1
|
Remoli AL, Sgarbanti M, Perrotti E, Acchioni M, Orsatti R, Acchioni C, Battistini A, Clarke R, Marsili G. IκB kinase-ε-mediated phosphorylation triggers IRF-1 degradation in breast cancer cells. Neoplasia 2020; 22:459-469. [PMID: 32784074 PMCID: PMC7419274 DOI: 10.1016/j.neo.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022]
Abstract
Interferon Regulatory Factors (IRFs) are key regulators of immunity, cell survival and apoptosis. IRF transcriptional activity and subcellular localization are tightly regulated by posttranscriptional modifications including phosphorylation. The IκB kinase family member IKK-ε is essential in regulating antiviral innate immunity mediated by IRFs but is now also recognized as an oncoprotein amplified and overexpressed in breast cancer cell lines and patient-derived tumors. In the present study, we report that the tumor suppressor IRF-1 is a specific target of IKK-ε in breast cancer cells. IKK-ε-mediated phosphorylation of IRF-1 dramatically decreases IRF-1 protein stability, accelerating IRF-1 degradation and quenching IRF-1 transcriptional activity. Chemical inhibition of IKK-ε activity, fully restores IRF-1 levels and function and positively correlates with inhibition of cell growth and proliferation of breast cancer cells. By using a breast cancer cell line stably expressing a dominant negative version of IRF-1 we were able to demonstrate that IKK-ε preferentially exerts its oncogenic potential in breast cancer through the regulation of IRF-1 and point to the IKK-ε-mediated phosphorylation of IRF-1 as a therapeutic target to overcome IKK-ε-mediated tumorigenesis.
Collapse
Affiliation(s)
- Anna Lisa Remoli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Edvige Perrotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Orsatti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Battistini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Robert Clarke
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States; Hormel Institute, University of Minnesota, Austin, Minnesota, United States
| | - Giulia Marsili
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
2
|
Interferon regulatory factor 1 inactivation in human cancer. Biosci Rep 2018; 38:BSR20171672. [PMID: 29599126 PMCID: PMC5938431 DOI: 10.1042/bsr20171672] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/18/2018] [Accepted: 03/28/2018] [Indexed: 11/28/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a group of closely related proteins collectively referred to as the IRF family. Members of this family were originally recognized for their roles in inflammatory responses; however, recent research has suggested that they are also involved in tumor biology. This review focusses on current knowledge of the roles of IRF-1 and IRF-2 in human cancer, with particular attention paid to the impact of IRF-1 inactivation. The different mechanisms underlying IRF-1 inactivation and their implications for human cancers and the potential importance of IRF-1 in immunotherapy are also summarized.
Collapse
|
3
|
|
4
|
Carvalhal AV, Moreira JL, Cruz H, Mueller P, Hauser H, Carrondo MJ. Manipulation of culture conditions for BHK cell growth inhibition by IRF-1 activation. Cytotechnology 2011; 32:135-45. [PMID: 19002975 DOI: 10.1023/a:1008139304964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The activation of interferon-regulatory-factor-1 (IRF-1) hasbeen applied to regulate the cell growth of BHK cells. Theconstitutively expressed IRF-1-estrogen receptor fusion protein(IRF-1-hER) activated by the addition to the culture medium ofan estrogen analogue (estradiol), enabled IRF-1 to gain itstranscriptional activator function. By using a dicistronicstabilised self-selecting construct it was possible to controlcell proliferation. With the addition of 100 nM of estradiol at the beginning of the exponential phase, the IRF-1 activationled to a rapid cell growth inhibition. Two days after estradioladdition cell concentration was still maintained but a decreasein cell viability was observed. This cell response isindependent on clone (producer and non-producer) and culturesystem (static and stirred cultures). Specificrecombinant-protein productivity of the producer clone was notsignificantly altered. Control experiments confirmed that IRF-1activation effect was not due to the addition of estradiol per se, estradiol solvent or serum concentration. The extent ofcell growth inhibition is dependent on estradiol concentrationand estradiol addition time, although a decrease in cellviability was always observed. Reducing the time span ofestradiol exposure allowed the decrease in the cell viability tobe controlled and the stationary inhibited phase to be extended:when the time of contact between the cells and estradiol isreduced cell viability increases, archieving values similar tothose obtained if no estradiol is added. During this recoveryphase the cells passed two different phases: first a stationaryphase extension where cell growth was still inhibited, followedby an increase of cell concentration. The IRF-1 system isreversible. This pattern can be repeated for an extended period when estradiol addition and removal are repeated, showing acyclic response. Thus, it is possible to modulate the IRF-1effect by manipulating cycles of addition/removal of estradioland in this way the stationary phase can be maintained.
Collapse
Affiliation(s)
- A V Carvalhal
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica, IBET/ITQB, Apartado 12, 2780, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
5
|
Franek F, Holý A, Votruba I, Eckschlager T. Modulation of cell cycle progression and of antibody production in mouse hybridomas by a nucleotide analogue. Cytotechnology 2011; 28:65-72. [PMID: 19003408 DOI: 10.1023/a:1008017328061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG) has been identified as a powerful antiproliferative substance when acting on hybridoma cells. In the range of 10 nM to 100 nM concentrations this agent reduces cell growth rate, while its apoptosis-inducing activity is marginal. Marked induction of apoptosis can be observed at micromolar and higher order concentrations. In PMEG-supplemented media the cell cycle progression is perturbed, the flow-cytometric DNA profile shows a higher proportion of cells in the S and G2/M phases of the cell cycle. Concomitantly with the reduction of the growth rate, the specific monoclonal antibody production rate may rise by 20-27%. Addition of PMEG at the end of the exponential phase of a batch culture results in an enhancement of the final monoclonal antibody concentration.
Collapse
Affiliation(s)
- F Franek
- Academy of Sciences, Institute of Molecular Genetics, Videnska 1083, CZ-14220, Praha 4, Czech Republic,
| | | | | | | |
Collapse
|
6
|
Franek F, Strnad M, Havlícek L, Siglerová V, Fismolová I, Eckschlager T. Diverse effects of the cyclin-dependent kinase inhibitor bohemine: Concentration- and time-dependent suppression or stimulation of hybridoma culture. Cytotechnology 2011; 36:117-23. [PMID: 19003322 DOI: 10.1023/a:1014020415912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An analog of aromatic cytokinins, the 2,6,9-trisubstituted purine derivative bohemine, was applied to cultures of mouse hybridoma cells in order to analyze its capacity of suppressing cell growth and maintaining or enhancing the production of monoclonal antibody. Addition of bohemine at concentrations in the range of1-10 muM resulted in a short-term arrest of growth and of monoclonal antibody production. The short-term suppression of cell functions was followed by a significant temporary increase of specific growth rate and of specific production rate. The steady-state viable cell density values, found in semicontinuous cultures, showed a certain stimulation of cell growth in the range of micromolar concentrations of bohemine, and inhibition of growth at 10 and 30 muM concentrations. The profiles of cell cycle phases indicated that hybridoma cells are retarded both at the G(1)/S boundary and at the G(2)/M boundary, depending on bohemine concentration. The existence of the sequence of events,from suppression to stimulation, suggests that bohemine probably modulates more than one regulatory pathway in the cell.
Collapse
Affiliation(s)
- F Franek
- Laboratory of Growth Regulators, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 10227, Praha 10, Czech Republic,
| | | | | | | | | | | |
Collapse
|
7
|
Engineering mammalian cells in bioprocessing - current achievements and future perspectives. Biotechnol Appl Biochem 2010; 55:175-89. [PMID: 20392202 DOI: 10.1042/ba20090363] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over the past 20 years, we have seen significant improvements in product titres from 50 mg/l to 5-10 g/l, a more than 100-fold increase. The main methods that have been employed to achieve this increase in product titre have been through the manipulation of culture media and process control strategies, such as the optimization of fed-batch processes. An alternative means to increase productivity has been through the engineering of host cells by altering cellular processes. Recombinant DNA technology has been used to over-express or suppress specific genes to endow particular phenotypes. Cellular processes that have been altered in host cells include metabolism, cell cycle, protein secretion and apoptosis. Cell engineering has also been employed to improve post-translational modifications such as glycosylation. In this article, an overview of the main cell engineering strategies previously employed and the impact of these strategies are presented. Many of these strategies focus on engineering cell lines with more efficient carbon metabolism towards reducing waste metabolites, achieving a biphasic production system by engineering cell cycle control, increasing protein secretion by targeting specific endoplasmic reticulum stress chaperones, delaying cell death by targeting anti-apoptosis genes, and engineering glycosylation by enhancing recombinant protein sialylation and antibody glycosylation. Future perspectives for host cell engineering, and possible areas of research, are also discussed in this review.
Collapse
|
8
|
Khoo SHG, Al-Rubeai M. Detailed understanding of enhanced specific antibody productivity in NS0 myeloma cells. Biotechnol Bioeng 2009; 102:188-99. [DOI: 10.1002/bit.22041] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Kuystermans D, Krampe B, Swiderek H, Al-Rubeai M. Using cell engineering and omic tools for the improvement of cell culture processes. Cytotechnology 2007; 53:3-22. [PMID: 19003186 DOI: 10.1007/s10616-007-9055-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 01/25/2007] [Indexed: 12/26/2022] Open
Abstract
Significant strides have been made in mammalian cell based biopharmaceutical process and cell line development over the past years. With several established mammalian host cell lines and expression systems, optimization of selection systems to reduce development times and improvement of glycosylation patterns are only some of the advances being made to improve cell culture processes. In this article, the advances pertaining to cell line development and cell engineering strategies are discussed. An overview of the cell engineering strategies to enhance cellular characteristics by genetic manipulation are illustrated, focusing on the use of genomics and proteomics tools and their application in such endeavors. Included in this review are some of the early studies using the 'omic' technique to understand cellular mechanisms of product synthesis and secretion, apoptosis, cell proliferation and the influence of the physicochemical environment. The article highlights the significance of integrating genomics and proteomics data with the vast amounts of bioprocess data for improved analysis of the biological pathways involved. Further improvements of the techniques and methodologies used are needed but ultimately, the new cell engineering strategies should provide great insight into the regulatory networks within the cell in a bioprocess environment and how to manipulate them to increase overall productivity.
Collapse
Affiliation(s)
- Darrin Kuystermans
- School of Chemical and Bioprocess Engineering and Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
10
|
Metabolic engineering of mammalian cells for higher protein yield. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
11
|
Carvalhal AV, Coroadinha A, Alves PM, Moreira JL, Hauser H, Carrondo MJ. Metabolic changes during cell growth inhibition by the IRF-1 system. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00460-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Abstract
Interferon (IFN) regulatory factor-1 (IRF-1) was isolated by virtue of its affinity to specific DNA sequences in the IFN-beta promoter that mediate virus responsiveness. IRF-1 was the first factor identified of the IRF family and was most extensively characterized at the molecular level. Also, its physiologic role in host defense against pathogens, tumor prevention, and development of the immune system was investigated in detail. Even though some of the functions first associated with IRF-1 were later found to be mediated in part or predominantly by other activators of the IRF family of transcription factors, IRF-1 has remained a central paradigm in the transcriptional regulation of the IFN response.
Collapse
Affiliation(s)
- Andrea Kröger
- Department of Gene Regulation and Differentiation, GBF, Gesellschaft für Biotechnologische Forschung, D 38124 Braunschweig Mascheroder Weg 1, Germany
| | | | | | | | | |
Collapse
|
13
|
Carvalhal AV, Moreira JL, Carrondo MJ. Strategies to modulate BHK cell proliferation by the regulation of IRF-1 expression. J Biotechnol 2001; 92:47-59. [PMID: 11604172 DOI: 10.1016/s0168-1656(01)00365-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of the constitutively expressed interferon-regulatory-factor-1/estrogen receptor fusion protein (IRF-1-hER) in BHK cells was accomplished through the addition of estradiol to the culture medium, which enabled IRF-1 to gain its transcriptional activator function and inhibit cell growth. With the addition of 100 nM estradiol at the beginning of the exponential phase of a cell suspension culture, IRF-1 activation led to a rapid cell growth inhibition but also to a significant decrease in cell viability. To apply this concept in industry, a reduction of the time span of estradiol exposure is required. Cycles of estradiol addition and removal were performed in 2-l stirred tank bioreactors operated under perfusion, where an initial step addition of 100 nM estradiol was performed, followed, after 48-72 h, by a slow dilution with estradiol-free fresh medium (perfusion rate varying between 0.7 and 1.4 per day). Cell growth inhibition was successfully achieved for three consecutive cycles. Diluting the estradiol by perfusing medium without estradiol to concentrations lower than 10 nM led to cell growth and viability recovery independently of the perfusion rate used. These observations permitted the definition of operational strategies for regulated IRF-1 BHK cell growth by pulse estradiol addition, followed by a period of 48 h in the presence of estradiol and by fast perfusion to estradiol concentrations lower than 10 nM. Cell growth response to IRF-1 activation and following estradiol removal by perfusion was also evaluated with an IRF-1-hER regulated clone expressing constitutively Factor VII, where the time of estradiol exposure and perfusion rate were varied. This clone presented a stronger response to IRF-1 activation without an increase in Factor VII specific productivity after cell growth inhibition; this clearly indicates that the stationary phase obtained is clone dependent. This work proves that it is possible to modulate the IRF-1 effect for cell growth control by the manipulation of cycles of addition and removal of estradiol, potentially representing a new generation of culture procedures for controlled growth production purposes.
Collapse
Affiliation(s)
- A V Carvalhal
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Apartado 12, P-2781-901 Oeiras, Portugal
| | | | | |
Collapse
|
14
|
Schlatter S, Bailey JE, Fussenegger M. Novel surface tagging technology for selection of complex proliferation-controlled mammalian cell phenotypes. Biotechnol Bioeng 2001; 75:597-606. [PMID: 11745136 DOI: 10.1002/bit.1189] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulated overexpression of the cyclin dependent kinase inhibitor p27 enables biphasic production processes which consist of a nonproducing expansion phase followed by an extended proliferation-arrested production phase. During the growth-arrested production phase proliferation-competent mutants emerge as a consequence of genetic drift and strong counterselection. Here, we evaluate the use of cell surface markers for ex vivo selection of growth-arrested phenotypes by magnetic or FACS-mediated cell sorting. Multigene metabolic engineering resulted in a Chinese hamster ovary- (CHO) derived cell line CHO-SS101(5), which expresses the model product protein SEAP (secreted alkaline phosphatase), the human cyclindependent kinase inhibitor p27, and a membrane-anchored multidomain surface marker Hook in a tricistronic tetracycline-repressible manner. In the absence of tetracycline in the cell culture medium, p27 mediated a G1-phase-specific cell-cycle arrest of CHO-SS101(5) and resulted in a fivefold increase in SEAP production compared to proliferation-competent control cells. Concomitant expression of Hook enabled FACS- or magnetic-based selection of CHO-SS101(5) cells from various mixed populations. Surface selection of engineered cells will likely become important for biopharmaceutical manufacturing and for in vivo maintenance of treated cells in gene therapy and tissue engineering.
Collapse
Affiliation(s)
- S Schlatter
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
15
|
Geserick C, Bonarius HP, Kongerslev L, Hauser H, Mueller PP. Enhanced productivity during controlled proliferation of BHK cells in continuously perfused bioreactors. Biotechnol Bioeng 2000; 69:266-74. [PMID: 10861406 DOI: 10.1002/1097-0290(20000805)69:3<266::aid-bit4>3.0.co;2-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A perfused cell-culture process was developed to investigate the stability of IRF-1-mediated proliferation control in BHK cells and to evaluate the efficacy of a novel promoter in these cells. The cell density of proliferation-controlled producer cells was effectively regulated for over 7 weeks in a microcarrier-based continuously perfused bioreactor. An IRF-1-inducible promoter was employed to express a heterodimeric IgG antibody as a relevant model protein. Basal expression levels were equivalent to that of a highly active viral promoter, while productivity increased up to sixfold during growth arrest. However, no stably expressing clone was isolated in this study. Protein expression decreased gradually with time and could not be induced further in subsequent growth-repression cycles. The results demonstrate that the regulatory system is sufficiently stable to allow controlled growth in a continuous scalable reactor system and that productivity increases can be achieved in a proliferation controlled microcarrier culture.
Collapse
Affiliation(s)
- C Geserick
- Department of Gene Regulation and Differentiation, GBF, National Research Center for Biotechnology, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
16
|
Mueller PP, Schlenke P, Nimtz M, Conradt HS, Hauser H. Recombinant glycoprotein product quality in proliferation-controlled BHK-21 cells. Biotechnol Bioeng 1999; 65:529-36. [PMID: 10516578 DOI: 10.1002/(sici)1097-0290(19991205)65:5<529::aid-bit5>3.0.co;2-m] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We analyzed product quality to determine the applicability of proliferation-controlled mammalian cells for recombinant pharmaceutical protein production. Baby hamster kidney (BHK)-21 cells were engineered to express a dicistronic, stabilized, self-selecting growth control system consisting of a beta-estradiol-activatable transcription factor IRF-1 fusion protein. IRF-1 activity led to a reduced growth rate, whereas productivity, protein integrity, and glycosylation pattern of the industrially relevant secreted pharmaceutical glycoprotein erythropoietin remained consistent, showing that this technique has the potential for improving the consistency of high-quality pharmaceutical products and thus warrants further development.
Collapse
Affiliation(s)
- P P Mueller
- Department of Gene Regulation and Differentiation, GBF-National Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
17
|
Kirchhoff S, Hauser H. Cooperative activity between HER oncogenes and the tumor suppressor IRF-1 results in apoptosis. Oncogene 1999; 18:3725-36. [PMID: 10391680 DOI: 10.1038/sj.onc.1202704] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor transcription factor IRF-1 inhibits cell growth. In this report we show that IRF-1 also induces apoptosis of highly transformed and tumorigenic cell lines. This activity of IRF-1 is demonstrated with cell lines expressing HER oncogenes and an activatable IRF-1 fusion protein. Growth of cell lines expressing inactive HER1 is inhibited on IRF-1 activation. In contrast, the same cells are killed by apoptosis when HER1 and IRF-1 are activated simultaneously. We identified promoters stimulated synergistically by IRF-1 and by activated HER1. To determine the signals causing transcriptional synergism and/or apoptosis we tried to modulate these effects by various dominant negative acting proteins. Dominant negative STAT5alpha abolished both induction of apoptosis and transcriptional synergy of IRF-1 and HER. Thus, these results provide new insights into the mechanism of oncogene-dependent apoptosis induced by the activation of a tumor suppressor.
Collapse
Affiliation(s)
- S Kirchhoff
- Department of Gene Regulation and Differentiation, GBF-National Research Center for Biotechnology, Braunschweig, Germany
| | | |
Collapse
|