for hemorrhagic tendencies. All three had prolonged bleeding times. Platelet numbers, size, and function, as well as common soluble plasma clotting factors, were not measurably affected. To further define the bm mutation, its chromosomal location relative to 19 other molecular markers was determined to a high resolution in a large interspecific backcross. Several microsatellite markers were found to be very closely linked to bm and should provide useful entry points for the eventual identification of this gene by positional/candidate cloning techniques. These results suggest that inherited skeletal abnormalities and bleeding tendencies are associated more frequently in both humans and animal models than is commonly recognized. Identification of these genes may reveal novel relationships between osteogenesis and hemostasis.
Collapse
Affiliation(s)
- M E Rusiniak
- Molecular and Cellular Biology Department, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | |
Collapse
|