Siegmund E, Lüthen F, Kunert J, Weber H. Ethanol modifies the actin cytoskeleton in rat pancreatic acinar cells--comparison with effects of CCK.
Pancreatology 2004;
4:12-21. [PMID:
14988654 DOI:
10.1159/000077023]
[Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 10/07/2003] [Indexed: 12/11/2022]
Abstract
BACKGROUND
One of the early events leading to alcoholic pancreatitis seems to be the effect of ethanol on stimulus-secretion coupling. This study examines ethanol-induced modifications of filamentous actin (F-actin) content and localization in acini, the resulting alpha-amylase secretion and the role of protein kinase C (PKC) activity in these processes.
METHODS
Freshly isolated acini were treated with different concentrations of ethanol or cholecystokinin octapeptide (CCK-8) for different periods. F-actin was localized by confocal laser scanning microscopy; its quantity was determined fluorometrically, and the alpha-amylase secretion was measured.
RESULTS
Ethanol caused F-actin reorganization resembling the effects of supramaximal CCK-8 stimulation and of direct PKC activation by phorbol-12-myristate-13-acetate. The polyphasic time course of the F-actin content also resembled that under supramaximal CCK-8 stimulation and was counteracted by inhibition of PKC. The PKC inhibitor bisindolylmaleimide I did not increase the ethanol- induced alpha-amylase secretion, but the suboptimally CCK-8-stimulated secretion via high-affinity receptors.
CONCLUSION
Ethanol, like supramaximal CCK-8 concentrations, inhibits acinar secretion by reorganization of the actin cytoskeleton via PKC activation. This effect is suggested to be mediated by low-affinity CCK-A receptors. Together with the ethanol-induced stimulation of early steps of stimulus-secretion coupling, this may be a pancreas-damaging mechanism resembling that in experimental hyperstimulation pancreatitis.
Collapse