1
|
Vermaak D, Bayes JJ, Malik HS. A surrogate approach to study the evolution of noncoding DNA elements that organize eukaryotic genomes. J Hered 2009; 100:624-36. [PMID: 19635763 DOI: 10.1093/jhered/esp063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Comparative genomics provides a facile way to address issues of evolutionary constraint acting on different elements of the genome. However, several important DNA elements have not reaped the benefits of this new approach. Some have proved intractable to current day sequencing technology. These include centromeric and heterochromatic DNA, which are essential for chromosome segregation as well as gene regulation, but the highly repetitive nature of the DNA sequences in these regions make them difficult to assemble into longer contigs. Other sequences, like dosage compensation X chromosomal sites, origins of DNA replication, or heterochromatic sequences that encode piwi-associated RNAs, have proved difficult to study because they do not have recognizable DNA features that allow them to be described functionally or computationally. We have employed an alternate approach to the direct study of these DNA elements. By using proteins that specifically bind these noncoding DNAs as surrogates, we can indirectly assay the evolutionary constraints acting on these important DNA elements. We review the impact that such "surrogate strategies" have had on our understanding of the evolutionary constraints shaping centromeres, origins of DNA replication, and dosage compensation X chromosomal sites. These have begun to reveal that in contrast to the view that such structural DNA elements are either highly constrained (under purifying selection) or free to drift (under neutral evolution), some of them may instead be shaped by adaptive evolution and genetic conflicts (these are not mutually exclusive). These insights also help to explain why the same elements (e.g., centromeres and replication origins), which are so complex in some eukaryotic genomes, can be simple and well defined in other where similar conflicts do not exist.
Collapse
Affiliation(s)
- Danielle Vermaak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
2
|
Wiggins BL, Malik HS. Molecular evolution of Drosophila Cdc6, an essential DNA replication-licensing gene, suggests an adaptive choice of replication origins. Fly (Austin) 2008; 1:155-63. [PMID: 18618020 DOI: 10.4161/fly.4599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increased size of eukaryotic genomes necessitated the use of multiple origins of DNA replication, and presumably selected for their efficient spacing to ensure rapid DNA replication. The sequence of these origins remains undetermined in metazoan genomes, leaving important questions about the selective constraints acting on replication origins unanswered. We have chosen to study the evolution of proteins that recognize and define these origins every cell cycle, as a surrogate to the direct analysis of replication origins. Among these DNA replication proteins is the essential Cdc6 protein, which acts to license origins for replication. We find that two different species pairs of Drosophila show evidence of positive selection in Cdc6 in their highly conserved C-terminal AAA-ATPase domain. We also identified amino acid segments that are highly conserved in the N-terminal tail of Cdc6 proteins from various Drosophila species, but are not conserved even in closely related insect species. Instead, we find that the N-terminal tails of Cdc6 proteins vary extensively in size and sequence across different eukaryotic lineages. Our results suggest that choice of origin firing may be significantly altered in closely related species, as each set of replication proteins optimizes to its own genomic landscape.
Collapse
Affiliation(s)
- Benjamin L Wiggins
- Molecular and Cellular Biology Program, University of Washington; Seattle, Washington 98109, USA
| | | |
Collapse
|
3
|
Balasov M, Huijbregts RPH, Chesnokov I. Role of the Orc6 protein in origin recognition complex-dependent DNA binding and replication in Drosophila melanogaster. Mol Cell Biol 2007; 27:3143-53. [PMID: 17283052 PMCID: PMC1899928 DOI: 10.1128/mcb.02382-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The six-subunit origin recognition complex (ORC) is a DNA replication initiator protein in eukaryotes that defines the localization of the origins of replication. We report here that the smallest Drosophila ORC subunit, Orc6, is a DNA binding protein that is necessary for the DNA binding and DNA replication functions of ORC. Orc6 binds DNA fragments containing Drosophila origins of DNA replication and prefers poly(dA) sequences. We have defined the core replication domain of the Orc6 protein which does not include the C-terminal domain. Further analysis of the core replication domain identified amino acids that are important for DNA binding by Orc6. Alterations of these amino acids render reconstituted Drosophila ORC inactive in DNA binding and DNA replication. We show that mutant Orc6 proteins do not associate with chromosomes in vivo and have dominant negative effects in Drosophila tissue culture cells. Our studies provide a molecular analysis for the functional requirement of Orc6 in replicative functions of ORC in Drosophila and suggest that Orc6 may contribute to the sequence preferences of ORC in targeting to the origins.
Collapse
Affiliation(s)
- Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, 720 20th Street South, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
4
|
Abstract
The origin recognition complex (ORC), a heteromeric six-subunit protein, is a central component for eukaryotic DNA replication. The ORC binds to DNA at replication origin sites in an ATP-dependent manner and serves as a scaffold for the assembly of other key initiation factors. Sequence rules for ORC-DNA binding appear to vary widely. In budding yeast the ORC recognizes specific ori elements, however, in higher eukaryotes origin site selection does not appear to depend on the specific DNA sequence. In metazoans, during cell cycle progression, one or more of the ORC subunits can be modified in such a way that ORC activity is inhibited until mitosis is complete and a nuclear membrane is assembled. In addition to its well-documented role in the initiation of DNA replication, the ORC is also involved in other cell functions. Some of these activities directly link cell cycle progression with DNA replication, while other functions seem distinct from replication. The function of ORCs in the establishment of transcriptionally repressed regions is described for many species and may be a conserved feature common for both unicellular eukaryotes and metazoans. ORC subunits were found at centrosomes, at the cell membranes, at the cytokinesis furrows of dividing cells, as well as at the kinetochore. The exact mechanism of these localizations remains to be determined, however, latest results support the idea that ORC proteins participate in multiple aspects of the chromosome inheritance cycle. In this review, we discuss the participation of ORC proteins in various cell functions, in addition to the canonical role of ORC in initiating DNA replication.
Collapse
Affiliation(s)
- Igor N Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Groth AC, Fish M, Nusse R, Calos MP. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 2005; 166:1775-82. [PMID: 15126397 PMCID: PMC1470814 DOI: 10.1534/genetics.166.4.1775] [Citation(s) in RCA: 735] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phiC31 integrase functions efficiently in vitro and in Escherichia coli, yeast, and mammalian cells, mediating unidirectional site-specific recombination between its attB and attP recognition sites. Here we show that this site-specific integration system also functions efficiently in Drosophila melanogaster in cultured cells and in embryos. Intramolecular recombination in S2 cells on transfected plasmid DNA carrying the attB and attP recognition sites occurred at a frequency of 47%. In addition, several endogenous pseudo attP sites were identified in the fly genome that were recognized by the integrase and used as substrates for integration in S2 cells. Two lines of Drosophila were created by integrating an attP site into the genome with a P element. phiC31 integrase injected into embryos as mRNA functioned to promote integration of an attB-containing plasmid into the attP site, resulting in up to 55% of fertile adults producing transgenic offspring. A total of 100% of these progeny carried a precise integration event at the genomic attP site. These experiments demonstrate the potential for precise genetic engineering of the Drosophila genome with the phiC31 integrase system and will likely benefit research in Drosophila and other insects.
Collapse
Affiliation(s)
- Amy C Groth
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
6
|
Groth AC, Fish M, Nusse R, Calos MP. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 2004; 166:1775-82. [PMID: 15126397 PMCID: PMC1470814 DOI: 10.1093/genetics/166.4.1775] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
The phiC31 integrase functions efficiently in vitro and in Escherichia coli, yeast, and mammalian cells, mediating unidirectional site-specific recombination between its attB and attP recognition sites. Here we show that this site-specific integration system also functions efficiently in Drosophila melanogaster in cultured cells and in embryos. Intramolecular recombination in S2 cells on transfected plasmid DNA carrying the attB and attP recognition sites occurred at a frequency of 47%. In addition, several endogenous pseudo attP sites were identified in the fly genome that were recognized by the integrase and used as substrates for integration in S2 cells. Two lines of Drosophila were created by integrating an attP site into the genome with a P element. phiC31 integrase injected into embryos as mRNA functioned to promote integration of an attB-containing plasmid into the attP site, resulting in up to 55% of fertile adults producing transgenic offspring. A total of 100% of these progeny carried a precise integration event at the genomic attP site. These experiments demonstrate the potential for precise genetic engineering of the Drosophila genome with the phiC31 integrase system and will likely benefit research in Drosophila and other insects.
Collapse
Affiliation(s)
- Amy C Groth
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
7
|
Remus D, Beall EL, Botchan MR. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J 2004; 23:897-907. [PMID: 14765124 PMCID: PMC380993 DOI: 10.1038/sj.emboj.7600077] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 12/19/2003] [Indexed: 12/16/2022] Open
Abstract
Drosophila origin recognition complex (ORC) localizes to defined positions on chromosomes, and in follicle cells the chorion gene amplification loci are well-studied examples. However, the mechanism of specific localization is not known. We have studied the DNA binding of DmORC to investigate the cis-requirements for DmORC:DNA interaction. DmORC displays at best six-fold differences in the relative affinities to DNA from the third chorion locus and to random fragments in vitro, and chemical probing and DNase1 protection experiments did not identify a discrete binding site for DmORC on any of these fragments. The intrinsic DNA-binding specificity of DmORC is therefore insufficient to target DmORC to origins of replication in vivo. However, the topological state of the DNA significantly influences the affinity of DmORC to DNA. We found that the affinity of DmORC for negatively supercoiled DNA is about 30-fold higher than for either relaxed or linear DNA. These data provide biochemical evidence for the notion that origin specification in metazoa likely involves mechanisms other than simple replicator-initiator interactions and that in vivo other proteins must determine ORC's localization.
Collapse
Affiliation(s)
- Dirk Remus
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA, USA
| | - Eileen L Beall
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA, USA
| | - Michael R Botchan
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, 401 Barker Hall #3204, University of California, Berkeley, CA 94720-3204, USA. Tel.: +1 510 642 7057; Fax: +1 510 643 1729; E-mail:
| |
Collapse
|
8
|
Schaarschmidt D, Baltin J, Stehle IM, Lipps HJ, Knippers R. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J 2003; 23:191-201. [PMID: 14685267 PMCID: PMC1271667 DOI: 10.1038/sj.emboj.7600029] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 11/17/2003] [Indexed: 11/09/2022] Open
Abstract
An extrachromosomally replicating plasmid was used to investigate the specificity by which the origin recognition complex (ORC) interacts with DNA sequences in mammalian cells in vivo. We first showed that the plasmid pEPI-1 replicates semiconservatively in a once-per-cell-cycle manner and is stably transmitted over many cell generations in culture without selection. Chromatin immunoprecipitations and quantitative polymerase chain reaction analysis revealed that, in G1-phase cells, Orc1 and Orc2, as well as Mcm3, another component of the prereplication complex, are bound to multiple sites on the plasmid. These binding sites are functional because they show the S-phase-dependent dissociation of Orc1 and Mcm3 known to be characteristic for prereplication complexes in mammalian cells. In addition, we identified replicative nascent strands and showed that they correspond to many plasmid DNA regions. This work has implications for current models of replication origins in mammalian systems. It indicates that specific DNA sequences are not required for the chromatin binding of ORC in vivo. The conclusion is that epigenetic mechanisms determine the sites where mammalian DNA replication is initiated.
Collapse
|
9
|
Abstract
DNA replication is the process by which cells make one complete copy of their genetic information before cell division. In bacteria, readily identifiable DNA sequences constitute the start sites or origins of DNA replication. In eukaryotes, replication origins have been difficult to identify. In some systems, any DNA sequence can promote replication, but other systems require specific DNA sequences. Despite these disparities, the proteins that regulate replication are highly conserved from yeast to humans. The resolution may lie in a current model for once-per-cell-cycle regulation of eukaryotic replication that does not require defined origin sequences. This model implies that the specification of precise origins is a response to selective pressures that transcend those of once-per-cell-cycle replication, such as the coordination of replication with other chromosomal functions. Viewed in this context, the locations of origins may be an integral part of the functional organization of eukaryotic chromosomes.
Collapse
Affiliation(s)
- D M Gilbert
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
10
|
Abstract
Chromosomal origins of DNA replication in eukaryotic cells not only are crucial for understanding the basic process of DNA duplication but also provide a tool to analyze how cell cycle regulators are linked to the replication machinery. During the past decade much progress has been made in identifying replication origins in eukaryotic genomes. More recently, replication initiation point (RIP) mapping has allowed us to detect start sites for DNA synthesis at the nucleotide level and thus to monitor replication initiation events at the origin very precisely. Beyond giving us the precise positions of start sites, the application of RIP mapping in yeast and human cells has revealed a single, defined start point at which replication initiates, a scenario very reminiscent of transcription initiation. More importantly, studies in yeast have shown that the binding site for the initiator, the origin recognition complex (ORC), lies immediately adjacent to the replication start point, which suggests that ORC directs the initiation machinery to a distinct site. Therefore, in our pursuit of identifying ORC-binding sites in higher eukaryotes, RIP mapping may lead the way.
Collapse
Affiliation(s)
- A K Bielinsky
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
11
|
Abstract
The mechanism for initiation of eukaryotic DNA replication is highly conserved: the proteins required to initiate replication, the sequence of events leading to initiation, and the regulation of initiation are remarkably similar throughout the eukaryotic kingdom. Nevertheless, there is a liberal attitude when it comes to selecting initiation sites. Differences appear to exist in the composition of replication origins and in the way proteins recognize these origins. In fact, some multicellular eukaryotes (the metazoans) can change the number and locations of initiation sites during animal development, revealing that selection of initiation sites depends on epigenetic as well as genetic parameters. Here we have attempted to summarize our understanding of this process, to identify the similarities and differences between single cell and multicellular eukaryotes, and to examine the extent to which origin recognition proteins and replication origins have been conserved among eukaryotes. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J A Bogan
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
12
|
Hammarsten O, Elias P. Herpes simplex virus: selection of origins of DNA replication. Nucleic Acids Res 1997; 25:1753-60. [PMID: 9108157 PMCID: PMC146666 DOI: 10.1093/nar/25.9.1753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A selection procedure was devised to study the role of cis -acting sequences at origins of DNA replication. Two regions in Herpes simplex virus oriS were examined: an AT-rich spacer sequence and a putative binding site, box III, for the origin binding protein. Plasmid libraries were generated using oligonucleotides with locally random sequences. The library, amplified in Escherichia coli , was used to transfect BHK cells followed by superinfection with HSV-1. Replicated plasmids resistant to Dpn I cleavage were amplified in E. coli. The selection scheme was repeated. Plasmids were isolated at different stages of the procedure and their replication efficiency was determined. Efficiently replicating plasmids had a high AT content in the spacer sequence as well as a low helical stability of this region. In contrast, this was not seen using the box III library. We also noted that the wild type sequence invariably dominated the library after five rounds of selection. These plasmids arose from recombination between plasmids and viral DNA. Our results imply that a large group of sequences can mechanistically serve as origins of DNA replication. In a viral system, however, where the initiation process might be rate-limiting, this potentially large group of sequences would always converge towards the most efficient replicator.
Collapse
Affiliation(s)
- O Hammarsten
- Department of Medical Biochemistry, University of Göteborg, Medicinaregatan 9A, S-413 90 Göteborg, Sweden
| | | |
Collapse
|