1
|
Sidorov AV, Shadenko VN. Electrical Activity of Identified Neurons in the Central Nervous System of a Mollusk Lymnaea stagnalis under Acute Hyperglycemia. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Totani Y, Nakai J, Hatakeyama D, Ito E. Memory-enhancing effects of short-term fasting. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1827053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Y. Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - J. Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | - D. Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - E. Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Shadenko VN, Sidorov AV. Antioxidant Defense in the Hepatopancreas
and Nerve Ganglia of the Mollusk Lymnaea
stagnalis after Acute Experimental Hyperglycemia. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020030060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Crossley M, Staras K, Kemenes G. A central control circuit for encoding perceived food value. SCIENCE ADVANCES 2018; 4:eaau9180. [PMID: 30474061 PMCID: PMC6248929 DOI: 10.1126/sciadv.aau9180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/24/2018] [Indexed: 05/10/2023]
Abstract
Hunger state can substantially alter the perceived value of a stimulus, even to the extent that the same sensory cue can trigger antagonistic behaviors. How the nervous system uses these graded perceptual shifts to select between opposed motor patterns remains enigmatic. Here, we challenged food-deprived and satiated Lymnaea to choose between two mutually exclusive behaviors, ingestion or egestion, produced by the same feeding central pattern generator. Decoding the underlying neural circuit reveals that the activity of central dopaminergic interneurons defines hunger state and drives network reconfiguration, biasing satiated animals toward the rejection of stimuli deemed palatable by food-deprived ones. By blocking the action of these neurons, satiated animals can be reconfigured to exhibit a hungry animal phenotype. This centralized mechanism occurs in the complete absence of sensory retuning and generalizes across different sensory modalities, allowing food-deprived animals to increase their perception of food value in a stimulus-independent manner to maximize potential calorific intake.
Collapse
|
5
|
Dyakonova V, Hernádi L, Ito E, Dyakonova T, Zakharov I, Sakharov D. The activity of isolated snail neurons controlling locomotion is affected by glucose. Biophysics (Nagoya-shi) 2015; 11:55-60. [PMID: 27493515 PMCID: PMC4736796 DOI: 10.2142/biophysics.11.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/18/2014] [Indexed: 12/02/2022] Open
Abstract
The involvement of serotonin in mediating hunger-related changes in behavioral state has been described in many invertebrates. However, the mechanisms by which hunger signals to serotonergic cells remain unknown. We tested the hypothesis that serotonergic neurons can directly sense the concentration of glucose, a metabolic indicator of nutritional state. In the snail Lymnaea stagnalis, we demonstrate that completely isolated pedal serotonergic neurons that control locomotion changed their biophysical characteristics in response to glucose application by lowering membrane potential and decreasing the firing rate. Additionally, the excitatory response of the isolated serotonergic neurons to the neuroactive microenvironment of the pedal ganglia was significantly lowered by glucose application. Because hunger has been reported to increase the activity of select neurons and their responses to the pedal ganglia microenvironment, these responses to glucose are in accordance with the hypothesis that direct glucose signaling is involved in the mediation of the hunger-related behavioral state.
Collapse
Affiliation(s)
- Varvara Dyakonova
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| | - László Hernádi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany,
Hungary
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki 769-2193,
Japan
| | - Taisia Dyakonova
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| | - Igor Zakharov
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| | - Dmitri Sakharov
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| |
Collapse
|
6
|
Rőszer T, Kiss-Tóth ÉD. FMRF-amide is a glucose-lowering hormone in the snail Helix aspersa. Cell Tissue Res 2014; 358:371-83. [PMID: 25096715 DOI: 10.1007/s00441-014-1966-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/07/2014] [Indexed: 11/26/2022]
Abstract
Although glucose is metabolically the most important carbohydrate in almost all living organisms, still little is known about the evolution of the hormonal control of cellular glucose uptake. In this study, we identify Phe-Met-Arg-Phe-amide (FMRFa), also known as molluscan cardioexcitatory tetrapeptide, as a glucose-lowering hormone in the snail Helix aspersa. FMRFa belongs to an evolutionarily conserved neuropeptide family and is involved in the neuron-to-muscle signal transmission in the snail digestive system. This study shows that, beyond this function, FMRFa also has glucose-lowering activity. We found neuronal transcription of genes encoding FMRFa and its receptor and moreover the hemolymph FMRFa levels were peaking at metabolically active periods of the snails. In turn, hypometabolism of the dormant periods was associated with abolished FMRFa production. In the absence of FMRFa, the midintestinal gland ("hepatopancreas") cells were deficient in their glucose uptake, contributing to the development of glucose intolerance. Exogenous FMRFa restored the absorption of hemolymph glucose by the midintestinal gland cells and improved glucose tolerance in dormant snails. We show that FMRFa was released to the hemolymph in response to glucose challenge. FMRFa-containing nerve terminals reach the interstitial sinusoids between the chondroid cells in the artery walls. We propose that, in addition to the known sites of possible FMRFa secretion, these perivascular sinusoids serve as neurohemal organs and allow FMRFa release. This study suggests that in evolution, not only the insulin-like peptides have adopted the ability to increase cellular glucose uptake and can act as hypoglycemic hormones.
Collapse
Affiliation(s)
- Tamás Rőszer
- Department of General Zoology and Endocrinology, Faculty of Science, University of Ulm, Helmholtz Straße 8/1, 89081, Ulm, Germany,
| | | |
Collapse
|
7
|
Mita K, Okuta A, Okada R, Hatakeyama D, Otsuka E, Yamagishi M, Morikawa M, Naganuma Y, Fujito Y, Dyakonova V, Lukowiak K, Ito E. What are the elements of motivation for acquisition of conditioned taste aversion? Neurobiol Learn Mem 2014; 107:1-12. [DOI: 10.1016/j.nlm.2013.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/28/2022]
|
8
|
York PS, Cummins SF, Degnan SM, Woodcroft BJ, Degnan BM. Marked changes in neuropeptide expression accompany broadcast spawnings in the gastropod Haliotis asinina. Front Zool 2012; 9:9. [PMID: 22571815 PMCID: PMC3434067 DOI: 10.1186/1742-9994-9-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/22/2012] [Indexed: 11/30/2022] Open
Abstract
Introduction A huge diversity of marine species reproduce by synchronously spawning their gametes into the water column. Although this species-specific event typically occurs in a particular season, the precise time and day of spawning often can not be predicted. There is little understanding of how the environment (e.g. water temperature, day length, tidal and lunar cycle) regulates a population’s reproductive physiology to synchronise a spawning event. The Indo-Pacific tropical abalone, Haliotis asinina, has a highly predictable spawning cycle, where individuals release gametes on the evenings of spring high tides on new and full moons during the warmer half of the year. These calculable spawning events uniquely allow for the analysis of the molecular and cellular processes underlying reproduction. Here we characterise neuropeptides produced in H. asinina ganglia that are known in egg-laying molluscs to control vital aspects of reproduction. Results We demonstrate that genes encoding APGWamide, myomodulin, the putative proctolin homologue whitnin, FMRFamide, a schistosomin-like peptide (SLP), a molluscan insulin-related peptide (MIP) and a haliotid growth-associated peptide (HGAP) all are differentially expressed in the anterior ganglia during the two week spawning cycle in both male and female abalone. Each gene has a unique and sex-specific expression profile. Despite these differences, expression levels in most of the genes peak at or within 12 h of the spawning event. In contrast, lowest levels of transcript abundance typically occurs 36 h before and 24 h after spawning, with differences in peak and low expression levels being most pronounced in genes orthologous to known molluscan reproduction neuromodulators. Conclusions Exploiting the predictable semi-lunar spawning cycle of the gastropod H. asinina, we have identified a suite of evolutionarily-conserved, mollusc-specific and rapidly-evolving neuropeptides that appear to contribute to the regulation of spawning. Dramatic increases and decreases in ganglionic neuropeptide expression levels from 36 h before to 24 h after the broadcast spawning event are consistent with these peptides having a regulatory role in translating environmental signals experienced by a population into a synchronous physiological output, in this case, the release of gametes.
Collapse
Affiliation(s)
- Patrick S York
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | | | | | | | | |
Collapse
|
9
|
Hoek RM, Li KW, van Minnen J, Lodder JC, de Jong-Brink M, Smit AB, van Kesteren RE. LFRFamides: a novel family of parasitation-induced -RFamide neuropeptides that inhibit the activity of neuroendocrine cells in Lymnaea stagnalis. J Neurochem 2005; 92:1073-80. [PMID: 15715658 DOI: 10.1111/j.1471-4159.2004.02927.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We report the characterization of a cDNA encoding a novel -RFamide neuropeptide precursor that is up-regulated during parasitation in the snail Lymnaea stagnalis. Processing of this precursor yields five structurally related neuropeptides, all but one ending with the C-terminal sequence -LFRFamide, as was confirmed by direct mass spectrometry of brain tissue. The LFRFamide gene is expressed in a small cluster of neurons in each buccal ganglion, three small clusters in each cerebral ganglion, and one cluster in each lateral lobe of the cerebral ganglia. Application of two of the LFRFamide peptides to neuroendocrine cells that control either growth and metabolism or reproduction induced similar hyperpolarizing K+-currents, and inhibited electrical activity. We conclude that up-regulation of inhibitory LFRFamide neuropeptides during parasitation probably reflects an evolutionary adaptation that allows endoparasites to suppress host metabolism and reproduction in order to fully exploit host energy recourses.
Collapse
Affiliation(s)
- R M Hoek
- Department of Molecular and Cellular Neurobiology, Research Institute Neurosciences, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Ierusalimsky V, Balaban P. Morphological basis for coordination of growth and reproduction processes in the CNS of two terrestrial snails. Exp Brain Res 2004; 161:465-73. [PMID: 15490131 DOI: 10.1007/s00221-004-2093-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
The morphology of cells immunoreactive to an antibody against molluscan insulin-related peptide (MIP-IR) was studied in two species of terrestrial snail: Helix lucorum L. and Eobania vermiculata L. Immunocytochemical staining with this antibody to MIP revealed 100-130 cells in the postcerebrum, located in two clusters with common pathways in the dorsal body nerve and the cerebral artery nerve. About 75% of the MIP-IR cells were labeled by backfilling of the dorsal body nerve in Helix and Eobania; the corresponding figures for labeling by backfilling of the cerebral artery nerve were about 60% in Helix and 30% in Eobania. Upon intracellular staining of neurons of the dorsomedial postcerebrum, where most of the MIP-IR cells were located, it was found that they projected either in the dorsal body nerve or in the cerebral artery nerve or in both. The obtained data suggest that growth and reproduction processes (both functions were attributed to the insulin-related peptide-containing neurons) are regulated by the two, partially coinciding subsets of postcerebral MIP-IR neurons with different types of branching.
Collapse
Affiliation(s)
- V Ierusalimsky
- Laboratory of Cellular Mechanisms of Learning, Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences, ul. Butlerova 5a, 117485 Moscow, Russia.
| | | |
Collapse
|
11
|
Alania M, Dyakonova V, Sakharov DA. Hyperpolarization by glucose of feeding-related neurons in snail. ACTA BIOLOGICA HUNGARICA 2004; 55:195-200. [PMID: 15270235 DOI: 10.1556/abiol.55.2004.1-4.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the pond snail Lymnaea stagnalis, D-glucose action was investigated on electrical activity of identified central neurons. In the CNS preparations isolated from specimens that starved for 24-96 h, D-glucose added to a standard or HiDi saline at 500-700 microg/ml effectively hyperpolarized ca. 90% of feeding related neurons B1, SO and CGC. However, not all feeding-related neurons examined were responsive to glucose. Experiments on cells of the serotonergic Pedal A cluster have shown that hyperpolarizing action of D-glucose is retained following complete isolation of "hunger" neurons. Threshold concentration producing 1-3 mV hyperpolarization was ca. 50 microg/ml. The results suggest a direct glucose involvement in the mechanisms that control feeding behavior in Lymnaea.
Collapse
Affiliation(s)
- Magda Alania
- Laboratory of Comparative Physiology, Institute for Developmental Biology, RAS, 26 Vavilov str., Moscow, 119909 Russia
| | | | | |
Collapse
|
12
|
Koshimura K, Tanaka J, Murakami Y, Kato Y. Effect of high concentration of glucose on dopamine release from pheochromocytoma-12 cells. Metabolism 2003; 52:922-6. [PMID: 12870171 DOI: 10.1016/s0026-0495(03)00059-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the mechanism of the action of high concentration of glucose on transmitter release from neuronal cells, we examined the effect of high concentration of glucose on dopamine release from pheochromocytoma-12 (PC12) cells. When the cells were incubated with 9.0 or 13.5 mg/mL glucose (2- or 3-fold of the optimum glucose concentration for PC12 cells), dopamine release was increased in a dose-related manner. Glucose-induced increase in dopamine release was blunted by nicardipine, a Ca2+ channel blocker. Following addition of 13.5 mg/mL glucose, intracellular Ca2+ concentration was increased, which was eliminated by nicardipine. Administration of 9.0 or 13.5 mg/mL glucose induced membrane depolarization in a dose-related manner. Glucose-induced dopamine release was inhibited by pinacidil or diazoxide, adenosine triphosphate (ATP)-sensitive K+ channel (KATP channel) openers. These results suggest that a high concentration of glucose induced ATP production, which blocked the KATP channel to induce membrane depolarization, and increased intracellular Ca2+ concentration and dopamine release. When the cells were cultured with 9.0 or 13.5 mg/mL glucose for 7 days, high potassium chloride (KCl)-induced dopamine release and 45Ca2+ uptake were increased. These results suggest that long-term incubation with a high concentration of glucose increased the capacity of Ca2+ uptake to enhance depolarization-induced dopamine release from PC12 cells. These data taken together suggest that a high concentration of glucose induced activation of the Ca2+ channel to stimulate dopamine release from PC12 cells.
Collapse
Affiliation(s)
- Kunio Koshimura
- First Division, Department of Medicine, Shimane Medical University, Izumo, Japan
| | | | | | | |
Collapse
|
13
|
Verri T, Mandal A, Zilli L, Bossa D, Mandal PK, Ingrosso L, Zonno V, Vilella S, Ahearn GA, Storelli C. D-glucose transport in decapod crustacean hepatopancreas. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:585-606. [PMID: 11913469 DOI: 10.1016/s1095-6433(01)00434-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Physiological mechanisms of gastrointestinal absorption of organic solutes among crustaceans remain severely underinvestigated, in spite of the considerable relevance of characterizing the routes of nutrient absorption for both nutritional purposes and formulation of balanced diets in aquaculture. Several lines of evidence attribute a primary absorptive role to the digestive gland (hepatopancreas) and a secondary role to the midgut (intestine). Among absorbed organic solutes, the importance of D-glucose in crustacean metabolism is paramount. Its plasma levels are finely tuned by hormones (crustacean hyperglycemic hormone, insulin-like peptides and insulin-like growth factors) and the function of certain organs (i.e. brain and muscle) largely depends on a balanced D-glucose supply. In the last few decades, D-glucose absorptive processes of the gastrointestinal tract of crustaceans have been described and transport mechanisms investigated, but not fully disclosed. We briefly review our present knowledge of D-glucose transport processes in the crustacean hepatopancreas. A discussion of previous results from experiments with hepatopancreatic epithelial brush-border membrane vesicles is presented. In addition, recent advances in our understandings of hepatopancreatic D-glucose transport are shown, as obtained (1) after isolation of purified R-, F-, B- and E-cell suspensions from the whole organ by centrifugal elutriation, and (2) by protein expression in hepatopancreatic mRNA-injected Xenopus laevis oocytes. In a perspective, the applicability of these novel methods to the study of hepatopancreatic absorptive function will certainly improve our knowledge of this structurally complex organ.
Collapse
Affiliation(s)
- T Verri
- Laboratory of General Physiology, Department of Biology, University of Lecce, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The first Aplysia californica insulin gene is characterized and its proteolytic processing from prohormone to final peptides elucidated using a combination of biochemical and mass spectrometric methods. Aplysia insulin (AI) is one of the largest insulins found, with a molecular weight of 9146 Da, and an extended A chain compared with other invertebrate and vertebrate insulins. The AI prohormone produces a series of C peptides and also a unique N-terminally acetylated D peptide. AI-producing cells are restricted to the central region of the cerebral ganglia mostly within the F and C clusters, and AI is transported to neurohemal release sites located on the upper labial and anterior tentacular nerves. The expression of AI mRNA decreases when the animal is deprived of food, and injections of AI reduce hemolymph glucose levels, suggesting that the function of insulin-regulating metabolism has been conserved.
Collapse
|
15
|
DANTON EMMANUELLE, KIYOMOTO MASATO, KOMARU AKIRA, WADA KATSUHIKOT, AWAJI MASAHIKO, MATHIEU MICHEL. Comparative analysis of storage tissue and insulin-like neurosecretion in diploid and triploid musselsMytilus galloprovincialisLMK in relation to their gametogenesis cycle. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
van Kesteren RE, Tensen CP, Smit AB, van Minnen J, van Soest PF, Kits KS, Meyerhof W, Richter D, van Heerikhuizen H, Vreugdenhil E. A novel G protein-coupled receptor mediating both vasopressin- and oxytocin-like functions of Lys-conopressin in Lymnaea stagnalis. Neuron 1995; 15:897-908. [PMID: 7576638 DOI: 10.1016/0896-6273(95)90180-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have cloned a receptor, named LSCPR, for vasopressin-related Lys-conopressin in Lymnaea stagnalis. Lys-conopressin evokes Ca(2+)-dependent Cl- currents in Xenopus oocytes injected with LSCPR cRNA. Expression of LSCPR mRNA was detected in central neurons and peripheral muscles associated with reproduction. Upon application of Lys-conopressin, both neurons and muscle cells depolarize owing to an enhancement of voltage-dependent Ca2+ currents and start firing action potentials. Some neurons coexpress LSCPR and Lys-conopressin, suggesting an autotransmitter-like function for this peptide. Lys-conopressin also induces a depolarizing response in LSCPR-expressing neuroendocrine cells that control carbohydrate metabolism. Thus, in addition to oxytocin-like reproductive functions, LSCPR mediates vasopressin-like metabolic functions of Lys-conopressin as well.
Collapse
Affiliation(s)
- R E van Kesteren
- Department of Experimental Zoology, Graduate School of Neurosciences Amsterdam, Institute of Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Geraerts WP, Smit AB, Li KW, Hordijk PL. The Light Green Cells of Lymnaea: a neuroendocrine model system for stimulus-induced expression of multiple peptide genes in a single cell type. EXPERIENTIA 1992; 48:464-73. [PMID: 1601111 DOI: 10.1007/bf01928165] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We review recent experiments showing that the cerebral neuroendocrine Light Green Cells (LGCs) of the freshwater snail, Lymnaea stagnalis, express a family of distinct though related molluscan insulin-related peptide (MIP) genes. The LGCs are involved in the regulation of a wide range of interrelated life processes associated with growth, (energy) metabolism and reproduction. We consider the mechanism of generation of diversity among MIPs, and present evidence that conditions with distinct effects on growth, metabolism and reproduction also can induce distinct patterns of expression of the MIP and schistosomin genes. The stimulus-dependent expression of multiple neuropeptide genes enormously increases the adaptive potential of a peptidergic neuron. We suggest that this contributes significantly to the information-handling capacity of the brain.
Collapse
Affiliation(s)
- W P Geraerts
- Faculty of Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|