1
|
Carretero L, Llavona P, López-Hernández A, Casado P, Cutillas PR, de la Peña P, Barros F, Domínguez P. ERK and RSK are necessary for TRH-induced inhibition of r-ERG potassium currents in rat pituitary GH3 cells. Cell Signal 2015; 27:1720-30. [PMID: 26022182 DOI: 10.1016/j.cellsig.2015.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/04/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022]
Abstract
The transduction pathway mediating the inhibitory effect that TRH exerts on r-ERG channels has been thoroughly studied in GH3 rat pituitary cells but some elements have yet to be discovered, including those involved in a phosphorylation event(s). Using a quantitative phosphoproteomic approach we studied the changes in phosphorylation caused by treatment with 1μM TRH for 5min in GH3 cells. The activating residues of Erk2 and Erk1 undergo phosphorylation increases of 5.26 and 4.87 fold, respectively, in agreement with previous reports of ERK activation by TRH in GH3 cells. Thus, we studied the possible involvement of ERK pathway in the signal transduction from TRH receptor to r-ERG channels. The MEK inhibitor U0126 at 0.5μM caused no major blockade of the basal r-ERG current, but impaired the TRH inhibitory effect on r-ERG. Indeed, the TRH effect on r-ERG was also reduced when GH3 cells were transfected with siRNAs against either Erk1 or Erk2. Using antibodies, we found that TRH treatment also causes activating phosphorylation of Rsk. The TRH effect on r-ERG current was also impaired when cells were transfected with any of two different siRNAs mixtures against Rsk1. However, treatment of GH3 cells with 20nM EGF for 5min, which causes ERK and RSK activation, had no effect on the r-ERG currents. Therefore, we conclude that in the native GH3 cell system, ERK and RSK are involved in the pathway linking TRH receptor to r-ERG channel inhibition, but additional components must participate to cause such inhibition.
Collapse
Affiliation(s)
- Luis Carretero
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pablo Llavona
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alejandro López-Hernández
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pedro Casado
- Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom
| | - Pedro R Cutillas
- Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom
| | - Pilar de la Peña
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pedro Domínguez
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
2
|
Potassium Current Is Not Affected by Long-Term Exposure to Ghrelin or GHRP-6 in Somatotropes GC Cells. JOURNAL OF BIOPHYSICS 2013; 2013:913792. [PMID: 23533398 PMCID: PMC3600309 DOI: 10.1155/2013/913792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 12/17/2012] [Indexed: 11/17/2022]
Abstract
Ghrelin is a growth hormone (GH) secretagogue (GHS) and GHRP-6 is a synthetic peptide analogue; both act through the GHS receptor. GH secretion depends directly on the intracellular concentration of Ca(2+); this is determined from the intracellular reserves and by the entrance of Ca(2+) through the voltage-dependent calcium channels, which are activated by the membrane depolarization. Membrane potential is mainly determined by K(+) channels. In the present work, we investigated the effect of ghrelin (10 nM) or GHRP-6 (100 nM) for 96 h on functional expression of voltage-dependent K(+) channels in rat somatotropes: GC cell line. Physiological patch-clamp whole-cell recording was used to register the K(+) currents. With Cd(2+) (1 mM) and tetrodotoxin (1 μ m) in the bath solution recording, three types of currents were characterized on the basis of their biophysical and pharmacological properties. GC cells showed a K(+) current with a transitory component (I A) sensitive to 4-aminopyridine, which represents ~40% of the total outgoing current; a sustained component named delayed rectifier (I K), sensitive to tetraethylammonium; and a third type of K(+) current was recorded at potentials more negative than -80 mV, permitting the entrance of K(+) named inward rectifier (KIR). Chronic treatment with ghrelin or GHRP-6 did not modify the functional expression of K(+) channels, without significant changes (P < 0.05) in the amplitudes of the three currents observed; in addition, there were no modifications in their biophysical properties and kinetic activation or inactivation.
Collapse
|
3
|
Cell type influences the molecular mechanisms involved in hormonal regulation of ERG K+ channels. Pflugers Arch 2012; 463:685-702. [PMID: 22415214 DOI: 10.1007/s00424-012-1094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 02/25/2012] [Indexed: 10/28/2022]
Abstract
While the thyrotropin-releasing hormone (TRH) effect of raising intracellular Ca(2+) levels has been shown to rely on G(q/11) and PLC activation, the molecular mechanisms involved in the regulation of ERG K(+) channels by TRH are still partially unknown. We have analysed the effects of βγ scavengers, Akt/PKB inactivation, and TRH receptor (TRH-R) overexpression on such regulation in native and heterologous expression cell systems. In native rat pituitary GH(3) cells β-ARK/CT, Gα(t), and phosducin significantly reduced TRH inhibition of rERG currents, whereas in HEK-H36/T1 cells permanently expressing TRH-R and hERG, neither of the βγ scavengers affected the TRH-induced shift in V (1/2). Use of specific siRNAs to knock Akt/PKB expression down abolished the TRH effect on HEK-H36/T1 cell hERG, but not on rERG from GH(3) cells. Indeed, wortmannin or long insulin pretreatment also blocked TRH regulation of ERG currents in HEK-H36/T1 but not in GH(3) cells. To determine whether these differences could be related to the amount of TRH-Rs in the cell, we studied the TRH concentration dependence of the Ca(2+) and ERG responses in GH(3) cells overexpressing the receptors. The data indicated that independent of the receptor number additional cellular factor(s) contribute differently to couple the TRH-R to hERG channel modulation in HEK-H36/T1 cells. We conclude that regulation of ERG currents by TRH and its receptor is transduced in GH(3) and HEK-H36/T1 cell systems through common and different elements, and hence that the cell type influences the signalling pathways involved in the TRH-evoked responses.
Collapse
|
4
|
Kirchberger NM, Wulfsen I, Schwarz JR, Bauer CK. Effects of TRH on heteromeric rat erg1a/1b K+ channels are dominated by the rerg1b subunit. J Physiol 2005; 571:27-42. [PMID: 16339175 PMCID: PMC1805654 DOI: 10.1113/jphysiol.2005.101667] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The erg1a (HERG) K+ channel subunit and its N-terminal splice variant erg1b are coexpressed in several tissues and both isoforms have been shown to form heteromultimeric erg channels in heart and brain. The reduction of erg1a current by thyrotropin-releasing hormone (TRH) is well studied, but no comparable data exist for erg1b. Since TRH and TRH receptors are widely expressed in the brain, we have now studied the different TRH effects on the biophysical properties of homomeric rat erg1b as well as heteromeric rat erg1a/1b channels. The erg channels were overexpressed in the clonal somatomammotroph pituitary cell line GH3/B6, which contains TRH receptors and endogenous erg channels. Compared to rerg1a, homomeric rerg1b channels exhibited not only faster deactivation kinetics, but also considerably less steady-state inactivation, and half-maximal activation occurred at about 10 mV more positive potentials. Coexpression of both isoforms resulted in erg currents with intermediate properties concerning the deactivation kinetics, whereas rerg1a dominated the voltage dependence of activation and rerg1b strongly influenced steady-state inactivation. Application of TRH induced a reduction of maximal erg conductance for all tested erg1 currents without effects on the voltage dependence of steady-state inactivation. Nevertheless, homomeric rerg1b channels significantly differed in their response to TRH from rerg1a channels. The TRH-induced shift in the activation curve to more positive potentials, the dramatic slowing of activation and the acceleration of deactivation typical for rerg1a modulation were absent in rerg1b channels. Surprisingly, most effects of TRH on heteromeric rerg1 channels were dominated by the rerg1b subunit.
Collapse
Affiliation(s)
- Niklas M Kirchberger
- Institut für Angewandte Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
5
|
Miranda P, Giráldez T, de la Peña P, Manso DG, Alonso-Ron C, Gómez-Varela D, Domínguez P, Barros F. Specificity of TRH receptor coupling to G-proteins for regulation of ERG K+ channels in GH3 rat anterior pituitary cells. J Physiol 2005; 566:717-36. [PMID: 15905217 PMCID: PMC1464777 DOI: 10.1113/jphysiol.2005.085803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The identity of the G-protein coupling thyrotropin-releasing hormone (TRH) receptors to rat ether-à-go-go related gene (r-ERG) K+ channel modulation was studied in situ using perforated-patch clamped adenohypophysial GH(3) cells and dominant-negative variants (Galpha-QL/DN) of G-protein alpha subunits. Expression of dominant-negative Galpha(q/11) that minimizes the TRH-induced Ca2+ signal had no effect on r-ERG current inhibition elicited by the hormone. In contrast, the introduction of dominant-negative variants of Galpha13 and the small G-protein Rho caused a significant loss of the inhibitory effect of TRH on r-ERG. A strong reduction of this TRH effect was also obtained in cells expressing either dominant-negative Galpha(s) or transducin alpha subunits, an agent known to sequester free G-protein betagamma dimers. As a further indication of specificity of the dominant-negative effects, only the dominant-negative variants of Galpha13 and Rho (but not Galpha(s)-QL/DN or Galpha(t)) were able to reduce the TRH-induced shifts of human ERG (HERG) activation voltage dependence in HEK293 cells permanently expressing HERG channels and TRH receptors. Our results demonstrate that whereas the TRH receptor uses a G(q/11) protein for transducing the Ca2+ signal during the initial response to TRH, this G-protein is not involved in the TRH-induced inhibition of endogenous r-ERG currents in pituitary cells. They also identify G(s) (or a G(s)-like protein) and G13 as important contributors to the hormonal effect in these cells and suggest that betagamma dimers released from these proteins may participate in modulation of ERG currents triggered by TRH.
Collapse
Affiliation(s)
- Pablo Miranda
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus del Cristo, Universidad de Oviedo, E-33006, Oviedo, Asturias, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Ether-à-go-go-related gene (erg) channels are voltage-dependent K+ channels mediating inward-rectifying K+ currents because of their peculiar gating kinetics. These characteristics are essential for repolarization of the cardiac action potential. Inherited and acquired malfunctioning of erg channels may lead to the long QT-syndrome. However, erg currents have also been recorded in many other excitable cells, like smooth muscle fibres of the gastrointestinal tract, neuroblastoma cells or neuroendocrine cells. In these cells erg currents contribute to the maintenance of the resting potential. Changes in the resting potential are related to cell-specific functions like increase in hormone secretion, frequency adaptation or increase in contractility.
Collapse
Affiliation(s)
- Jürgen R Schwarz
- Institut für Angewandte Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
7
|
Haug TM, Hafting T, Sand O. Inhibition of BK channels contributes to the second phase of the response to TRH in clonal rat anterior pituitary cells. ACTA ACUST UNITED AC 2004; 180:347-57. [PMID: 15030376 DOI: 10.1111/j.1365-201x.2004.01266.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Thyrotropin-releasing hormone (TRH) induces biphasic changes in the electrical activity, the cytosolic free Ca2+ concentration ([Ca2+]i), and prolactin secretion from both GH cells and native lactotrophs. It is well established that inhibition of erg channels contributes to the second phase of the TRH response. We have investigated if BK channels are also involved. RESULTS The BK channels may be active at the resting membrane potential (open probability, Po=0.01) in clonal rat anterior pituitary cells (GH4), which makes it possible that inhibition of these channels may contribute to the reduced K+ conductance during the TRH response. The specific BK channel blocker iberiotoxin (IbTx, 100 nm) had no effect on the resting conductance at holding potentials negative to -40 mV, but significantly reduced the conductance at shallower membrane potentials. This corresponds to the voltage dependency of the sustained [Ca2+]i. Furthermore, IbTx increased the action potential frequency by 36% in spontaneously firing cells. During the second phase of the TRH response, the action potential frequency increased by 34%, concomitantly with 61% reduction of the Po of single BK channels. The protein kinase C (PKC)-activating phorbol ester TPA had no significant effect on BK channel Po within the normal range of the resting potential. CONCLUSION The BK channels may contribute to the resting membrane conductance, and they are partially inhibited by TRH during the second phase. This modulation seems not to depend on PKC. We propose that inhibition of erg and BK channels acts in concert to enhance the cell excitability during the second phase of the response to TRH.
Collapse
Affiliation(s)
- T M Haug
- Department of Biology, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
8
|
Gomez-Varela D, Giraldez T, de la Pena P, Dupuy SG, Garcia-Manso D, Barros F. Protein kinase C is necessary for recovery from the thyrotropin-releasing hormone-induced r-ERG current reduction in GH3 rat anterior pituitary cells. J Physiol 2003; 547:913-29. [PMID: 12562894 PMCID: PMC2342738 DOI: 10.1113/jphysiol.2002.034611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The biochemical cascade linking activation of phospholipase C-coupled thyrotropin-releasing hormone (TRH) receptors to rat ERG (r-ERG) channel modulation was studied in situ using perforated-patch clamped adenohypophysial GH3 cells and pharmacological inhibitors. To check the recent suggestion that Rho kinase is involved in the TRH-induced r-ERG current suppression, the hormonal effects were studied in cells pretreated with the Rho kinase inhibitors Y-27632 and HA-1077. The TRH-induced r-ERG inhibition was not significantly modified in the presence of the inhibitors. Surprisingly, the hormonal effects became irreversible in the presence of HA-1077 but not in the presence of the more potent Rho kinase inhibitor Y-27632. Further experiments indicated that the effect of HA-1077 correlated with its ability to inhibit protein kinase C (PKC). The hormonal effects also became irreversible in cells in which PKC activity was selectively impaired with GF109203X, Gö6976 or long-term incubation with phorbol esters. Furthermore, the reversal of the effects of TRH, but not its ability to suppress r-ERG currents, was blocked if diacylglycerol generation was prevented by blocking phospholipase C activity with U-73122. Our results suggest that a pathway involving an as yet unidentified protein kinase is the main cause of r-ERG inhibition in perforated-patch clamped GH3 cells. Furthermore, they demonstrate that although not necessary to trigger the ERG current reductions induced by TRH, an intracellular signal cascade involving phosphatidylinositol-4,5-bisphosphate hydrolysis by phospholipase C, activation of an alpha/betaII conventional PKC and one or more dephosphorylation steps catalysed by protein phosphatase 2A, mediates recovery of ERG currents following TRH withdrawal.
Collapse
Affiliation(s)
- David Gomez-Varela
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus del Cristo, Universidad de Oviedo, E-33006, Oviedo, Asturias, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Xu R, Zhao Y, Chen C. Growth hormone-releasing peptide-2 reduces inward rectifying K+ currents via a PKA-cAMP-mediated signalling pathway in ovine somatotropes. J Physiol 2002; 545:421-33. [PMID: 12456822 PMCID: PMC2290704 DOI: 10.1113/jphysiol.2002.030916] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inward-rectifying potassium (Kir) channels are essential for maintaining the resting membrane potential near the K(+) equilibrium and they are responsible for hyperpolarisation-induced K(+) influx. We characterised the Kir current in primary cultured ovine somatotropes and examined the effect of growth hormone-releasing peptide-2 (GHRP-2) on this current and its related intracellular signalling pathways. The Kir current was, in most cases, isolated using nystatin-perforated patch-clamp techniques. In bath solution containing 5 mM K(+), the Kir current was composed of both transient (fast activated) and delayed (slowly activated) components. An increase in the external K(+) concentration from 5 to 25 mM induced an augmentation of approximately 4-fold in the delayed part of the Kir current and both BaCl(2) and CsCl dose-dependently inhibited this current, confirming the presence of the Kir current in ovine somatotropes. Moreover, this specific effect of high K(+) on the Kir current was only observed in the cells that showed positive staining with anti-growth hormone (GH) antibodies, or in GC cells that belong to a rat somatotrope cell line. Application of GHRP-2 (100 nM) reversibly and significantly reduced the Kir current in bath solutions with 5 or 25 mM K(+) in ovine somatotropes. In addition, we found that the reduction in the Kir current mediated by GHRP-2 was totally abolished by the pretreatments with H89 (1 microM) or Rp-cAMP (100 microM) or by intracellular dialysis of a specific protein kinase A (PKA) inhibitory peptide PKI (10 microM). The specific PKC blocker chelerythrine (1 microM) or inhibitory peptide PKC(19-36) (10 microM) did not show any effects on the GHRP-2-induced decrease in the Kir current. These results suggest that the inhibition of Kir current through PKA-cAMP pathways may play an integral role in GHRP-2-induced depolarisation and GH release in ovine somatotropes.
Collapse
Affiliation(s)
- Ruwei Xu
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | |
Collapse
|
10
|
Lieste JR, Schoenmakers TJM, Scheenen WJJM, Willems PHGM, Roubos EW, Jenks BG. TRH signal transduction in melanotrope cells of Xenopus laevis. Gen Comp Endocrinol 2002; 127:80-8. [PMID: 12161205 DOI: 10.1016/s0016-6480(02)00028-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRH is a neuropeptide that activates phospholipase C and, when acting on secretory cells, usually induces a biphasic response consisting of a transitory increase in secretion (due to IP(3) mobilization of Ca(2+) from intracellular stores), followed by a sustained plateau phase of stimulated secretion (by protein kinase C-dependent influx of extracellular Ca(2+) through voltage-operated Ca(2+) channels). The melanotrope cell of the amphibian Xenopus laevis displays a unique secretory response to TRH, namely a broad transient but no sustained second phase, consistent with the observation that TRH induces a single Ca(2+) transient rather than the classic biphasic increase in [Ca(2+)](i). The purpose of the present study was to determine the signal transduction mechanism utilized by TRH in generating this Ca(2+) signaling response. Our hypothesis was that the transient reflects the operation of only one of the two signaling arms of the lipase (i.e., either IP(3)-induced mobilization of internal Ca(2+) or PKC-dependent influx of external Ca(2+)). Using video-imaging microscopy it is shown that the TRH-induced Ca(2+) transient is dramatically attenuated under Ca(2+)-free conditions and that thapsigargin has no noticeable effect on the TRH-induced transient. These observations indicate that an IP(3)-dependent mechanism plays no important role in the action of TRH. PKC also does not seem to be involved because an activator of PKC did not induce a Ca(2+) transient and an inhibitor of PKC did not affect the TRH response. Experiments with a bis-oxonol membrane potential probe showed that the TRH response also does not underlie a PKC-independent mechanism that would induce membrane depolarization. We conclude that the action of TRH on the Xenopus melanotrope does not rely on the classical phospholipase C-dependent mechanism.
Collapse
Affiliation(s)
- J R Lieste
- Department of Cellular Animal Physiology, University of Nijmegen, Toernooiveld 1, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Schledermann W, Wulfsen I, Schwarz JR, Bauer CK. Modulation of rat erg1, erg2, erg3 and HERG K+ currents by thyrotropin-releasing hormone in anterior pituitary cells via the native signal cascade. J Physiol 2001; 532:143-63. [PMID: 11283231 PMCID: PMC2278513 DOI: 10.1111/j.1469-7793.2001.0143g.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The mechanism of thyrotropin-releasing hormone (TRH)-induced ether-a-go-go-related gene (erg) K+ current modulation was investigated with the perforated-patch whole-cell technique in clonal somatomammotroph GH3/B6 cells. These cells express a small endogenous erg current known to be reduced by TRH. GH3/B6 cells were injected with cDNA coding for rat erg1, erg2, erg3 and HERG K+ channels. The corresponding erg currents were isolated with the help of the specific erg channel blockers E-4031 and dofetilide and their biophysical properties were determined. TRH (1 M) was able to significantly reduce the different erg currents. The voltage dependence of activation was shifted by 15 mV (erg1), 10 mV (erg2) and 6 mV (erg3) to more positive potentials without strongly affecting erg inactivation. TRH reduced the maximal available erg current amplitude by 12% (erg1), 13% (erg2) and 39% (erg3) and accelerated the time course of erg1 and erg2 channel deactivation, whereas erg3 deactivation kinetics were not significantly altered. The effects of TRH on HERG currents did not differ from those on its rat homologue erg1. In addition, coinjection of rat MiRP1 with HERG cDNA did not influence the TRH-induced modulation of HERG channels. Rat erg1 currents recorded in the cell-attached configuration were reduced by application of TRH to the extra-patch membrane in the majority of the experiments, confirming the involvement of a diffusible second messenger. Application of the phorbol ester phorbol 12-myristate 13-acetate (PMA; 1 M) shifted the voltage dependence of erg1 activation in the depolarizing direction, but it did not reduce the maximal current amplitude. The voltage shift could not be explained by a selective effect on protein kinase C (PKC) since the PKC inhibitor bisindolylmaleimide I did not block the effects of TRH and PMA on erg1. In addition, cholecystokinin, known to activate the phosphoinositol pathway similarly to TRH, did not significantly affect the erg1 current. Various agents interfering with different known TRH-elicited cellular responses were not able to completely mimic or inhibit the TRH effects on erg1. Tested substances included modulators of the cAMP-protein kinase A pathway, arachidonic acid, inhibitors of tyrosine kinase and mitogen-activated protein kinase, sodium nitroprusside and cytochalasin D. The results demonstrate that all three members of the erg channel subfamily are modulated by TRH in GH3/B6 cells. In agreement with previous studies on the TRH-induced modulation of the endogenous erg current in prolactin-secreting anterior pituitary cells, the TRH effects on overexpressed erg1 channels are not mediated by any of the tested signalling pathways.
Collapse
Affiliation(s)
- W Schledermann
- Abteilung für Angewandte Physiologie, Institut für Physiologie, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
12
|
Pekary AE, Meyerhoff JL, Sattin A. Electroconvulsive seizures modulate levels of thyrotropin releasing hormone and related peptides in rat hypothalamus, cingulate and lateral cerebellum. Brain Res 2000; 884:174-83. [PMID: 11082499 DOI: 10.1016/s0006-8993(00)02930-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have studied the neuroanatomic extent of electroconvulsive (ECS)-responsive prepro-TRH and TRH-related gene expression and its possible interaction with forced swimming. Young adult male Wistar rats were treated in a 2x2 Latin square protocol of swimming, no swimming, three daily ECS or sham ECS. Sixteen different brain regions were dissected and immunoreactivity measured for TRH (pGlu-His-Pro-NH(2)); TRH-Gly, a TRH precursor; Ps4, a prepro-TRH-derived TRH-enhancing decapeptide, and EEP (pGlu-Glu-Pro-NH(2)). ECS, in addition to elevating TRH-immunoreactivity (TRH-IR), TRH-Gly-IR, Ps4-IR and EEP-IR levels in the limbic regions, as we have previously reported, also significantly increased Ps4-IR levels in hypothalamus, posterior cingulate and lateral cerebellum, and increased TRH-Gly-IR levels in hypothalamus. Interestingly, the combination of ECS and swimming significantly reduced the levels of TRH-Gly-IR in the anterior cingulate compared to the sham ECS-no swim group. The combined use of high-pressure liquid chromatography and the EEP radioimmunoassay (RIA) revealed that pGlu-Tyr-Pro-NH(2) and/or pGlu-Phe-Pro-NH(2) occur in amygdala, anterior cingulate, frontal cortex, entorhinal cortex, lateral cerebellum and striatum and make a substantial contribution to the EEP-IR and TRH-IR. We conclude that ECS can alter the expression and secretion of TRH-related peptides in the hypothalamus, cingulate and lateral cerebellum. Such effects have not previously been reported in these limbic and extra-limbic regions which are increasingly implicated in the autonomic, behavioral and volitional changes which accompany severe depression and its treatment.
Collapse
Affiliation(s)
- A E Pekary
- Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
13
|
Piros ET, Charles RC, Song L, Evans CJ, Hales TG. Cloned delta-opioid receptors in GH(3) cells inhibit spontaneous Ca(2+) oscillations and prolactin release through K(IR) channel activation. J Neurophysiol 2000; 83:2691-8. [PMID: 10805669 DOI: 10.1152/jn.2000.83.5.2691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioid receptors can couple to K(+) and Ca(2+) channels, adenylyl cyclase, and phosphatidyl inositol turnover. Any of these actions may be important in the regulation of neurotransmitter and hormone release from excitable cells. GH(3) cells exhibit spontaneous oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) and prolactin release. Activation of cloned delta-opioid receptors stably expressed in GH(3) cells inhibits both spontaneous Ca(2+) signaling and basal prolactin release. The objective of this study was to examine a possible role for K(+) channels in these processes using the patch-clamp technique, fluorescence imaging, and a sensitive ELISA for prolactin. The selective delta receptor agonist [D-Pen(2), D-Pen(2)]enkephalin (DPDPE) inhibited [Ca(2+)](i) oscillations in GH(3) cells expressing both mu and delta receptors (GH(3)MORDOR cells) but had no effect on control GH(3) cells or cells expressing mu receptors alone (GH(3)MOR cells). The inhibition of [Ca(2+)](i) oscillations by DPDPE was unaffected by thapsigargin pretreatment, suggesting that this effect is independent of inositol 1,4,5-triphosphate-sensitive Ca(2+) stores. DPDPE caused a concentration-dependent inhibition of prolactin release from GH(3)MORDOR cells with an IC(50) of 4 nM. DPDPE increased inward K(+) current recorded from GH(3)MORDOR cells but had no significant effect on K(+) currents recorded from control GH(3) cells or GH(3)MOR cells. The mu receptor agonist morphine also had no effect on currents recorded from control cells but activated inward K(+) currents recorded from GH(3)MOR and GH(3)MORDOR cells. Somatostatin activated inward currents recorded from all three cell lines. The DPDPE-sensitive K(+) current was inwardly rectifying and was inhibited by Ba(2+) but not TEA. DPDPE had no effect on delayed rectifier-, Ca(2+)-, and voltage-activated or A-type K(+) currents, recorded from GH(3)MORDOR cells. Ba(2+) attenuated the inhibition of [Ca(2+)](i) and prolactin release by DPDPE, whereas TEA had no effect, consistent with an involvement of K(IR) channels in these actions of the opioid.
Collapse
MESH Headings
- Adenylate Cyclase Toxin
- Adenylyl Cyclases/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Barium/pharmacology
- Biological Clocks/physiology
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Cell Line
- Cesium/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/antagonists & inhibitors
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Patch-Clamp Techniques
- Potassium/metabolism
- Potassium Channel Blockers
- Potassium Channels/metabolism
- Prolactin/analysis
- Prolactin/metabolism
- Quaternary Ammonium Compounds/pharmacology
- Rats
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- E T Piros
- Department of Physiology, Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
14
|
Wulfsen I, Hauber HP, Schiemann D, Bauer CK, Schwarz JR. Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary. J Neuroendocrinol 2000; 12:263-72. [PMID: 10718922 DOI: 10.1046/j.1365-2826.2000.00447.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The expression of mRNA for voltage-dependent (Kv) and inward-rectifying K channels (Kir) was studied in clonal rat somato-mammotroph cells (GH3/B6 cells) and rat pituitary using reverse transcription-polymerase chain reaction (RT-PCR). In GH3/B6 cells transcripts for 16 different Kv channel alpha-subunits (seven Shaker-related: Kv1.2, Kv1.4, Kv1.5, Kv2.1, Kv3.2, Kv4.1, Kv5.1; six EAG: eag1, erg1, erg2, elk1-elk3; three KCNQ: KCNQ1-KCNQ3) and for five different Kir channel alpha-subunits (Kir1.1, Kir2.3, Kir3.2, Kir3.3, Kir6.2) were found. In addition, transcripts for a short isoform of Kvbeta2 and transcripts for Kvbeta3 subunits were present. In rat pituitary transcripts for 21 different Kv channel alpha-subunits (11 Shaker-related: Kv1.3, Kv1.4, Kv1.6, Kv2.1, Kv2.2, Kv3.2, Kv3.4, Kv4.1, Kv4.2, Kv4.3, Kv6.1; seven EAG: eag1, erg1-erg3, elk1-elk3; three KCNQ: KCNQ1-KCNQ3) and nine Kir channel alpha-subunits (Kir1.1, Kir2.2, Kir3.1-Kir3.4, Kir4.1, Kir6.1, Kir6. 2) were found. In addition, all tested auxiliary subunits (Kvbeta1-Kvbeta3, minK, SUR1, SUR2) are expressed in the pituitary. The results indicate that the macroscopic K currents in GH3/B6 and pituitary cells are presumably mediated by K channels constructed by a larger number of K channel alpha-subunits and auxiliary beta-subunits than previously distinguished electrophysiologically and pharmacologically.
Collapse
Affiliation(s)
- I Wulfsen
- Abteilung für Angewandte Physiologie, Institut für Physiologie, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Schäfer R, Wulfsen I, Behrens S, Weinsberg F, Bauer CK, Schwarz JR. The erg-like potassium current in rat lactotrophs. J Physiol 1999; 518 ( Pt 2):401-16. [PMID: 10381588 PMCID: PMC2269429 DOI: 10.1111/j.1469-7793.1999.0401p.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The ether-à-go-go-related gene (erg)-like K+ current in rat lactotrophs from primary culture was characterized and compared with that in clonal rat pituitary cells (GH3/B6). The class III antiarrhythmic E-4031 known to block specifically erg K+ channels was used to isolate the erg-like current as the E-4031-sensitive current. The experiments were performed in 150 mM K+ external solution using the patch-clamp technique. 2. The erg-like K+ current elicited with hyperpolarizing pulses negative to -100 mV consisted of a fast and a pronounced slowly deactivating current component. The contribution of the slow component to the total current amplitude was potential dependent and varied from cell to cell. At -100 mV it ranged from 50 to 85% and at -140 mV from 21 to 45%. 3. The potential-dependent channel availability curves determined with 2 s prepulses were fitted with the sum of two Boltzmann functions. The function related to the slowly deactivating component of the erg-like current was shifted by more than 40 mV to more negative membrane potentials compared with that of the fast component. 4. In contrast to that of native lactotrophs studied under identical conditions, the erg-like K+ current of GH3/B6 cells was characterized by a predominant fast deactivating current component, with similar kinetic and steady-state properties to the fast deactivating current component of native lactotrophs. 5. Thyrotrophin-releasing hormone reduced the erg-like current in native lactotrophs via an intracellular signal cascade which seemed to involve a pathway independent from protein kinase A and protein kinase C. 6. RT-PCR studies on cytoplasm from single lactotrophs revealed the presence of mRNA of the rat homologue of the human ether-à-go-go-related gene HERG (r-erg1) as well as mRNA of the two other cloned r-erg cDNAs (r-erg2 and r-erg3) in different combinations. In GH3/B6 cells, only the transcripts of r-erg1 and r-erg2 were found.
Collapse
Affiliation(s)
- R Schäfer
- Abteilung fur angewandte Physiologie, Physiologisches Institut, Universitats-Krankenhaus Eppendorf, Universitat Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Angleson JK, Cochilla AJ, Kilic G, Nussinovitch I, Betz WJ. Regulation of dense core release from neuroendocrine cells revealed by imaging single exocytic events. Nat Neurosci 1999; 2:440-6. [PMID: 10321248 DOI: 10.1038/8107] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using FM1-43 fluorescence, we have optically detected single exocytic and endocytic events in rat pituitary lactotrophs. About fifty discrete fluorescent spots abruptly appear around the entire surface of a cell bathed in FM1-43 and high-potassium saline. The spots, which also immunostain for prolactin, reflect the labeling of dense cores as well as membranes of exocytosed secretory granules. Stained cores are not released, but remain attached to the cell and are eventually endocytosed. However, in cells exposed to dopamine (or an analog, bromocriptine), the cores dissolve and are secreted after several seconds. Solubilization of dense cores is mediated through a reduction in cytoplasmic cyclic AMP. Thus, the composition of secretions from individual secretory granules is regulated.
Collapse
Affiliation(s)
- J K Angleson
- Department of Physiology and Biophysics, University of Colorado Medical School, Denver 80262, USA
| | | | | | | | | |
Collapse
|
17
|
Charles AC, Piros ET, Evans CJ, Hales TG. L-type Ca2+ channels and K+ channels specifically modulate the frequency and amplitude of spontaneous Ca2+ oscillations and have distinct roles in prolactin release in GH3 cells. J Biol Chem 1999; 274:7508-15. [PMID: 10066818 DOI: 10.1074/jbc.274.11.7508] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.
Collapse
Affiliation(s)
- A C Charles
- Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
18
|
Bauer CK. The erg inwardly rectifying K+ current and its modulation by thyrotrophin-releasing hormone in giant clonal rat anterior pituitary cells. J Physiol 1998; 510 ( Pt 1):63-70. [PMID: 9625867 PMCID: PMC2231022 DOI: 10.1111/j.1469-7793.1998.063bz.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The voltage-dependent inwardly rectifying K+ current (IK,IR) of clonal rat anterior pituitary cells (GH3/B6) was investigated in solutions with physiological K+ gradient using giant polynuclear cells. 2. IK,IR was isolated by the use of the selective erg (ether-à-go-go-related gene) channel blocker E-4031. In external 5 mM K+ solution, IK,IR carried steady-state outward current in the potential range between -60 and 0 mV, with a maximum current amplitude at -40 mV. Negative to the K+ equilibrium potential, EK, large transient inward currents occurred. 3. A selective pharmacological block of IK,IR induced a sustained depolarization of the membrane potential when Ca2+ action potentials were blocked, confirming the contribution of IK,IR to the resting membrane potential of GH3/B6 cells. 4. Thyrotrophin-releasing hormone (TRH) reduced effectively the sustained outward and the transient inward IK,IR. The magnitude of a TRH-induced depolarization of the membrane potential was consistent with an almost complete reduction of IK,IR. 5. The results demonstrate that the TRH-induced reduction of IK,IR is able to mediate the resting potential depolarization, suggesting that the increase in the frequency of action potentials occurring during the second phase of the TRH response in GH cells should be sustained by IK,IR inhibition. Moreover, this is the first evidence of a ligand-induced physiological modulation of an erg-mediated current.
Collapse
Affiliation(s)
- C K Bauer
- Physiologisches Institut, Universitatskrankenhaus Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| |
Collapse
|
19
|
Fields TA, Casey PJ. Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochem J 1997; 321 ( Pt 3):561-71. [PMID: 9032437 PMCID: PMC1218106 DOI: 10.1042/bj3210561] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pertussis toxin (PTX) has been widely used as a reagent to characterize the involvement of heterotrimeric G-proteins in signalling. This toxin catalyses the ADP-ribosylation of specific G-protein alpha subunits of the Gi family, and this modification prevents the occurrence of the receptor-G-protein interaction. This review focuses on the biochemical properties and signalling of those G-proteins historically classified as 'PTX-resistant' due to the inability of the toxin to influence signalling through them. These G-proteins include members of the Gq and G12 families and one Gi family member, i.e. Gz. Signalling pathways controlled by these G-proteins are well characterized only for Gq family members, which activate specific isoforms of phospholipase C, resulting in increases in intracellular calcium and activation of protein kinase C (PKC), among other responses. While members of the G12 family have been implicated in processes that regulate cell growth, and Gz has been shown to inhibit adenylate cyclase, the specific downstream targets to these G-proteins in vivo have not been clearly established. Since two of these proteins, G12 alpha and Gz alpha, are excellent substrates for PKC, there is the potential for cross-talk between their signalling and Gq-dependent processes leading to activation of PKC. In tissues that express these G-proteins, a number of guanine-nucleotide-dependent, PTX-resistant, signalling pathways have been defined for which the G-protein involved has not been identified. This review summarizes these pathways and discusses the evidence both for the participation of specific PTX-resistant G-proteins in them and for the regulation of these processes by PKC.
Collapse
Affiliation(s)
- T A Fields
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, NC 27710-3686, USA
| | | |
Collapse
|
20
|
Hinkle PM, Nelson EJ, Ashworth R. Characterization of the calcium response to thyrotropin-releasing hormone in lactotrophs and GH cells. Trends Endocrinol Metab 1996; 7:370-4. [PMID: 18406774 DOI: 10.1016/s1043-2760(96)00188-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thyrotropin-releasing hormone (TRH) acts via a G-protein-coupled receptor on lactotrophs to increase the intracellular free calcium ion concentration, [Ca(2+)](i). The [Ca(2+)](i) response depends on both TRH concentration and the duration of TRH exposure. An initial, short-lived [Ca(2+)](i) spike results from release of Ca(2+) from intracellular stores, whereas a later sustained [Ca(2+)](i) increase, often characterized by [Ca(2+)](i) oscillations, results from an influx of extracellular Ca(2+) through both voltage-gated and non-voltage-gated, store-operated Ca(2+) channels. The initial spike phase predominates at high doses of TRH, whereas the plateau phase predominates at low doses. The mechanisms underlying the complex [Ca(2+)](i) response to TRH are discussed.
Collapse
Affiliation(s)
- P M Hinkle
- Patricia M. Hinkle, Eric J. Nelson, and Rachel Ashworth are at the Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
21
|
Reid G, Bauer CK, Bunting R, Mason WT, Schwarz JR. Most lactotrophs from lactating rats are able to respond to both thyrotropin-releasing hormone and dopamine. Mol Cell Endocrinol 1996; 124:121-9. [PMID: 9027331 DOI: 10.1016/s0303-7207(96)03933-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intracellular free calcium concentration ([Ca2+]i) was measured with video imaging in lactotrophs from lactating rats. The median resting [Ca2+]i was 24 nM (85 cells). The great majority of cells responded to thyrotropin-releasing hormone (TRH) with an increase in [Ca2+]i, (median peak [Ca2+]i after TRH = 298 nM; n = 73). In 77% of these cells this [Ca2+]i increase was biphasic, with [Ca2+]i remaining high after the initial peak (median [Ca2+]i 90 s after TRH application = 104 nM; n = 56); the second phase depended on calcium influx. Most cells also responded to dopamine (DA), after TRH had been applied. DA reduced or abolished TRH-induced calcium influx and also reduced resting [Ca2+]i if this was above its initial value. A few lactotrophs responded to TRH only after DA application and withdrawal. We conclude that the population of lactotrophs in lactating rats is heterogeneous, but is not composed of two distinct sub-groups defined by their responsiveness to TRH or DA.
Collapse
Affiliation(s)
- G Reid
- Physiologisches Institut, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Shipston MJ, Armstrong DL. Activation of protein kinase C inhibits calcium-activated potassium channels in rat pituitary tumour cells. J Physiol 1996; 493 ( Pt 3):665-72. [PMID: 8799890 PMCID: PMC1159016 DOI: 10.1113/jphysiol.1996.sp021413] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The regulation of large-conductance, calcium- and voltage-dependent potassium (BK) channels by protein kinase C (PKC) was investigated in clonal rat anterior pituitary cells (GH4C1), which were voltage clamped at -40 mV in a physiological potassium gradient through amphotericin-perforated patches. 2. Maximal activation of PKC by 100 nM phorbol 12, 13-dibutyrate (PdBu) almost completely inhibited the voltage-activated outward current through BK channels. In contrast PdBu had no significant effect on the residual outward current after block of BK channels with 2 mM TEA or 30 nM charybdotoxin. In single-channel recordings from cell-attached patches, PdBu reduced the open probability of BK channels more than eightfold with no significant effect on mean open lifetime or unitary conductance. 3. The effects of PdBu on BK channels were not mimicked by the 4 alpha-isomer, which does not activate PKC, and were blocked almost completely by 25 microM chelerythrine, a specific, noncompetitive PKC inhibitor. 4. PdBu had no significant effect on the amplitude of the pharmacologically isolated, high voltage-activated calcium current. 5. Inhibition of BK channel activity by PKC provides the first molecular mechanism linking hormonal activation of phospholipase C to sustained excitability in pituitary cells.
Collapse
Affiliation(s)
- M J Shipston
- Laboratory of Cellular and Molecular Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
23
|
Anderson L, Alexander CL, Faccenda E, Eidne KA. Rapid desensitization of the thyrotropin-releasing hormone receptor expressed in single human embryonal kidney 293 cells. Biochem J 1995; 311 ( Pt 2):385-92. [PMID: 7487872 PMCID: PMC1136012 DOI: 10.1042/bj3110385] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study uses fluorescence microscopy combined with dynamic video imaging to examine the events associated with the rapid desensitization of the thyrotropin-releasing hormone receptor (TRH-R). In single non-pituitary human embryonic kidney 293 (HEK-293) cells, expressing either the rat or human TRH-Rs, TRH produced a rapid dose-dependent monophasic rise in [Ca2+]i. This Ca2+ transient was completely abolished by pretreatment of cells with the intracellular Ca2+ antagonists thapsigargin or cyclopiazonic acid, but not EGTA, the voltage-operated Ca2+ channel (VOCC) antagonist nifedipine or the second-messenger-operated Ca2+ channel antagonist SK&F 96365. These results suggest that TRH causes the mobilization of Ca2+ from thapsigargin/cyclopiazonic acid-sensitive intracellular Ca2+ stores but not the influx of extracellular Ca2+. HEK-293 cells also failed to respond to KCl or the slow Ca(2+)-channel activator BAY K 8644, suggesting that they lack L-type VOCCs. Rat and human TRH-Rs are highly conserved except at the C-terminus where the sequence differs. The C-terminus is believed to be important in receptor desensitization. Despite differences in this region, rat and human TRH-Rs expressed in HEK-293 cells underwent rapid (within 1 min) desensitization. This desensitization was dose-dependent and did not involve receptor loss. Similarly the bradykinin receptor endogenous to HEK-293 cells also displays a rapid desensitization. We conclude that in TRH-R-expressing non-pituitary HEK-293 cells, TRH mobilizes intracellular Ca2+ resulting in a monophasic Ca2+ transient. The rat and human TRH-Rs as well as the endogenous bradykinin receptor also displayed rapid receptor desensitization.
Collapse
Affiliation(s)
- L Anderson
- MRC Reproductive Biology Unit, Centre for Reproductive Biology, Edinburgh, Scotland, U.K
| | | | | | | |
Collapse
|