1
|
RNA processing in yeast mitochondria: characterization of mit(-) mutants disturbed in the synthesis of subunit I of cytochrome c oxidase. Curr Genet 2013; 8:457-65. [PMID: 24177916 DOI: 10.1007/bf00433912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1984] [Indexed: 10/26/2022]
Abstract
Mit(-) mutants disturbed in the synthesis of cytochrome c oxidase subunit I lack the mRNA for this protein and accumulate longer RNAs still containing intron sequences. We have analyzed the patterns of transcripts occurring in several such mutants in an attempt to define a pathway of processing events and to demarcate intron-sequences involved in RNA splicing. We find that processing does not follow a strictly ordered pathway and, in contrast to the situation for the cytochrome b gene, that a block in the processing of an intron does not necessarily lead to a block in the processing of introns downstream. Although in some cases, this may result from overlapping specificities of intronic-URF encoded RNA maturases, an internal start of translation on precursor RNAs seems more likely.M5-16, a mutant deleted for a large part of the central portion of the subunit I gene exhibits delayed processing and a highly simplified pattern of intermediates. The lengths of these indicate that maturation of the mRNA for subunit I involves processing, as well as splicing.
Collapse
|
2
|
Dieckmann CL, Staples RR. Regulation of mitochondrial gene expression in Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 152:145-81. [PMID: 8206703 DOI: 10.1016/s0074-7696(08)62556-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C L Dieckmann
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
3
|
Regulation by nuclear genes of the mitochondrial synthesis of subunits 6 and 8 of the ATP synthase of Saccharomyces cerevisiae. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45902-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Clark-Walker GD. Evolution of mitochondrial genomes in fungi. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 141:89-127. [PMID: 1452434 DOI: 10.1016/s0074-7696(08)62064-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- G D Clark-Walker
- Molecular and Population Genetics Group, Research School of Biological Sciences, Australian National University, Canberra City
| |
Collapse
|
5
|
Payne MJ, Schweizer E, Lukins HB. Properties of two nuclear pet mutants affecting expression of the mitochondrial oli1 gene of Saccharomyces cerevisiae. Curr Genet 1991; 19:343-51. [PMID: 1833077 DOI: 10.1007/bf00309594] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study details the characteristics of two temperature-conditional pet mutants of yeast, strains ts1860 and ts379, which at the non-permissive temperature show deficiencies in the formation of three mitochondrially encoded subunits of the ATP synthase complex. By analysis of mitochondrial translation products, and of mitochondrial transcription in temperature shift experiments from the permissive (22 degrees C) to the non-permissive (36 degrees C) temperature, it was concluded that the nuclear mutations in both mutants primarily inhibit synthesis of ATP synthase subunit 9, and that reductions in subunit 8 and 6 synthesis are secondary pleiotropic effects. Following transfer to 36 degrees C, cells of mutant ts379 display a near complete inhibition of subunit 9 synthesis within 1 h, coincident with a marked reduction in the level of the cognate oli1 mRNA. On the other hand, near complete inhibition of subunit 9 synthesis in strain ts1860 occurs after 3 h at 36 degrees C, at which time there is little change in the level of subunit 9 mRNA. In both mutants the mRNA levels for subunits 6 and 8 are not significantly affected at the time of inhibition of subunit 9 synthesis. Provision of an alternative source of subunit 8, translated extra-mitochondrially for import into the organelle, does not overcome the mutant phenotype of either mutant at 36 degrees C, confirming that subunit 8 is not the sole or primary deficiency in each mutant. The mutants indicate that the products of a least two nuclear genes (designated AEP1 and AEP2) are required for the expression of the mitochondrial oli1 gene and the synthesis of subunit 9. (ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M J Payne
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
6
|
Ackerman SH, Gatti DL, Gellefors P, Douglas MG, Tzagoloff A. ATP13, a nuclear gene of Saccharomyces cerevisiae essential for the expression of subunit 9 of the mitochondrial ATPase. FEBS Lett 1991; 278:234-8. [PMID: 1825065 DOI: 10.1016/0014-5793(91)80124-l] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The respiratory deficient nuclear mutant of Saccharomyces cerevisiae, N9-168, assigned to complementation group G95 was previously shown to lack subunit 9, one of the three mitochondrially encoded subunits of the Fo component of the mitochondrial ATPase. As a consequence of the structural defect in Fo, the ATPase activity of G95 mutants is not inhibited by rutamycin. The absence of subunit 9 in N9-168 has been correlated with a lower steady-state level of its mRNA and an increase in higher molecular weight precursor transcripts. These results suggest that the mutation is most likely to affect either translation of the oli1 mRNA or processing of the primary transcript. We have isolated a nuclear gene, designated ATP13, which complements the respiratory defect and restores rutamycin-sensitive ATPase in G95 mutants. Disruption of ATP13 induces a respiratory deficiency which is not complemented by G95 mutants. The nucleotide sequence of ATP13 indicates a primary translation product with an Mapp of 42,897. The protein has a basic amino terminal signal sequence that is cleaved upon import into mitochondria. No significant primary structure homology is detected with any protein in the most recent libraries.
Collapse
Affiliation(s)
- S H Ackerman
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | | | | | |
Collapse
|
7
|
Paul MF, Velours J, Arselin de Chateaubodeau G, Aigle M, Guerin B. The role of subunit 4, a nuclear-encoded protein of the F0 sector of yeast mitochondrial ATP synthase, in the assembly of the whole complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:163-71. [PMID: 2553400 DOI: 10.1111/j.1432-1033.1989.tb15098.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The yeast nuclear gene ATP4, encoding the ATP synthase subunit 4, was disrupted by insertion into the middle of it the selective marker URA3. Transformation of the Saccharomyces cerevisiae strain D273-10B/A/U produced a mutant unable to grow on glycerol medium. The ATP4 gene is unique since subunit 4 was not present in mutant mitochondria; the hypothetical truncated subunit 4 was never detected. ATPase was rendered oligomycin-insensitive and the F1 sector of this mutant appeared loosely bound to the membrane. Analysis of mitochondrially translated hydrophobic subunits of F0 revealed that subunits 8 and 9 were present, unlike subunit 6. This indicated a structural relationship between subunits 4 and 6 during biogenesis of F0. It therefore appears that subunit 4 (also called subunit b in beef heart and Escherichia coli ATP synthases) plays at least a structural role in the assembly of the whole complex. Disruption of the ATP4 gene also had a dramatic effect on the assembly of other mitochondrial complexes. Thus, the cytochrome oxidase activity of the mutant strain was about five times lower than that of the wild type. In addition, a high percentage of spontaneous rho- mutants was detected.
Collapse
Affiliation(s)
- M F Paul
- Institut de Biochimie Cellulaire et Neurochimie du Centre National de la Recherche Scientifique, Université de Bordeaux, France
| | | | | | | | | |
Collapse
|
8
|
Wolf K, Del Giudice L. The variable mitochondrial genome of ascomycetes: organization, mutational alterations, and expression. ADVANCES IN GENETICS 1988; 25:185-308. [PMID: 3057820 DOI: 10.1016/s0065-2660(08)60460-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- K Wolf
- Institut für Genetik und Mikrobiologie, Universität München, Munich, Federal Republic of Germany
| | | |
Collapse
|
9
|
Kloeckener-Gruissem B, McEwen JE, Poyton RO. Nuclear functions required for cytochrome c oxidase biogenesis in Saccharomyces cerevisiae: multiple trans-acting nuclear genes exert specific effects on expression of each of the cytochrome c oxidase subunits encoded on mitochondrial DNA. Curr Genet 1987; 12:311-22. [PMID: 2833360 DOI: 10.1007/bf00405753] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fourteen nuclear complementation groups of mutants that specifically affect the three mitochondrially-encoded subunits of yeast cytochrome c oxidase have been characterized. Genes represented by these complementation groups are not required for mitochondrial transcription, transcript processing, or translation per se but are required for the expression of one of the three genes--COX1, COX2, or COX3--which encode the cytochrome c oxicase subunits I, II, or III, respectively. Five of these genes affect the biogenesis of cytochrome c oxidase subunit I, 3 affect the biogenesis of subunit II, 3 affect the biogenesis of subunit III and 3 affect the biogenesis of both cytochrome c oxidase subunit I and cytochrome b, the product of COB. Among the 5 complementation groups of mutants that affect the expression of COX1, 2 lack COX1 transcripts, 1 produces incompletely processed COX1 transcripts, and 2 contain normal levels of normal-sized COX1 transcripts. In contrast, all 3 complementation groups which affect the expression of COX2 and all 3 complementation groups which affect the expression of COX3 exhibit no, or little, detectable difference with respect to the wild type pattern of transcripts. The 3 complementation groups which affect the expression of both COX1 and COB all have aberrant COX1 and COB transcript patterns. These findings indicate that multiple trans-acting nuclear genes are required for specific expression of each COX gene encoded on mitochondrial DNA and suggest that their products act at different steps in the expression of these mitochondrial genes.
Collapse
Affiliation(s)
- B Kloeckener-Gruissem
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | |
Collapse
|
10
|
Mueller DM, Biswas TK, Backer J, Edwards JC, Rabinowitz M, Getz GS. Temperature sensitive pet mutants in yeast Saccharomyces cerevisiae that lose mitochondrial RNA. Curr Genet 1987; 11:359-67. [PMID: 2453298 DOI: 10.1007/bf00378178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This is a description of a new class of temperature sensitive pet mutants in Saccharomyces cereviase that lose all or part of their mitochondrial RNA at the restrictive temperature. These mutants fall into 8 different complementation groups, mna1 to mna8, and 2 different classes based on their phenotype. Class I mutations, mna1-1 through mna5-1, cause complete or partial loss of mitochondrial RNA at the restrictive temperature. The mutation, mna1-1, is especially interesting since it causes a loss of both mitochondrial DNA and RNA when the mutant is grown on a fermentable carbon source at the restrictive temperature. However, when this mutant is grown at the permissive temperature on a non-fermentable carbon source then shifted to the restrictive temperature, only the mitochondrial RNA is lost. This indicates that the primary cause for the pet phenotype is due to the loss of mitochondrial RNA and not DNA. Class II mutations, mna6-1 through mna8-1, cause complete loss of the 14S rRNA after growth at the restrictive temperature in a fermentable carbon source. This loss appears to be specific for the 14S rRNA, since all other transcripts probed by Northern analysis are normal.
Collapse
Affiliation(s)
- D M Mueller
- Department of Medicine, University of Chicago, IL 60637
| | | | | | | | | | | |
Collapse
|
11
|
Post-transcriptional defects in the synthesis of the mitochondrial H+-ATPase subunit 6 in yeast mutants with lesions in the subunit 9 structural gene. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0167-4781(86)90020-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Mueller DM, Getz GS. Transcriptional regulation of the mitochondrial genome of yeast Saccharomyces cerevisiae. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67308-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Mueller DM, Getz GS. Steady state analysis of mitochondrial RNA after growth of yeast Saccharomyces cerevisiae under catabolite repression and derepression. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67316-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Zennaro E, Grimaldi L, Baldacci G, Frontali L. Mitochondrial transcription and processing of transcripts during release from glucose repression in 'resting cells' of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 147:191-6. [PMID: 2578960 DOI: 10.1111/j.1432-1033.1985.tb08736.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondrial transcription and processing of transcripts have been investigated at different stages of release from glucose repression in resting cells of Saccharomyces cerevisiae. Transcripts were identified by hybridization with nick-translated or terminally labelled gene-specific probes. This allowed the determination of the steady-state levels of individual transcripts in the mitochondrial RNA population. Results showed different gene-specific patterns of response to respiratory induction: no increase in the level of transcripts (oxi2); a rapid increase in the steady-state levels of all transcripts (cob); a very strong increase in the processing of the high-molecular-mass precursors (oxi3 and oli2); an increase in the level of stable circular transcripts (oxi3). As a whole the results indicate specific and differentiated effects of release from glucose repression on the expression of the different mitochondrial genes and demonstrate the importance of processing events in mitochondrial regulation.
Collapse
|
15
|
Abstract
We have compiled the available primary structural data for the mitochondrial genome of Saccharomyces cerevisiae and have estimated the size of the remaining gaps, which represent 12-13% of the genome. The lengths of sequenced regions and of gaps lead to a new assessment of genome sizes; these range (in round figures) from 85 000 bp for the long genomes, to 78 000 bp for the short genomes, to 74 000 bp for the supershort genome of Saccharomyces carlsbergensis. These values are 8-11% higher than those previously estimated from restriction fragments. Interstrain differences concern not only facultative intervening sequences (introns) and mini-inserts, but also insertions/deletions in intergenic sequences. The primary structure appears to be extremely conserved in genes and ori sequences, and highly conserved in intergenic sequences. Since coding sequences represent at most 33-35% of the genome, at least two thirds of the genome are formed by noncoding and yet highly conserved sequences. The G + C level of genes or exon is 25%, and that of intronic open reading frames (ORFs) 22%; increasingly lower values are shown by intronic closed reading frames (CRFs), 20%, ori sequences, 19%, intergenic ORFs, 17.5% and intergenic sequences, 15%.
Collapse
|
16
|
Abstract
The 2200-bp ori2-ori7 region of the mitochondrial (mt) genome of Saccharomyces cerevisiae has been sequenced on the genome of a petite, b7, excised at those ori sequences from wild-type strain B. The region contains an open reading frame, ORF5, which is transcribed into a 900-nucleotide (nt) RNA in both the parental wild-type strain and its derived petite, b7. This RNA uses as a template the strand used by most mt transcripts. Its start point is located 337 nt upstream of ORF5; and a messenger termination site has been found 900 nt downstream of the initiation site. These data suggest that ORF5 is a new mitochondrial gene. The G + C content of ORF5 is only 15.7%; 90% of the G + C base pairs of ORF5 are comprised in a palindromic G + C cluster similar to that present in the varl gene. The coding capacity of ORF5 is 46 amino acids (aa), mainly represented by methionine, phenylalanine, arginine, valine, asparagine, isoleucine and tyrosine. The aa composition and the codon usage of ORF5 are reminiscent of those of varl and of other intergenic ORFs.
Collapse
|
17
|
Faugeron-Fonty G, Goyon C. Polymorphic variations in the ori sequences from the mitochondrial genomes of different wild-type yeast strains. Curr Genet 1985; 10:269-82. [PMID: 2900696 DOI: 10.1007/bf00365623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We determined the restriction maps and primary structures of two as yet poorly characterized regions of the mitochondrial genomes of different wild-type strains of Saccharomyces cerevisiae. These regions respectively comprised the ori1 sequence and the newly identified ori8 sequence. Ori1 and ori8, together with their flanking sequences, exhibit a large polymorphism, resulting from specific variations due to insertions or deletions of optional GC clusters at different locations. The mechanisms underlying such sequence rearrangements are discussed.
Collapse
Affiliation(s)
- G Faugeron-Fonty
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
18
|
Faugeron-Fonty G, Le Van Kim C, de Zamaroczy M, Goursot R, Bernardi G. A comparative study of the ori sequences from the mitochondrial genomes of twenty wild-type yeast strains. Gene 1984; 32:459-73. [PMID: 6397407 DOI: 10.1016/0378-1119(84)90020-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ori sequences of the mitochondrial genomes of 20 wild-type strains of Saccharomyces cerevisiae were compared with those of the previously studied strain A (de Zamaroczy et al., 1984). The seven canonical ori sequences of this strain appear to be present in all strains tested, but in most strains ori1 is replaced by an extensively rearranged ori1 * sequence, and an additional ori sequence, ori8, is present between the oxi3 and the 15S RNA genes; one strain, B, lacks ori4. The location and orientation of ori sequences of three strains, B, C and K, were found to be the same as in strain A. The primary structures of four ori sequences from three different strains (ori1 of strain J69-1B, ori3 and ori5 of strain K, ori6 of strain D273-10B) were found to be identical with the corresponding ori sequences previously investigated. Hybridization experiments with different ori probes indicated a conservation of ori2-ori7 sequences in all strains tested. The primary structure of a petite genome derived from strain B and carrying ori1 * is reported and discussed.
Collapse
|
19
|
Simon M, Faye G. Organization and processing of the mitochondrial oxi3/oli2 multigenic transcript in yeast. MOLECULAR & GENERAL GENETICS : MGG 1984; 196:266-74. [PMID: 6387398 DOI: 10.1007/bf00328059] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the present article, we confirm our previous proposal (Faye and Simon 1983a, b) that the oxi3 and oli2 genes belong to the same transcription unit. Furthermore, we have shown that a primary polycistronic transcript covers oxi3, aap1, oli2 and extends beyond URF2. Transcriptional analysis of this region revealed several cleavage points. The examination of the DNA sequence at and surrounding these cleavage points disclosed that some of them take place at or near specific sequences found also in other known multigenic transcripts. Two of the major cleavages involve the stem-loop structure of GC rich clusters. We discuss the possibility that some of these cleavage sites serve as post-transcriptional processing signals and may be necessary for the maturation of the precursor RNA.
Collapse
|
20
|
Biogenesis of Mitochondria: Genetic and molecular analysis of the oli2 region of mitochondrial DNA in Saccharomyces cerevisiae. Curr Genet 1984; 8:135-46. [DOI: 10.1007/bf00420226] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1983] [Indexed: 10/26/2022]
|
21
|
Christianson T, Rabinowitz M. Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro capping with guanylyltransferase. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44019-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Bingham CG, Nagley P. A petite mitochondrial DNA segment arising in exceptionally high frequency in a mit- mutant of Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 740:88-98. [PMID: 6342676 DOI: 10.1016/0167-4781(83)90125-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In cultures of the mit- mutant strain Mb12 of Saccharomyces cerevisiae (carrying a mutation in the oli2 gene), 70% of the cells are petite mutants. More than 80% of the petites from Mb12 contain a particular mtDNA segment, denoted BB5, that is 880 bp long and carries a single MboI site. Thus, in cultures of Mb12, about 56% of the cells are petites containing the defective BB5 mtDNA genome, and only 30% are mit- cells containing parental Mb12 mtDNA. The BB5 mtDNA segment is also found in petites arising from the wild-type strain J69-1B (from which Mb12 was derived), but in this case mtDNA from only five out of 24 petites produced an 880 bp band after MboI digestion. Since J69-1B cultures carry a petite frequency of about 5%, approximately 1% of cells in J69-1B cultures contain the BB5 mtDNA segment. The difference between Mb12 and J69-1B cultures is reflected in the MboI digestion patterns of the respective mtDNAs. While Mb12 mtDNA contains a grossly superstoicheiometric 880 bp MboI fragment, the corresponding fragment in J69-1B mtDNA cannot be seen on stained gels, but can be readily visualized in Southern blots hybridized to a 32P-labelled DNA probe obtained from the 880 bp MboI fragment. The BB5 mtDNA segment was shown to contain the ori1 sequence (one of several very similar sequences in wild-type mtDNA thought to act as origins of replication of mtDNA) which confers the genetic property of very high suppressiveness on petites carrying this mtDNA. The efficient replication of BB5 mtDNA may contribute to its abundance in Mb12 cultures. Nevertheless, other factors must operate to influence the abundance of the BB5 mtDNA segment in cultures of different strains, the most important of which is likely to be the rate of excision of this mtDNA segment from the parental mtDNA genome.
Collapse
|
23
|
Beilharz MW, Cobon GS, Nagley P. Physiological alteration of the pattern of transcription of the oli2 region of yeast mitochondrial DNA. FEBS Lett 1982; 147:235-8. [PMID: 6184245 DOI: 10.1016/0014-5793(82)81049-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|