1
|
Tabolacci E, Nobile V, Pucci C, Chiurazzi P. Mechanisms of the FMR1 Repeat Instability: How Does the CGG Sequence Expand? Int J Mol Sci 2022; 23:ijms23105425. [PMID: 35628235 PMCID: PMC9141726 DOI: 10.3390/ijms23105425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
A dynamic mutation in exon 1 of the FMR1 gene causes Fragile X-related Disorders (FXDs), due to the expansion of an unstable CGG repeat sequence. Based on the CGG sequence size, two types of FMR1 alleles are possible: “premutation” (PM, with 56-200 CGGs) and “full mutation” (FM, with >200 triplets). Premutated females are at risk of transmitting a FM allele that, when methylated, epigenetically silences FMR1 and causes Fragile X syndrome (FXS), a very common form of inherited intellectual disability (ID). Expansions events of the CGG sequence are predominant over contractions and are responsible for meiotic and mitotic instability. The CGG repeat usually includes one or more AGG interspersed triplets that influence allele stability and the risk of transmitting FM to children through maternal meiosis. A unique mechanism responsible for repeat instability has not been identified, but several processes are under investigations using cellular and animal models. The formation of unusual secondary DNA structures at the expanded repeats are likely to occur and contribute to the CGG expansion. This review will focus on the current knowledge about CGG repeat instability addressing the CGG sequence expands.
Collapse
Affiliation(s)
- Elisabetta Tabolacci
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
| | - Veronica Nobile
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
| | - Cecilia Pucci
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
| | - Pietro Chiurazzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-3015-4606
| |
Collapse
|
2
|
Sriram A, Tangirala S, Atmakuri S, Hoque S, Modani S, Srivastava S, Mahajan S, Maji I, Kumar R, Khatri D, Madan J, Singh PK. Budding Multi-matrix Technology-a Retrospective Approach, Deep Insights, and Future Perspectives. AAPS PharmSciTech 2021; 22:264. [PMID: 34734325 DOI: 10.1208/s12249-021-02133-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The human race is consistently striving for achieving good health and eliminate disease-causing factors. For the last few decades, scientists have been endeavoring to invent and innovate technologies that can substitute the conventional dosage forms and enable targeted and prolonged drug release at a particular site. The novel multi-matrix technology is a type of matrix formulation where the formulation is embraced to have a matrix system with multiple number of matrices. The MMX technology embraces with a combination of outer hydrophilic layer and amphiphilic/lipophilic core layer, within which drug is encapsulated followed by enteric coating for extended/targeted release at the required site. In comparison to conventional oral drug delivery systems and other drug delivery systems, multi-matrix (MMX) technology formulations afford many advantages. Additionally, it attributes for targeting strategy aimed at the colon and offers modified prolonged drug release. Thus, it has emerged rapidly as a potential alternative option in targeted oral drug delivery. However, the development of this MMX technology formulations is a exigent task and also has its own set of limitations. Due to its promising advantages and colon targeting strategy over the other colon targeted drug delivery systems, premier global companies are exploiting its potential. This article review deep insights into the formulation procedures, drug delivery mechanism, advantages, limitations, safety and efficacy studies of various marketed drug formulations of MMX technology including regulatory perspectives and future perspectives.
Collapse
|
3
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Gene Variant of Barrier to Autointegration Factor 2 ( Banf2w) Is Concordant with Female Determination in Cichlids. Int J Mol Sci 2021; 22:7073. [PMID: 34209244 PMCID: PMC8268354 DOI: 10.3390/ijms22137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022] Open
Abstract
Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10-26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy-Weinberg equilibrium (p < 4.2 × 10-3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shai Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| |
Collapse
|
4
|
Gharesouran J, Hosseinzadeh H, Ghafouri-Fard S, Taheri M, Rezazadeh M. STRs: Ancient Architectures of the Genome beyond the Sequence. J Mol Neurosci 2021; 71:2441-2455. [PMID: 34056692 DOI: 10.1007/s12031-021-01850-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 01/24/2023]
Abstract
Short tandem repeats (STRs) are commonly defined as short runs of repetitive nucleotides, consisting of tandemly repeating 2-6- bp motif units, which are ubiquitously distributed throughout genomes. Functional STRs are polymorphic in the population, and their variations influence gene expression, which subsequently may result in pathogenic phenotypes. To understand STR phenotypic effects and their functional roles, we describe four different mutational mechanisms including the unequal crossing-over model, gene conversion, retrotransposition mechanism and replication slippage. Due to the multi-allelic nature, small length, abundance, high variability, codominant inheritance, nearly neutral evolution, extensive genome coverage and simple assaying of STRs, these markers are widely used in various types of biological research, including population genetics studies, genome mapping, molecular epidemiology, paternity analysis and gene flow studies. In this review, we focus on the current knowledge regarding STR genomic distribution, function, mutation and applications.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Molecular Genetics Division, GMG center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Childrens Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hosseinzadeh
- Molecular Genetics Division, GMG center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Childrens Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Division of Medical Genetics, Tabriz Childrens Hospital, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Oliveira MLMD, Paim FG, Freitas ÉASD, Oliveira C, Foresti F. Cytomolecular investigations using repetitive DNA probes contribute to the identification and characterization of Characidium sp. aff. C. vidali (Teleostei: Characiformes). NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2020-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Characidium sp. aff. C. vidali is a species found in coastal streams in southeastern Brazil, which has karyotypic explanatory elements as the occurrence of microstructural variations, keeping the chromosomal macrostructure of the genus. The objective of this study was to apply cytomolecular tools in the chromosomes of Characidium sp. aff. C. vidali to identify characteristics in their karyotype contributing to cytogenetic definition of this species, adding information about the evolution of the chromosomal structure of the group. The species showed 2n = 50 chromosomes and from 1 to 4 additional B microchromosomes. FISH technique showed histone H3 and H4 genes in the short arm of pair 10, and microsatellites (CA)15, (CG)15, (GA)15 and (TTA)10 clustered in the subtelomeric portions of all A chromosomes, with total accumulation by supernumerary. The telomeric probe marked terminal regions of all chromosomes, in addition to the interstitial portion of four pairs, called ITS sites, with these markings being duplicated in two pairs, hence the double-ITS classification. C-banding revealed that supernumerary chromosomes are completely heterochromatic, that ITS sites are C-banding positive, but double-ITS sites are C-banding negative. So, throughout the evolution to Characidium, genomic events are occurring and restructuring chromosomes in populations.
Collapse
Affiliation(s)
| | | | | | - Claudio Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| |
Collapse
|
6
|
Laverde EE, Lai Y, Leng F, Balakrishnan L, Freudenreich CH, Liu Y. R-loops promote trinucleotide repeat deletion through DNA base excision repair enzymatic activities. J Biol Chem 2020; 295:13902-13913. [PMID: 32763971 DOI: 10.1074/jbc.ra120.014161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Trinucleotide repeat (TNR) expansion and deletion are responsible for over 40 neurodegenerative diseases and associated with cancer. TNRs can undergo somatic instability that is mediated by DNA damage and repair and gene transcription. Recent studies have pointed toward a role for R-loops in causing TNR expansion and deletion, and it has been shown that base excision repair (BER) can result in CAG repeat deletion from R-loops in yeast. However, it remains unknown how BER in R-loops can mediate TNR instability. In this study, using biochemical approaches, we examined BER enzymatic activities and their influence on TNR R-loops. We found that AP endonuclease 1 incised an abasic site on the nontemplate strand of a TNR R-loop, creating a double-flap intermediate containing an RNA:DNA hybrid that subsequently inhibited polymerase β (pol β) synthesis of TNRs. This stimulated flap endonuclease 1 (FEN1) cleavage of TNRs engaged in an R-loop. Moreover, we showed that FEN1 also efficiently cleaved the RNA strand, facilitating pol β loop/hairpin bypass synthesis and the resolution of TNR R-loops through BER. Consequently, this resulted in fewer TNRs synthesized by pol β than those removed by FEN1, thereby leading to repeat deletion. Our results indicate that TNR R-loops preferentially lead to repeat deletion during BER by disrupting the balance between the addition and removal of TNRs. Our discoveries open a new avenue for the treatment and prevention of repeat expansion diseases and cancer.
Collapse
Affiliation(s)
- Eduardo E Laverde
- Biochemistry Ph.D. Program, Florida International University, Miami, Florida, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Fenfei Leng
- Biochemistry Ph.D. Program, Florida International University, Miami, Florida, USA; Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA; Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana Purdue University Indianapolis, Indianapolis, Indiana, USA
| | | | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, Florida, USA; Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA; Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA.
| |
Collapse
|
7
|
Pan F, Zhang Y, Man VH, Roland C, Sagui C. E-motif formed by extrahelical cytosine bases in DNA homoduplexes of trinucleotide and hexanucleotide repeats. Nucleic Acids Res 2019; 46:942-955. [PMID: 29190385 PMCID: PMC5778509 DOI: 10.1093/nar/gkx1186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/13/2017] [Indexed: 12/01/2022] Open
Abstract
Atypical DNA secondary structures play an important role in expandable trinucleotide repeat (TR) and hexanucleotide repeat (HR) diseases. The cytosine mismatches in C-rich homoduplexes and hairpin stems are weakly bonded; experiments show that for certain sequences these may flip out of the helix core, forming an unusual structure termed an ‘e-motif’. We have performed molecular dynamics simulations of C-rich TR and HR DNA homoduplexes in order to characterize the conformations, stability and dynamics of formation of the e-motif, where the mismatched cytosines symmetrically flip out in the minor groove, pointing their base moieties towards the 5′-direction in each strand. TRs have two non-equivalent reading frames, (GCC)n and (CCG)n; while HRs have three: (CCCGGC)n, (CGGCCC)n, (CCCCGG)n. We define three types of pseudo basepair steps related to the mismatches and show that the e-motif is only stable in (GCC)n and (CCCGGC)n homoduplexes due to the favorable stacking of pseudo GpC steps (whose nature depends on whether TRs or HRs are involved) and the formation of hydrogen bonds between the mismatched cytosine at position i and the cytosine (TRs) or guanine (HRs) at position i − 2 along the same strand. We also characterize the extended e-motif, where all mismatched cytosines are extruded, their extra-helical stacking additionally stabilizing the homoduplexes.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Yuan Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
8
|
Utsunomia R, Ruiz-Ruano FJ, Silva DMZA, Serrano ÉA, Rosa IF, Scudeler PES, Hashimoto DT, Oliveira C, Camacho JPM, Foresti F. A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes). Front Genet 2017; 8:103. [PMID: 28855916 PMCID: PMC5557728 DOI: 10.3389/fgene.2017.00103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 01/21/2023] Open
Abstract
Satellite DNA (satDNA) is an abundant fraction of repetitive DNA in eukaryotic genomes and plays an important role in genome organization and evolution. In general, satDNA sequences follow a concerted evolutionary pattern through the intragenomic homogenization of different repeat units. In addition, the satDNA library hypothesis predicts that related species share a series of satDNA variants descended from a common ancestor species, with differential amplification of different satDNA variants. The finding of a same satDNA family in species belonging to different genera within Characidae fish provided the opportunity to test both concerted evolution and library hypotheses. For this purpose, we analyzed here sequence variation and abundance of this satDNA family in ten species, by a combination of next generation sequencing (NGS), PCR and Sanger sequencing, and fluorescence in situ hybridization (FISH). We found extensive between-species variation for the number and size of pericentromeric FISH signals. At genomic level, the analysis of 1000s of DNA sequences obtained by Illumina sequencing and PCR amplification allowed defining 150 haplotypes which were linked in a common minimum spanning tree, where different patterns of concerted evolution were apparent. This also provided a glimpse into the satDNA library of this group of species. In consistency with the library hypothesis, different variants for this satDNA showed high differences in abundance between species, from highly abundant to simply relictual variants.
Collapse
Affiliation(s)
- Ricardo Utsunomia
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | | | - Duílio M Z A Silva
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Érica A Serrano
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Ivana F Rosa
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Patrícia E S Scudeler
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | | | - Claudio Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de GranadaGranada, Spain
| | - Fausto Foresti
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| |
Collapse
|
9
|
Cytomolecular discrimination of the A m chromosomes of Triticum monococcum and the A chromosomes of Triticum aestivum using microsatellite DNA repeats. J Appl Genet 2016. [PMID: 27468932 DOI: 10.1007/s13353‐016‐0361‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
The cytomolecular discrimination of the Am- and A-genome chromosomes facilitates the selection of wheat-Triticum monococcum introgression lines. Fluorescence in situ hybridisation (FISH) with the commonly used DNA probes Afa family, 18S rDNA and pSc119.2 showed that the more complex hybridisation pattern obtained in T. monococcum relative to bread wheat made it possible to differentiate the Am and A chromosomes within homoeologous groups 1, 4 and 5. In order to provide additional chromosomal landmarks to discriminate the Am and A chromosomes, the microsatellite repeats (GAA)n, (CAG)n, (CAC)n, (AAC)n, (AGG)n and (ACT)n were tested as FISH probes. These showed that T. monococcum chromosomes have fewer, generally weaker, simple sequence repeat (SSR) signals than the A-genome chromosomes of hexaploid wheat. A differential hybridisation pattern was observed on 6Am and 6A chromosomes with all the SSR probes tested except for the (ACT)n probe. The 2Am and 2A chromosomes were differentiated by the signals given by the (GAA)n, (CAG)n and (AAC)n repeats, while only (GAA)n discriminated the chromosomes 3Am and 3A. Chromosomes 7Am and 7A could be differentiated by the lack of (GAA)n and (AGG)n signals on 7A. As potential landmarks for identifying the Am chromosomes, SSR repeats will facilitate the introgression of T. monococcum chromatin into wheat.
Collapse
|
10
|
Cytomolecular discrimination of the A m chromosomes of Triticum monococcum and the A chromosomes of Triticum aestivum using microsatellite DNA repeats. J Appl Genet 2016; 58:67-70. [PMID: 27468932 DOI: 10.1007/s13353-016-0361-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
The cytomolecular discrimination of the Am- and A-genome chromosomes facilitates the selection of wheat-Triticum monococcum introgression lines. Fluorescence in situ hybridisation (FISH) with the commonly used DNA probes Afa family, 18S rDNA and pSc119.2 showed that the more complex hybridisation pattern obtained in T. monococcum relative to bread wheat made it possible to differentiate the Am and A chromosomes within homoeologous groups 1, 4 and 5. In order to provide additional chromosomal landmarks to discriminate the Am and A chromosomes, the microsatellite repeats (GAA)n, (CAG)n, (CAC)n, (AAC)n, (AGG)n and (ACT)n were tested as FISH probes. These showed that T. monococcum chromosomes have fewer, generally weaker, simple sequence repeat (SSR) signals than the A-genome chromosomes of hexaploid wheat. A differential hybridisation pattern was observed on 6Am and 6A chromosomes with all the SSR probes tested except for the (ACT)n probe. The 2Am and 2A chromosomes were differentiated by the signals given by the (GAA)n, (CAG)n and (AAC)n repeats, while only (GAA)n discriminated the chromosomes 3Am and 3A. Chromosomes 7Am and 7A could be differentiated by the lack of (GAA)n and (AGG)n signals on 7A. As potential landmarks for identifying the Am chromosomes, SSR repeats will facilitate the introgression of T. monococcum chromatin into wheat.
Collapse
|
11
|
Scacchetti PC, Utsunomia R, Pansonato-Alves JC, Vicari MR, Artoni RF, Oliveira C, Foresti F. Chromosomal Mapping of Repetitive DNAs in Characidium (Teleostei, Characiformes): Genomic Organization and Diversification of ZW Sex Chromosomes. Cytogenet Genome Res 2015; 146:136-143. [PMID: 26277929 DOI: 10.1159/000437165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 11/19/2022] Open
Abstract
The speciose neotropical genus Characidium has proven to be a good model for cytogenetic exploration. Representatives of this genus often have a conserved diploid chromosome number; some species exhibit a highly differentiated ZZ/ZW sex chromosome system, while others do not show any sex-related chromosome heteromorphism. In this study, chromosome painting using a W-specific probe and comparative chromosome mapping of repetitive sequences, including ribosomal clusters and 4 microsatellite motifs - (CA)15, (GA)15, (CG)15, and (TTA)10 -, were performed in 6 Characidium species, 5 of which possessed a heteromorphic ZW sex chromosome system. The W-specific probe showed hybridization signals on the W chromosome of all analyzed species, indicating homology among the W chromosomes. Remarkably, a single major rDNA-bearing chromosome pair was found in all species. The 18S rDNA localized to the sex chromosomes in C. lanei, C. timbuiense and C. pterostictum, while the major rDNA localized to one autosome pair in C. vidali and C. gomesi. In contrast, the number of 5S rDNA-bearing chromosomes varied. Notably, minor ribosomal clusters were identified in the W chromosome of C. vidali. Microsatellites were widely distributed across almost all chromosomes of the karyotypes, with a greater accumulation in the subtelomeric regions. However, clear differences in the abundance of each motif were detected in each species. In addition, the Z and W chromosomes showed the differential accumulation of distinct motifs. Our results revealed variability in the distribution of repetitive DNA sequences and their possible association with sex chromosome diversification in Characidium species.
Collapse
|
12
|
Ruiz-Ruano FJ, Cuadrado Á, Montiel EE, Camacho JPM, López-León MD. Next generation sequencing and FISH reveal uneven and nonrandom microsatellite distribution in two grasshopper genomes. Chromosoma 2014; 124:221-34. [PMID: 25387401 DOI: 10.1007/s00412-014-0492-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/17/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
Abstract
Simple sequence repeats (SSRs), also known as microsatellites, are one of the prominent DNA sequences shaping the repeated fraction of eukaryotic genomes. In spite of their profuse use as molecular markers for a variety of genetic and evolutionary studies, their genomic location, distribution, and function are not yet well understood. Here we report the first thorough joint analysis of microsatellite motifs at both genomic and chromosomal levels in animal species, by a combination of 454 sequencing and fluorescent in situ hybridization (FISH) techniques performed on two grasshopper species. The in silico analysis of the 454 reads suggested that microsatellite expansion is not driving size increase of these genomes, as SSR abundance was higher in the species showing the smallest genome. However, the two species showed the same uneven and nonrandom location of SSRs, with clear predominance of dinucleotide motifs and association with several types of repetitive elements, mostly histone gene spacers, ribosomal DNA intergenic spacers (IGS), and transposable elements (TEs). The FISH analysis showed a dispersed chromosome distribution of microsatellite motifs in euchromatic regions, in coincidence with chromosome location patterns previously observed for many mobile elements in these species. However, some SSR motifs were clustered, especially those located in the histone gene cluster.
Collapse
Affiliation(s)
- Francisco J Ruiz-Ruano
- Departamento de Genética Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | | | | | | | |
Collapse
|
13
|
Trinucleotide expansion in disease: why is there a length threshold? Curr Opin Genet Dev 2014; 26:131-40. [PMID: 25282113 DOI: 10.1016/j.gde.2014.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/24/2022]
Abstract
Trinucleotide repeats (TNRs) expansion disorders are severe neurodegenerative and neuromuscular disorders that arise from inheriting a long tract (30-50 copies) of a trinucleotide unit within or near an expressed gene (Figure 1a). The mutation is referred to as 'trinucleotide expansion' since the number of triplet units in a mutated gene is greater than the number found in the normal gene. Expansion becomes obvious once the number of repeating units passes a critical threshold length, but what happens at the threshold to render the repeating tract unstable? Here we discuss DNA-dependent and RNA-dependent models by which a particular DNA length permits a rapid transition to an unstable state.
Collapse
|
14
|
Völker J, Plum GE, Gindikin V, Klump HH, Breslauer KJ. Impact of bulge loop size on DNA triplet repeat domains: Implications for DNA repair and expansion. Biopolymers 2014; 101:1-12. [PMID: 23494673 PMCID: PMC3920904 DOI: 10.1002/bip.22236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/05/2013] [Indexed: 11/12/2022]
Abstract
Repetitive DNA sequences exhibit complex structural and energy landscapes, populated by metastable, noncanonical states, that favor expansion and deletion events correlated with disease phenotypes. To probe the origins of such genotype-phenotype linkages, we report the impact of sequence and repeat number on properties of (CNG) repeat bulge loops. We find the stability of duplexes with a repeat bulge loop is controlled by two opposing effects; a loop junction-dependent destabilization of the underlying double helix, and a self-structure dependent stabilization of the repeat bulge loop. For small bulge loops, destabilization of the underlying double helix overwhelms any favorable contribution from loop self-structure. As bulge loop size increases, the stabilizing loop structure contribution dominates. The role of sequence on repeat loop stability can be understood in terms of its impact on the opposing influences of junction formation and loop structure. The nature of the bulge loop affects the thermodynamics of these two contributions differently, resulting in unique differences in repeat size-dependent minima in the overall enthalpy, entropy, and free energy changes. Our results define factors that control repeat bulge loop formation; knowledge required to understand how this helix imperfection is linked to DNA expansion, deletion, and disease phenotypes.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers, The
State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
| | - G. Eric Plum
- IBET, Inc., 1507 Chambers Road, Suite 301, Columbus, OH
43212
| | - Vera Gindikin
- Department of Chemistry and Chemical Biology, Rutgers, The
State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
| | - Horst H. Klump
- Department of Molecular and Cell Biology,
University of Cape Town, Private Bag, Rondebosch 7800, South Africa
| | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers, The
State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
- The Cancer Institute of New Jersey, New Brunswick,
NJ 08901
| |
Collapse
|
15
|
McMurray CT. Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease. DNA Repair (Amst) 2008; 7:1121-34. [PMID: 18472310 DOI: 10.1016/j.dnarep.2008.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved sophisticated DNA repair systems to correct mispaired or damaged bases and extrahelical loops. Emerging evidence suggests that, in some cases, the normal DNA repair machinery is "hijacked" to become a causative factor in mutation and disease, rather than act as a safeguard of genomic integrity. In this review, we consider two cases in which active MMR leads to mutation or to cell death. There may be similar mechanisms by which uncoupling of normal MMR recognition from downstream repair allows triplet expansions underlying human neurodegenerative disease, or cell death in response to chemical lesion.
Collapse
Affiliation(s)
- Cynthia T McMurray
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
16
|
Abstract
Accurate and complete replication of the genome in every cell division is a prerequisite of genomic stability. Thus, both prokaryotic and eukaryotic replication forks are extremely precise and robust molecular machines that have evolved to be up to the task. However, it has recently become clear that the replication fork is more of a hurdler than a runner: it must overcome various obstacles present on its way. Such obstacles can be called natural impediments to DNA replication, as opposed to external and genetic factors. Natural impediments to DNA replication are particular DNA binding proteins, unusual secondary structures in DNA, and transcription complexes that occasionally (in eukaryotes) or constantly (in prokaryotes) operate on replicating templates. This review describes the mechanisms and consequences of replication stalling at various natural impediments, with an emphasis on the role of replication stalling in genomic instability.
Collapse
Affiliation(s)
- Ekaterina V. Mirkin
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Sergei M. Mirkin
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
- Corresponding author. Present address: Department of Biology, Tufts University, Medford, MA 02155. Phone: (617) 627-4794. Fax: (617) 627-3805. E-mail:
| |
Collapse
|
17
|
Daee DL, Mertz T, Lahue RS. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol 2006; 27:102-10. [PMID: 17060452 PMCID: PMC1800661 DOI: 10.1128/mcb.01167-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trinucleotide repeats (TNRs) are unique DNA microsatellites that can expand to cause human disease. Recently, Srs2 was identified as a protein that inhibits TNR expansions in Saccharomyces cerevisiae. Here, we demonstrate that Srs2 inhibits CAG . CTG expansions in conjunction with the error-free branch of postreplication repair (PRR). Like srs2 mutants, expansions are elevated in rad18 and rad5 mutants, as well as the PRR-specific PCNA alleles pol30-K164R and pol30-K127/164R. Epistasis analysis indicates that Srs2 acts upstream of these PRR proteins. Also, like srs2 mutants, the pol30-K127/164R phenotype is specific for expansions, as this allele does not alter mutation rates at dinucleotide repeats, at nonrepeating sequences, or for CAG . CTG repeat contractions. Our results suggest that Srs2 action and PRR processing inhibit TNR expansions. We also investigated the relationship between PRR and Rad27 (Fen1), a well-established inhibitor of TNR expansions that acts at 5' flaps. Our results indicate that PRR protects against expansions arising from the 3' terminus, presumably replication slippage events. This work provides the first evidence that CAG . CTG expansions can occur by 3' slippage, and our results help define PRR as a key cellular mechanism that protects against expansions.
Collapse
Affiliation(s)
- Danielle L Daee
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
18
|
Pelletier R, Farrell BT, Miret JJ, Lahue RS. Mechanistic features of CAG*CTG repeat contractions in cultured cells revealed by a novel genetic assay. Nucleic Acids Res 2005; 33:5667-76. [PMID: 16199754 PMCID: PMC1240116 DOI: 10.1093/nar/gki880] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Trinucleotide repeats (TNRs) undergo high frequency mutagenesis to cause at least 15 neurodegenerative diseases. To understand better the molecular mechanisms of TNR instability in cultured cells, a new genetic assay was created using a shuttle vector. The shuttle vector contains a promoter-TNR-reporter gene construct whose expression is dependent on TNR length. The vector harbors the SV40 ori and large T antigen gene, allowing portability between primate cell lines. The shuttle vector is propagated in cultured cells, then recovered and analyzed in yeast using selection for reporter gene expression. We show that (CAG•CTG)25−33 contracts at frequencies as high as 1% in 293T and 293 human cells and in COS-1 monkey cells, provided that the plasmid undergoes replication. Hairpin-forming capacity of the repeat sequence stimulated contractions. Evidence for a threshold was observed between 25 and 33 repeats in COS-1 cells, where contraction frequencies increased sharply (up 720%) over a narrow range of repeat lengths. Expression of the mismatch repair protein Mlh1 does not correlate with repeat instability, suggesting contractions are independent of mismatch repair in our system. Together, these findings recapitulate certain features of human genetics and therefore establish a novel cell culture system to help provide new mechanistic insights into CAG•CTG repeat instability.
Collapse
Affiliation(s)
| | - Brian T. Farrell
- Department of Pathology and Microbiology, University of Nebraska Medical CenterBox 986805, Omaha, NE 68198-6805, USA
| | | | - Robert S. Lahue
- To whom correspondence should be addressed. Tel: +1 402 559 4619; Fax: +1 402 559 8270;
| |
Collapse
|
19
|
Kovtun IV, Thornhill AR, McMurray CT. Somatic deletion events occur during early embryonic development and modify the extent of CAG expansion in subsequent generations. Hum Mol Genet 2004; 13:3057-68. [PMID: 15496421 DOI: 10.1093/hmg/ddh325] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alterations in trinucleotide repeat length during transmission are important in the pathophysiology of Huntington's disease (HD). However, it is not well understood where, when and by what mechanism expansion occurs. We have followed the fate of CAG repeats during development in mice that can [hHD(-/+)/Msh2(+/+)] or cannot [hHD(-/+)/Msh2(-/-)] expand their repeats. Here we show that long repeats are shortened during somatic replication early in the embryo of the progeny. Our data point to different mechanisms for expansion and deletion. Deletions arise during replication, do not depend on the presence of Msh2 and are largely restricted to early development. In contrast, expansions depend on strand break repair, require the presence of Msh2 and occur later in development. Overall, these results suggest that deletions in early development serve as a safeguard of the genome and protect against expansion of the disease-range repeats during transmission.
Collapse
Affiliation(s)
- I V Kovtun
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
20
|
Nag DK, Suri M, Stenson EK. Both CAG repeats and inverted DNA repeats stimulate spontaneous unequal sister-chromatid exchange in Saccharomyces cerevisiae. Nucleic Acids Res 2004; 32:5677-84. [PMID: 15494455 PMCID: PMC524308 DOI: 10.1093/nar/gkh901] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic regions containing trinucleotide repeats (TNRs) are highly unstable, as the repeated sequences exhibit a high rate of mutational change, in which they undergo either a contraction or an expansion of repeat numbers. Although expansion of TNRs is associated with several human genetic diseases, the expansion mechanism is poorly understood. Extensive studies in model organisms have indicated that instability of TNRs occurs by several mechanisms, including replication slippage, DNA repair and recombination. In all models, the formation of secondary structures by disease-associated TNRs is a critical step in the mutation process. In this report, we demonstrate that TNRs and inverted repeats (IRs) both of which have the potential to form secondary structures in vivo, increase spontaneous unequal sister-chromatid exchange (SCE) in vegetatively growing yeast cells. Our results also show that TNR-mediated SCE events are independent of RAD50, MRE11 and RAD51, whereas IR-stimulated SCEs are dependent on the RAD52 epistasis-group genes. We propose that many TNR expansion mutations occur by SCE.
Collapse
Affiliation(s)
- Dilip K Nag
- Molecular Genetics Program, Center for Medical Sciences, Wadsworth Center, 150 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | |
Collapse
|
21
|
Pandey N, Mittal U, Srivastava AK, Mukerji M. SMARCA2 and THAP11: potential candidates for polyglutamine disorders as evidenced from polymorphism and protein-folding simulation studies. J Hum Genet 2004; 49:596-602. [PMID: 15368101 DOI: 10.1007/s10038-004-0194-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 07/30/2004] [Indexed: 11/25/2022]
Abstract
CAG repeat expansion is the cause of an ever-increasing list of neurodegenerative disorders, especially hereditary ataxias. However, genes responsible for 10-50% of the clinically diagnosed ataxias are still unidentified in different populations. Traditional linkage and repeat expansion-detection based methods complemented with human genome sequence and expression information can now accelerate the pace of identification of putative disease candidates. We have analyzed two CAG repeat containing loci, human SMARCA2 and THAP11, which are expressed in the brain as putative candidates for SCAs, using computational as well as polymorphism scanning approaches. Both loci exhibited features characteristic of genes associated with repeat disorders. These loci are polymorphic with respect to size and interruption pattern in the Indian population. Furthermore, computational analysis of glutamine-stretch embedded domains in the respective proteins predicted these regions to be "natively unfolded" beyond a threshold of 40 glutamines. Comparative genome analysis suggested a stabilizing influence of CAA interspersions in repeat tract in THAP11 but not in SMARCA2. Although repeat expansion could not be detected within these genes in unidentified ataxia patients reported in India, we suggest that these loci be screened in other populations, as there is a wide heterogeneity in the prevalence of these disorders in different populations.
Collapse
Affiliation(s)
- Neeraj Pandey
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi University Campus, Mall Road, New Delhi, 110007, India
| | - Uma Mittal
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi University Campus, Mall Road, New Delhi, 110007, India
| | - Achal K Srivastava
- Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mitali Mukerji
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi University Campus, Mall Road, New Delhi, 110007, India.
| |
Collapse
|
22
|
Krasilnikova MM, Mirkin SM. Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol Cell Biol 2004; 24:2286-95. [PMID: 14993268 PMCID: PMC355872 DOI: 10.1128/mcb.24.6.2286-2295.2004] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 12/16/2003] [Accepted: 12/22/2003] [Indexed: 11/20/2022] Open
Abstract
Friedreich's ataxia (GAA)n repeats of various lengths were cloned into a Saccharymyces cerevisiae plasmid, and their effects on DNA replication were analyzed using two-dimensional electrophoresis of replication intermediates. We found that premutation- and disease-size repeats stalled the replication fork progression in vivo, while normal-size repeats did not affect replication. Remarkably, the observed threshold repeat length for replication stalling in yeast (approximately 40 repeats) closely matched the threshold length for repeat expansion in humans. Further, replication stalling was strikingly orientation dependent, being pronounced only when the repeat's homopurine strand served as the lagging strand template. Finally, it appeared that length polymorphism of the (GAA)n. (TTC)n repeat in both expansions and contractions drastically increases in the repeat's orientation that is responsible for the replication stalling. These data represent the first direct proof of the effects of (GAA)n repeats on DNA replication in vivo. We believe that repeat-caused replication attenuation in vivo is due to triplex formation. The apparent link between the replication stalling and length polymorphism of the repeat points to a new model for the repeat expansion.
Collapse
Affiliation(s)
- Maria M Krasilnikova
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
23
|
Yoon SR, Dubeau L, de Young M, Wexler NS, Arnheim N. Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc Natl Acad Sci U S A 2003; 100:8834-8. [PMID: 12857955 PMCID: PMC166399 DOI: 10.1073/pnas.1331390100] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule DNA analysis of testicular germ cells isolated by laser capture microdissection from two Huntington disease patients showed that trinucleotide repeat expansion mutations were present before the end of the first meiotic division, and some mutations were present even before meiosis began. Most of the larger Huntington disease mutations were found in the postmeiotic cell population, suggesting that expansions may continue to occur during meiosis and/or after meiosis is complete. Defining the germ-line cell compartments where the trinucleotide repeat expansions occur could help to elucidate the underlying mechanisms of instability.
Collapse
Affiliation(s)
- Song-Ro Yoon
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | | | | | | | |
Collapse
|
24
|
Feschenko VV, Rajman LA, Lovett ST. Stabilization of perfect and imperfect tandem repeats by single-strand DNA exonucleases. Proc Natl Acad Sci U S A 2003; 100:1134-9. [PMID: 12538867 PMCID: PMC298739 DOI: 10.1073/pnas.0233122100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rearrangements between tandemly repeated DNA sequences are a common source of genetic instability. Such rearrangements underlie several human genetic diseases. In many organisms, the mismatch-repair (MMR) system functions to stabilize repeats when the repeat unit is short or when sequence imperfections are present between the repeats. We show here that the action of single-stranded DNA (ssDNA) exonucleases plays an additional, important role in stabilizing tandem repeats, independent of their role in MMR. For perfect repeats of approximately 100 bp in Escherichia coli that are not susceptible to MMR, exonuclease (Exo)-I, ExoX, and RecJ exonuclease redundantly inhibit deletion. Our data suggest that >90% of potential deletion events are avoided by the combined action of these three exonucleases. Imperfect tandem repeats, less prone to rearrangements, are stabilized by both the MMR-pathway and ssDNA-specific exonucleases. For 100-bp repeats containing four mispairs, ExoI alone aborts most deletion events, even in the presence of a functional MMR system. By genetic analysis, we show that the inhibitory effect of ssDNA exonucleases on deletion formation is independent of the MutS and UvrD proteins. Exonuclease degradation of DNA displaced during the deletion process may abort slipped misalignment. Exonuclease action is therefore a significant force in genetic stabilization of many forms of repetitive DNA.
Collapse
Affiliation(s)
- Vladimir V Feschenko
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | |
Collapse
|
25
|
Abstract
Fragile X syndrome results from the massive expansion of a CGG repeat in the 5' untranslated region of the gene FMR1. Data suggest that the hyperexpansion properties of FMR1 CGG repeats may depend on flanking cis-acting elements. We have therefore used homologous recombination in yeast to introduce an in situ CGG expansion corresponding to a premutation-sized allele into a human YAC carrying the FMR1 locus. Several transgenic lines were generated that carried repeats of varying lengths and amounts of flanking sequence. Length-dependent instability in the form of small expansions and contractions was observed in both male and female transmissions over five generations. No parent-of-origin effect or somatic instability was observed. Alterations in tract length were found to occur exclusively in the 3' uninterrupted CGG tract. Large expansion events indicative of a transition from a premutation to a full mutation were not observed. Overall, our results indicate both similarities and differences between the behavior of a premutation-sized repeat in mouse and that in human.
Collapse
Affiliation(s)
- Andrea M Peier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
26
|
Fojtík P, Vorlícková M. The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH. Nucleic Acids Res 2001; 29:4684-90. [PMID: 11713318 PMCID: PMC92515 DOI: 10.1093/nar/29.22.4684] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UV absorption and CD spectroscopy, along with polyacrylamide gel electrophoresis, were used to study conformational properties of DNA fragments containing the trinucleotide repeat (GCC)(n) (n = 4, 8 or 16), whose expansion is correlated with the fragile X chromosome syndrome. We have found that the conformational spectrum of the (GCC)(n) strand is wider than has been shown so far. (GCC)(n) strands adopt the hairpin described in the literature under a wide range of salt concentrations, but only at alkaline (>7.5) pH values. However, at neutral and slightly acid pH (GCC)(4) and (GCC)(8) strands homodimerize. Our data suggest that the homodimer is a bimolecular tetraplex formed by two parallel-oriented hairpins held together by hemi-protonated intermolecular C.C(+) pairs. The (GCC)(16) strand forms the same tetraplex intramolecularly. We further show that below pH 5 (GCC)(n) strands generate intercalated cytosine tetraplexes, whose molecularity depends on DNA strand length. They are tetramolecular with (GCC)(4), bimolecular with (GCC)(8) and monomolecular with (GCC)(16). i-Tetraplex formation is a complex and slow process. The neutral tetraplex, on the other hand, arises with fast kinetics under physiological conditions. Thus it is a conformational alternative of the (GCC)(n) strand duplex with a complementary (GGC)(n) strand.
Collapse
Affiliation(s)
- P Fojtík
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Královopolská 135, CZ-61265 Brno, Czech Republic
| | | |
Collapse
|
27
|
Krasilnikova MM, Smirnova EV, Krasilnikov AS, Mirkin SM. A new trick for an old dog: TraY binding to a homopurine-homopyrimidine run attenuates DNA replication. J Mol Biol 2001; 313:271-82. [PMID: 11800556 DOI: 10.1006/jmbi.2001.5059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of the d(GA)(n).d(TC)(n) repeat on plasmid replication in Escherichia coli cells were analyzed using electrophoretic analysis of replication intermediates. This repeat appeared to stall the replication fork progression in E. coli strains carrying F' episomes. The potency of replication stalling increased with the repeat's length but did not depend on its orientation relative to the replication origin, or transcription through the repeat. Treatment of E. coli cells with the protein synthesis inhibitor chloramphenicol abolished replication blockage, indicating that protein binding might be responsible for the repeat-caused replication blockage. Concordantly, dimethylsulfate footprinting in vivo revealed methylation protection of all guanine residues within the d(GA)(n).d(TC)(n). Gel retardation assays with crude cell extracts confirmed the presence of a d(GA)(n).d(TC)(n) -binding activity in F', but not F(-), strains. Further, strains cured from the F' episome lost this activity, while F(-) strains that acquired the F' factor via conjugation, acquired d(GA)(n).d(TC)(n)-binding activity as well. Thus, this d(GA)(n).d(TC)(n)-binding protein is encoded by the F' factor. Purification of this protein by affinity chromatography revealed a single polypeptide with an apparent molecular mass of 15.2 kDa. Microsequencing of its two tryptic peptides revealed two perfect matches with the TraY protein, which is encoded by the F factor. Overexpression of an individual TraY protein in the F(-) E. coli strain conveyed d(GA)(n).d(TC)(n)-binding activity in vitro and replication stalling at d(GA)(n).d(TC)(n) repeats in vivo. We conclude that TraY binding to a homopurine-homopyrimidine repeat is responsible for stalling DNA replication. Biological applications of this phenomenon are discussed.
Collapse
Affiliation(s)
- M M Krasilnikova
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
28
|
Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 2001; 11:1441-52. [PMID: 11483586 PMCID: PMC311097 DOI: 10.1101/gr.184001] [Citation(s) in RCA: 771] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A total of 57.8 Mb of publicly available rice (Oryza sativa L.) DNA sequence was searched to determine the frequency and distribution of different simple sequence repeats (SSRs) in the genome. SSR loci were categorized into two groups based on the length of the repeat motif. Class I, or hypervariable markers, consisted of SSRs > or =20 bp, and Class II, or potentially variable markers, consisted of SSRs > or =12 bp <20 bp. The occurrence of Class I SSRs in end-sequences of EcoRI- and HindIII-digested BAC clones was one SSR per 40 Kb, whereas in continuous genomic sequence (represented by 27 fully sequenced BAC and PAC clones), the frequency was one SSR every 16 kb. Class II SSRs were estimated to occur every 3.7 kb in BAC ends and every 1.9 kb in fully sequenced BAC and PAC clones. GC-rich trinucleotide repeats (TNRs) were most abundant in protein-coding portions of ESTs and in fully sequenced BACs and PACs, whereas AT-rich TNRs showed no such preference, and di- and tetranucleotide repeats were most frequently found in noncoding, intergenic regions of the rice genome. Microsatellites with poly(AT)n repeats represented the most abundant and polymorphic class of SSRs but were frequently associated with the Micropon family of miniature inverted-repeat transposable elements (MITEs) and were difficult to amplify. A set of 200 Class I SSR markers was developed and integrated into the existing microsatellite map of rice, providing immediate links between the genetic, physical, and sequence-based maps. This contribution brings the number of microsatellite markers that have been rigorously evaluated for amplification, map position, and allelic diversity in Oryza spp. to a total of 500.
Collapse
Affiliation(s)
- S Temnykh
- Department of Plant Breeding, USDA-ARS Center for Agricultural Bioinformatics, Cornell University, Ithaca, New York 14853-1901, USA
| | | | | | | | | | | |
Collapse
|
29
|
Bzymek M, Lovett ST. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci U S A 2001; 98:8319-25. [PMID: 11459970 PMCID: PMC37438 DOI: 10.1073/pnas.111008398] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rearrangements between tandem sequence homologies of various lengths are a major source of genomic change and can be deleterious to the organism. These rearrangements can result in either deletion or duplication of genetic material flanked by direct sequence repeats. Molecular genetic analysis of repetitive sequence instability in Escherichia coli has provided several clues to the underlying mechanisms of these rearrangements. We present evidence for three mechanisms of RecA-independent sequence rearrangements: simple replication slippage, sister-chromosome exchange-associated slippage, and single-strand annealing. We discuss the constraints of these mechanisms and contrast their properties with RecA-dependent homologous recombination. Replication plays a critical role in the two slipped misalignment mechanisms, and difficulties in replication appear to trigger rearrangements via all these mechanisms.
Collapse
Affiliation(s)
- M Bzymek
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | | |
Collapse
|
30
|
Mariappan SV, Silks LA, Bradbury EM, Gupta G. Fragile X DNA triplet repeats, (GCC)n, form hairpins with single hydrogen-bonded cytosine.cytosine mispairs at the CpG sites: isotope-edited nuclear magnetic resonance spectroscopy on (GCC)n with selective 15N4-labeled cytosine bases. J Mol Biol 2001; 283:111-20. [PMID: 9761677 DOI: 10.1006/jmbi.1998.1990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Here, we provide a direct proof that the formation of hairpins by (GCC)n at the 5'-UTR of the FMR-1 gene offers a mechanism for CpG hypermethylation associated with the fragile X syndrome. For this, we have performed hetero-nuclear (15N-1H) magnetic resonance spectroscopy to probe the structure of the CpG sites in the (GCC)n hairpins that are 15N-labeled at the amino (N4) groups of specific cytosine bases. Analyses of chemical shift, pH-induced chemical exchange, and NOE pattern of the (15N-labeled) amino protons of cytosine bases reveal that the cytosine bases at the CpG sites are intrahelical and well-stacked with the neighboring G.C base-pairs in the stem of these hairpins and probably form single hydrogen-bonded C.C mispairs. Measurements of pH-dependent 1H line-width also demonstrate that the C.C mispairs are more susceptible to open-closure than the G.C base-pairs. Thus, the Cs at the CpG sites of the (GCC)n hairpin are "flipped out" more easily to the activated state than those in the corresponding Watson-Crick duplex, (GCC)n. (GGC)n and this makes the hairpin a better target for methylation by the human methyltransferase, the enzyme that methylates the Cs at the CpG sites.
Collapse
Affiliation(s)
- S V Mariappan
- Theoretical Biology and Biophysics, Los alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
31
|
Schumacher S, Pinet I, Bichara M. Modulation of transcription reveals a new mechanism of triplet repeat instability in Escherichia coli. J Mol Biol 2001; 307:39-49. [PMID: 11243802 DOI: 10.1006/jmbi.2000.4489] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many human hereditary disease genes are associated with the expansion of triplet repeat sequences. In Escherichia coli (CTG/CAG) triplet repeat sequences are unstable and we have developed a plasmid-based assay enabling us to observe and quantify both expansions and deletions. In this work, we have investigated the role of transcription on the instability of a (CTG/CAG) insert containing 64 repeats. Using this assay, we show that induction of transcription results in a significant increase in the frequency of long deletions and a reduction in the frequency of long expansions. On the other hand, overproduction of transcription repressor molecules leads to an increase in both expansions and deletions. In this latter case, we propose that the increased instability is due to the arrest of replication progression by the interaction of the repressor molecule with its cognate operator and subsequent generations of DNA strand breaks.
Collapse
Affiliation(s)
- S Schumacher
- Cancérogénèse et Mutagénèse Moléculaire et Structurale UPR 9003, CNRS, Pôle API, Boulevard Sébastien Brant, 67400 Strasbourg-Illkirch, France
| | | | | |
Collapse
|
32
|
Vasil'eva GV, Bezlepkin VG, Lomaeva MG, Sirota NP, Gaziev AI. AP-PCR assay of DNA alterations in the progeny of male mice exposed to low-level gamma-radiation. Mutat Res 2001; 485:133-41. [PMID: 11182544 DOI: 10.1016/s0921-8777(00)00066-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
By comparative analysis of fingerprints of arbitrarily primed polymerase chain reaction (AP-PCR) products, DNA alterations in somatic cells of the progeny (F1 generation) of male mice chronically exposed to low-doses of gamma-radiation was investigated. Male BALB/c mice exposed to 10-50 cGy were mated with unirradiated females 15 days after irradiation. DNA was isolated from biopsies taken from tail tips of 2-month-old progeny. Preliminary AP-PCRs were carried out with 17 primers representing core sequences of micro- and/or minisatellites or their flanking oligonucleotides. Best quantitatively reproduced AP-PCR fingerprints of genomic DNA were obtained with one of these primers, a 20-mer oligonucleotide flanking the micro-satellite locus Atplb2 on mouse chromosome 11. Comparative analysis of individual fingerprints of AP-PCR products obtained on DNA templates from the progeny of irradiated and intact males revealed an increased variability of micro-satellite-associated sequences and an increased frequency of "non-parental bands" in DNA-fingerprints from the progeny of males chronically exposed to gamma-radiation 15 days before mating (at the postmeiotic stage of spermatogenesis). The results show that increased micro-satellite instability can be initiated by irradiation of the male parent to subsequently arise or be transmitted to the soma of the F1 generations.
Collapse
Affiliation(s)
- G V Vasil'eva
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, 142290, Moscow, Russia
| | | | | | | | | |
Collapse
|
33
|
Suzuki A, Maruno A, Tahira T, Hayashi K. Polar alteration of short tandem repeats (STRs) in mammalian cells. Mutat Res 2001; 474:159-68. [PMID: 11239973 DOI: 10.1016/s0027-5107(01)00063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Instability of short tandem repeats (STRs) in DNA during replication is observed in all organisms examined, and is causatively involved in various human diseases. We explore the mechanisms involved in instability by examining length changes occurring during the replication of [(CA)(20)TA](n) and [(CAG)(20)TAG](n), in human cells. We show that the majority of alterations consist of an insertion or deletion of one repeat unit, and base substitutions or length changes involving many repeat units are rare. We also show that length changes of two-tract STRs are biased toward the 3'-end of the repeat tract, in reference to lagging strand synthesis. There are some differences between our observations and previous observations in microbes, e.g. the orientation effect was not observed in this study. The results of this study are discussed in terms of the molecular mechanisms leading to alterations in repeat tracts.
Collapse
Affiliation(s)
- A Suzuki
- Division of Genome Analysis, Institute of Genetic Information, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan
| | | | | | | |
Collapse
|
34
|
Sopher BL, Myrick SB, Hong JY, Smith AC, La Spada AR. In vivo expansion of trinucleotide repeats yields plasmid and YAC constructs for targeting and transgenesis. Gene 2000; 261:383-90. [PMID: 11167027 DOI: 10.1016/s0378-1119(00)00508-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Production of mouse models of inherited neurodegenerative diseases is an important step towards understanding the mechanism of neurotoxicity and for testing potential therapies. We are interested in creating a mouse model for X-linked spinal and bulbar muscular atrophy (SBMA), a neuromuscular disorder caused by expansion of a CAG repeat within the androgen receptor (AR) gene. To permit generation of mice that will show a SBMA phenotype within their life span, we decided to obtain a yeast artificial chromosome (YAC) carrying the AR gene and introduce CAG repeat mutations numbering 100 or more triplets. SBMA patients with more than 70 CAGs have never been observed; therefore, we chose to expand a 59 CAG repeat tract in vivo in Escherichia coli. Although we set out to expand this repeat tract using a recombination paradigm involving two plasmid co-propagation, we did not observe large expansions. We were instead able to incrementally generate repeat tracts from 100 to 200 CAGs in a yeast integrating plasmid vector by taking advantage of replication instability. In the course of our experiments that yielded these CAG repeat tracts, we evaluated the role of repeat orientation, vector co-propagation, and recA function on the expansion process. We then used one of the yeast integrating vectors to successfully produce an AR YAC construct carrying 100 CAG repeats. AR YAC CAG100 will serve as a valuable reagent for the production of a SBMA mouse.
Collapse
Affiliation(s)
- B L Sopher
- Department of Laboratory Medicine, University of Washington Medical Center, Box 357110, Room NW 120, WA, Seattle 98195-7110, USA
| | | | | | | | | |
Collapse
|
35
|
Salat U, Bardoni B, Wöhrle D, Steinbach P. Increase of FMRP expression, raised levels of FMR1 mRNA, and clonal selection in proliferating cells with unmethylated fragile X repeat expansions: a clue to the sex bias in the transmission of full mutations? J Med Genet 2000; 37:842-50. [PMID: 11073538 PMCID: PMC1734474 DOI: 10.1136/jmg.37.11.842] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fragile X syndrome is a triplet repeat disorder caused by expansions of a CGG repeat in the fragile X mental retardation gene (FMR1) to more than 220 triplets (full mutation) that usually coincide with hypermethylation and transcriptional silencing. The disease phenotype results from deficiency or loss of FMR1 protein (FMRP) and occurs in both sexes. The underlying full mutations arise exclusively on transmission from a mother who carries a premutation allele (60-200 CGGs). While the absolute requirement of female transmission could result from different mechanisms, current evidence favours selection or contraction processes acting at gametogenesis of pre- and full mutation males. To address these questions experimentally, we used a model system of cultured fibroblasts from a male who presented heterogeneous unmethylated expansions in the pre- and full mutation size range. On continual cell proliferation to 30 doublings we re-examined the behaviour of the expanded repeats on Southern blots and also determined the expression of the FMR1 gene by FMRP immunocytochemistry, western analysis, and RT-PCR. With increasing population doublings, expansion patterns changed and showed accumulation of shorter alleles. The FMRP levels were below normal but increased continuously while the cells that were immunoreactive for FMRP accumulated. The level of FMR1 mRNA was raised with even higher levels of mRNA measured at higher passages. Current results support the theory of a selection advantage of FMRP positive over FMRP deficient cells. During extensive proliferation of spermatogonia in fragile X males, this selection mechanism would eventually replace all full mutations by shorter alleles allowing more efficient FMRP translation. At the proliferation of oogonia of carrier females, the same mechanism would, in theory, favour transmission of any expanded FMR1 allele on inactive X chromosomes.
Collapse
Affiliation(s)
- U Salat
- Department of Human Genetics, University Hospital, 89070 Ulm, Germany.
| | | | | | | |
Collapse
|
36
|
Raca G, Siyanova EY, McMurray CT, Mirkin SM. Expansion of the (CTG)(n) repeat in the 5'-UTR of a reporter gene impedes translation. Nucleic Acids Res 2000; 28:3943-9. [PMID: 11024174 PMCID: PMC110791 DOI: 10.1093/nar/28.20.3943] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2000] [Revised: 08/22/2000] [Accepted: 08/22/2000] [Indexed: 11/15/2022] Open
Abstract
Effects of d(CAG)(n).d(CTG)(n) repeats on expression of a reporter gene in human cell culture were studied using transient transfection, RNase protection and coupled transcription/translation assays. Cloning these repeats into the reporter 3'-UTR did not affect gene functioning. In contrast, placing the repeats in the reporter 5'-UTR led to strong inhibition of expression. This inhibition depended on the repeat orientation, being prominent only when the (CTG)(n) tracts were in the sense strand for transcription. Further, the strength of inhibition increased exponentially with an increase in repeat length. Our data indicate that expanded (CTG)(n) repeats prevent efficient translation of the reporter mRNA both in vitro and in vivo. We suggest that formation of stable hairpins by (CUG)(n) runs of increasing length in the 5'-UTR of a mRNA progressively inhibits the scanning step of translation initiation. This points to a novel mechanism of regulating gene expression by expandable d(CTG)(n) repeats.
Collapse
Affiliation(s)
- G Raca
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
37
|
Jankowski C, Nasar F, Nag DK. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc Natl Acad Sci U S A 2000; 97:2134-9. [PMID: 10681451 PMCID: PMC15766 DOI: 10.1073/pnas.040460297] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Expansion of trinucleotide repeats is associated with a growing number of human diseases. The mechanism and timing of expansion of the repeat tract are poorly understood. In humans, trinucleotide repeats show extreme meiotic instability, and expansion of the repeat tract has been suggested to occur in the germ-line mitotic divisions or postmeiotically during early divisions of the embryo. Studies in model organisms have indicated that polymerase slippage plays a major role in the repeat tract instability and meiotic instability is severalfold higher than the mitotic instability. We show here that meiotic instability of the CAG/CTG repeat tract in yeast is associated with double-strand break (DSB) formation within the repeated sequences, and that the DSB formation is dependent on the meiotic recombination machinery. The DSB repair results in both expansions and contractions of the CAG repeat tract.
Collapse
Affiliation(s)
- C Jankowski
- Molecular Genetics Program, Wadsworth Center, 120 New Scotland Avenue, Albany, NY 12201-2002, USA
| | | | | |
Collapse
|
38
|
White PJ, Borts RH, Hirst MC. Stability of the human fragile X (CGG)(n) triplet repeat array in Saccharomyces cerevisiae deficient in aspects of DNA metabolism. Mol Cell Biol 1999; 19:5675-84. [PMID: 10409756 PMCID: PMC84419 DOI: 10.1128/mcb.19.8.5675] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expanded trinucleotide repeats underlie a growing number of human diseases. The human FMR1 (CGG)(n) array can exhibit genetic instability characterized by progressive expansion over several generations leading to gene silencing and the development of the fragile X syndrome. While expansion is dependent upon the length of uninterrupted (CGG)(n), instability occurs in a limited germ line and early developmental window, suggesting that lineage-specific expression of other factors determines the cellular environment permissive for expansion. To identify these factors, we have established normal- and premutation-length human FMR1 (CGG)(n) arrays in the yeast Saccharomyces cerevisiae and assessed the frequency of length changes greater than 5 triplets in cells deficient in various DNA repair and replication functions. In contrast to previous studies with Escherichia coli, we observed a low frequency of orientation-dependent large expansions in arrays carrying long uninterrupted (CGG)(n) arrays in a wild-type background. This frequency was unaffected by deletion of several DNA mismatch repair genes or deletion of the EXO1 and DIN7 genes and was not enhanced through meiosis in a wild-type background. Array contraction occurred in an orientation-dependent manner in most mutant backgrounds, but loss of the Sgs1p resulted in a generalized increase in array stability in both orientations. In contrast, FMR1 arrays had a 10-fold-elevated frequency of expansion in a rad27 background, providing evidence for a role in lagging-strand Okazaki fragment processing in (CGG)(n) triplet repeat expansion.
Collapse
Affiliation(s)
- P J White
- Fragile X Group, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | | | | |
Collapse
|
39
|
Cohen H, Sears DD, Zenvirth D, Hieter P, Simchen G. Increased instability of human CTG repeat tracts on yeast artificial chromosomes during gametogenesis. Mol Cell Biol 1999; 19:4153-8. [PMID: 10330155 PMCID: PMC104374 DOI: 10.1128/mcb.19.6.4153] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expansion of trinucleotide repeat tracts has been shown to be associated with numerous human diseases. The mechanism and timing of the expansion events are poorly understood, however. We show that CTG repeats, associated with the human DMPK gene and implanted in two homologous yeast artificial chromosomes (YACs), are very unstable. The instability is 6 to 10 times more pronounced in meiosis than during mitotic division. The influence of meiosis on instability is 4.4 times greater when the second YAC with a repeat tract is not present. Most of the changes we observed in trinucleotide repeat tracts are large contractions of 21 to 50 repeats. The orientation of the insert with the repeats has no effect on the frequency and distribution of the contractions. In our experiments, expansions were found almost exclusively during gametogenesis. Genetic analysis of segregating markers among meiotic progeny excluded unequal crossover as the mechanism for instability. These unique patterns have novel implications for possible mechanisms of repeat instability.
Collapse
Affiliation(s)
- H Cohen
- Department of Genetics, The Hebrew University of Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
40
|
McMurray CT. DNA secondary structure: a common and causative factor for expansion in human disease. Proc Natl Acad Sci U S A 1999; 96:1823-5. [PMID: 10051552 PMCID: PMC33527 DOI: 10.1073/pnas.96.5.1823] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- C T McMurray
- Departments of Pharmacology and Biochemistry and Molecular Biology, Molecular Neuroscience Program, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| |
Collapse
|
41
|
Miret JJ, Pessoa-Brandão L, Lahue RS. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1998; 95:12438-43. [PMID: 9770504 PMCID: PMC22849 DOI: 10.1073/pnas.95.21.12438] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A quantitative and selective genetic assay was developed to monitor expansions of trinucleotide repeats (TNRs) in yeast. A promoter containing 25 repeats allows expression of a URA3 reporter gene and yields sensitivity to the drug 5-fluoroorotic acid. Expansion of the TNR to 30 or more repeats turns off URA3 and provides drug resistance. When integrated at either of two chromosomal loci, expansion rates were 1 x 10(-5) to 4 x 10(-5) per generation if CTG repeats were replicated on the lagging daughter strand. PCR analysis indicated that 5-28 additional repeats were present in 95% of the expanded alleles. No significant changes in CTG expansion rates occurred in strains deficient in the mismatch repair gene MSH2 or the recombination gene RAD52. The frequent nature of CTG expansions suggests that the threshold number for this repeat is below 25 in this system. In contrast, expansions of the complementary repeat CAG occurred at 500- to 1,000-fold lower rates, similar to a randomized (C,A,G) control sequence. When the reporter plasmid was inverted within the chromosome, switching the leading and lagging strands of replication, frequent expansions were observed only when CTG repeats resided on the lagging daughter strand. Among the rare CAG expansions, the largest gain in tract size was 38 repeats. The control repeats CTA and TAG showed no detectable rate of expansions. The orientation-dependence and sequence-specificity data support the model that expansions of CTG and CAG tracts result from aberrant DNA replication via hairpin-containing Okazaki fragments.
Collapse
Affiliation(s)
- J J Miret
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | |
Collapse
|
42
|
Kruglyak S, Durrett RT, Schug MD, Aquadro CF. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci U S A 1998; 95:10774-8. [PMID: 9724780 PMCID: PMC27971 DOI: 10.1073/pnas.95.18.10774] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distribution of allele lengths under this model and use it to fit DNA data for di-, tri-, and tetranucleotide repeats in humans, mice, fruit flies, and yeast. The best fit results lead to slippage rate estimates that are highest in mice, followed by humans, then yeast, and then fruit flies. Within each organism, the estimates are highest in di-, then tri-, and then tetranucleotide repeats. Our estimates are consistent with experimentally determined mutation rates from other studies. The results suggest that the different length distributions among organisms and repeat motifs can be explained by a simple difference in slippage rates and that selective constraints on length need not be imposed.
Collapse
Affiliation(s)
- S Kruglyak
- School of Operations Research and Industrial Engineering, Rhodes Hall, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
43
|
Schumacher S, Fuchs RP, Bichara M. Expansion of CTG repeats from human disease genes is dependent upon replication mechanisms in Escherichia coli: the effect of long patch mismatch repair revisited. J Mol Biol 1998; 279:1101-10. [PMID: 9642087 DOI: 10.1006/jmbi.1998.1827] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many human hereditary disease genes have been recently associated with the expansion of CTG/GAC repeats. We have used a plasmid-based assay in Escherichia coli to investigate the instability of a (CTG/GAC) insert containing 64 repeats. Using this assay, expansions were biochemically detected and subsequently quantified. We show that the occurence of expansions within these trinucleotide repeats is dependent upon replicative mechanisms. Expansions of up to 30 repeats and deletions of almost all possible sizes occured regardless of the orientation of the insert relative to the replication origin. In contradiction to a previous report, the mismatch repair pathway was found to strongly stabilize these repeat stretches.
Collapse
Affiliation(s)
- S Schumacher
- CNRS, Pôle API, Boulevard Sébastien Brant, Strasbourg-Illkirch, UPR 9003, France
| | | | | |
Collapse
|
44
|
Abstract
The genomes of all organisms contain an abundance of DNA repeats which are at-risk for causing genetic change. We have used the yeast Saccharomyces cerevisiae to investigate various repeat categories in order to understand their potential for causing genomic instability and the role of DNA metabolism factors. Several types of repeats can increase enormously the likelihood of genetic changes such as mutation or recombination when present either in wild type or mutants defective in replication or repair. Specifically, we have investigated inverted repeats, homonucleotide runs, and short distant repeats and the consequences of various DNA metabolism mutants. Because the at-risk motifs (ARMs) that we characterized are sensitive indicators, we have found that they are useful tools to reveal new genetic factors affecting genome stability as well as to distinguish subtle differences between alleles.
Collapse
Affiliation(s)
- D A Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, 101 Alexander Dr., P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
45
|
Hirst MC, White PJ. Cloned human FMR1 trinucleotide repeats exhibit a length- and orientation-dependent instability suggestive of in vivo lagging strand secondary structure. Nucleic Acids Res 1998; 26:2353-8. [PMID: 9580685 PMCID: PMC147547 DOI: 10.1093/nar/26.10.2353] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The normal human FMR1 gene contains a genetically stable (CGG) n trinucleotide repeat which usually carries interspersed AGG triplets. An increase in repeat number and the loss of interspersions results in array instability, predominantly expansion, leading to FMR1 gene silencing. Instability is directly related to the length of the uninterrupted (CGG) n repeat and is widely assumed to be related to an increased propensity to form G-rich secondary structures which lead to expansion through replication slippage. In order to investigate this we have cloned human FMR1 arrays with internal structures representing the normal, intermediate and unstable states. In one replicative orientation, arrays show a length-dependent instability, deletions occurring in a polar manner. With longer arrays these extend into the FMR1 5'-flanking DNA, terminating at either of two short CGG triplet arrays. The orientation-dependent instability suggests that secondary structure forms in the G-rich lagging strand template, resolution of which results in intra-array deletion. These data provide direct in vivo evidence for a G-rich lagging strand secondary structure which is believed to be involved in the process of triplet expansion in humans.
Collapse
Affiliation(s)
- M C Hirst
- Institute of Molecular Medicine, The John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DS, UK.
| | | |
Collapse
|
46
|
Wöhrle D, Salat U, Gläser D, Mücke J, Meisel-Stosiek M, Schindler D, Vogel W, Steinbach P. Unusual mutations in high functioning fragile X males: apparent instability of expanded unmethylated CGG repeats. J Med Genet 1998; 35:103-11. [PMID: 9507388 PMCID: PMC1051212 DOI: 10.1136/jmg.35.2.103] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on further cases of high functioning fragile X males showing decreased expression of FMR1 protein, absence of detectable methylation at the EagI site in the FMR1 gene promoter, and highly unusual patterns of fragile X mutations defined as smear of expansions extending from premutation to full mutation range. Very diffuse and therefore not easily detectable patterns of full mutations were also observed on prenatal testing using DNA from chorionic villi sampled at a time of development when full mutations were still unmethylated in this particular tissue. In the search for possible determinants of such unusual patterns, repeat expansions in the premutation and in the lower full mutation range were identified on genomic PstI blots previously prepared for fragile X DNA testing. Cases with 130 or more triplets, and a number of shorter repeats, were reinvestigated on EcoRI plus EagI digests. Among the 119 expansions, there were 22 in our sample showing either blurred bands or smears on PstI blots. This particular characteristic was strongly associated with the coincidence of a repeat size of more than 130 triplets and absence of EagI site methylation. Our data set also includes cases of mosaic patterns consisting of smears of unmethylated expansions to more than 130 CGGs and of clear bands of methylated expansions. We therefore suggest that in fragile X syndrome unusual smeared patterns of mutations result from somatic instability of larger repeats under circumstantial absence of repeat methylation.
Collapse
Affiliation(s)
- D Wöhrle
- Abteilung Medizinische Genetik, Universität Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C. Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 1997; 205:125-40. [PMID: 9461386 DOI: 10.1016/s0378-1119(97)00404-6] [Citation(s) in RCA: 342] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper reports the first comprehensive analysis of Displacement loop (D-loop) region sequences from ten different mammalian orders. It represents a systematic evolutionary study at the molecular level on regulatory homologous regions in organisms belonging to a well defined class, mammalia, which radiated about 150 million years ago (Mya). We have aligned and analyzed 26 complete D-loop region sequences available in the literature and the fat dormouse sequence, recently determined in our laboratory. The novelty of our alignment consists of the extensive manual revision of the preliminary output obtained by computer program to optimize sequence similarity, particularly for the two peripheral domains displaying heterogeneity in length and the presence of repeated sequences. The multialignment is available at the WWW site: http://www.ba.cnr.it/dloop.html. Our comparative study has allowed us to identify new conserved sequence blocks present in all the species under consideration and events of insertion/deletion which have important implications in both functional and evolutionary aspects. In particular we have detected two blocks, about 60 bp long, extended termination associated sequences (ETAS1 and ETAS2) conserved in all the organisms considered. Evaluation against experimental work suggests a possible functional role of ETAS1 and ETAS2 in the regulation of replication and transcription and targeted experimental approaches. The analyses on conserved sequence blocks (CSBs) clearly indicate that CSB1 is the only very essential element, common to all mammalian mt genomes, while CSB2 and CSB3 could be involved in different though related functions, probably species specific, and thus more linked to nuclear mitochondrial coevolutionary processes. Our hypothesis on the different functional implications of the conserved elements, CSBs and TASs, reported so far as main regulatory signals, would explain the different conservation of these elements in evolution. Moreover the intra-order comparison of the D-loop regions highlights peculiar features useful to define the evolutionary dynamics of this region in closely related species.
Collapse
Affiliation(s)
- E Sbisà
- Centro di Studio sui Mitocondri e Metabolismo Energetico, CNR, Bari, Italy
| | | | | | | | | |
Collapse
|
48
|
Tseng H. Complementary oligonucleotides and the origin of the mammalian involucrin gene. Gene X 1997; 194:87-95. [PMID: 9266677 DOI: 10.1016/s0378-1119(97)00166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A large portion of the consensus sequence of four mammalian involucrin genes comprises four pairs of complementary oligonucleotides. One of the oligonucleotides in each pair is rich in purines and the other in pyrimidines. The perfect complementarity of a number of pairs apparently resulted from a concerted single nucleotide substitution in each pairing oligonucleotide from their respective consensus. This suggests that one member of the pair was derived from the other member of the same pair by a template-dependent replication mechanism. Such a replication mechanism differs from the one that creates tandem repeats by producing short complementary sequence on the same strand of DNA.
Collapse
Affiliation(s)
- H Tseng
- School of Medicine, University of Pennsylvania, Department of Dermatology, Philadelphia, USA.
| |
Collapse
|
49
|
Miret JJ, Pessoa-Brandão L, Lahue RS. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:3382-7. [PMID: 9154837 PMCID: PMC232191 DOI: 10.1128/mcb.17.6.3382] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A quantitative genetic assay was developed to monitor alterations in tract lengths of trinucleotide repeat sequences in Saccharomyces cerevisiae. Insertion of (CAG)50 or (CTG)50 repeats into a promoter that drives expression of the reporter gene ADE8 results in loss of expression and white colony color. Contractions within the trinucleotide sequences to repeat lengths of 8 to 38 restore functional expression of the reporter, leading to red colony color. Reporter constructs including (CAG)50 or (CTG)50 repeat sequences were integrated into the yeast genome, and the rate of red colony formation was measured. Both orientations yielded high rates of instability (4 x 10(-4) to 18 x 10(-4) per cell generation). Instability depended on repeat sequences, as a control harboring a randomized (C,A,G)50 sequence was at least 100-fold more stable. PCR analysis of the trinucleotide repeat region indicated an excellent correlation between change in color phenotype and reduction in length of the repeat tracts. No preferential product sizes were observed. Strains containing disruptions of the mismatch repair gene MSH2, MSH3, or PMS1 or the recombination gene RAD52 showed little or no difference in rates of instability or distributions of products, suggesting that neither mismatch repair nor recombination plays an important role in large contractions of trinucleotide repeats in yeast.
Collapse
Affiliation(s)
- J J Miret
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | |
Collapse
|
50
|
Cox R, Mirkin SM. Characteristic enrichment of DNA repeats in different genomes. Proc Natl Acad Sci U S A 1997; 94:5237-42. [PMID: 9144221 PMCID: PMC24662 DOI: 10.1073/pnas.94.10.5237] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Using computer programs developed for this purpose, we searched for various repeated sequences including inverted, direct tandem, and homopurine-homopyrimidine mirror repeats in various prokaryotes, eukaryotes, and an archaebacterium. Comparison of observed frequencies with expectations revealed that in bacterial genomes and organelles the frequency of different repeats is either random or enriched for inverted and/or direct tandem repeats. By contrast, in all eukaryotic genomes studied, we observed an overrepresentation of all repeats, especially homopurine-homopyrimidine mirror repeats. Analysis of the genomic distribution of all abundant repeats showed that they are virtually excluded from coding sequences. Unexpectedly, the frequencies of abundant repeats normalized for their expectations were almost perfect exponential functions of their size, and for a given repeat this function was indistinguishable between different genomes.
Collapse
Affiliation(s)
- R Cox
- Department of Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|