1
|
Platelet-derived growth factor activates nociceptive neurons by inhibiting M-current and contributes to inflammatory pain. Pain 2020; 160:1281-1296. [PMID: 30933959 PMCID: PMC6553959 DOI: 10.1097/j.pain.0000000000001523] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supplemental Digital Content is Available in the Text. Our work reveals that the platelet-derived growth factor-BB, by inhibiting nociceptive M-type potassium channels, acts as a pain-inducing proinflammatory factor that significantly contributes to inflammatory pain. Endogenous inflammatory mediators contribute to the pathogenesis of pain by acting on nociceptors, specialized sensory neurons that detect noxious stimuli. Here, we describe a new factor mediating inflammatory pain. We show that platelet-derived growth factor (PDGF)-BB applied in vitro causes repetitive firing of dissociated nociceptor-like rat dorsal root ganglion neurons and decreased their threshold for action potential generation. Injection of PDGF-BB into the paw produced nocifensive behavior in rats and led to thermal and mechanical pain hypersensitivity. We further detailed the biophysical mechanisms of these PDGF-BB effects and show that PDGF receptor–induced inhibition of nociceptive M-current underlies PDGF-BB–mediated nociceptive hyperexcitability. Moreover, in vivo sequestration of PDGF or inhibition of the PDGF receptor attenuates acute formalin-induced inflammatory pain. Our discovery of a new pain-facilitating proinflammatory mediator, which by inhibiting M-current activates nociceptive neurons and thus contributes to inflammatory pain, improves our understanding of inflammatory pain pathophysiology and may have important clinical implications for pain treatment.
Collapse
|
2
|
Barkai O, Goldstein RH, Caspi Y, Katz B, Lev S, Binshtok AM. The Role of Kv7/M Potassium Channels in Controlling Ectopic Firing in Nociceptors. Front Mol Neurosci 2017; 10:181. [PMID: 28659757 PMCID: PMC5468463 DOI: 10.3389/fnmol.2017.00181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Peripheral nociceptive neurons encode and convey injury-inducing stimuli toward the central nervous system. In normal conditions, tight control of nociceptive resting potential prevents their spontaneous activation. However, in many pathological conditions the control of membrane potential is disrupted, leading to ectopic, stimulus-unrelated firing of nociceptive neurons, which is correlated to spontaneous pain. We have investigated the role of KV7/M channels in stabilizing membrane potential and impeding spontaneous firing of nociceptive neurons. These channels generate low voltage-activating, noninactivating M-type K+ currents (M-current, IM ), which control neuronal excitability. Using perforated-patch recordings from cultured, rat nociceptor-like dorsal root ganglion neurons, we show that inhibition of M-current leads to depolarization of nociceptive neurons and generation of repetitive firing. To assess to what extent the M-current, acting at the nociceptive terminals, is able to stabilize terminals' membrane potential, thus preventing their ectopic activation, in normal and pathological conditions, we built a multi-compartment computational model of a pseudo-unipolar unmyelinated nociceptive neuron with a realistic terminal tree. The modeled terminal tree was based on the in vivo structure of nociceptive peripheral terminal, which we assessed by in vivo multiphoton imaging of GFP-expressing nociceptive neuronal terminals innervating mice hind paw. By modifying the conductance of the KV7/M channels at the modeled terminal tree (terminal gKV7/M) we have found that 40% of the terminal gKV7/M conductance is sufficient to prevent spontaneous firing, while ~75% of terminal gKV7/M is sufficient to inhibit stimulus induced activation of nociceptive neurons. Moreover, we showed that terminal M-current reduces susceptibility of nociceptive neurons to a small fluctuations of membrane potentials. Furthermore, we simulated how the interaction between terminal persistent sodium current and M-current affects the excitability of the neurons. We demonstrated that terminal M-current in nociceptive neurons impeded spontaneous firing even when terminal Na(V)1.9 channels conductance was substantially increased. On the other hand, when terminal gKV7/M was decreased, nociceptive neurons fire spontaneously after slight increase in terminal Na(V)1.9 conductance. Our results emphasize the pivotal role of M-current in stabilizing membrane potential and hereby in controlling nociceptive spontaneous firing, in normal and pathological conditions.
Collapse
Affiliation(s)
- Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Robert H Goldstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
3
|
Lee SY, Choi HK, Kim ST, Chung S, Park MK, Cho JH, Ho WK, Cho H. Cholesterol inhibits M-type K+ channels via protein kinase C-dependent phosphorylation in sympathetic neurons. J Biol Chem 2010; 285:10939-50. [PMID: 20123983 PMCID: PMC2856299 DOI: 10.1074/jbc.m109.048868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 01/25/2010] [Indexed: 01/10/2023] Open
Abstract
M-type (KCNQ) potassium channels play an important role in regulating the action potential firing in neurons. Here, we investigated the effect of cholesterol on M current in superior cervical ganglion (SCG) sympathetic neurons, using the patch clamp technique. M current was inhibited in a dose-dependent manner by cholesterol loading with a methyl-beta-cyclodextrin-cholesterol complex. This effect was prevented when membrane cholesterol level was restored by including empty methyl-beta-cyclodextrin in the pipette solution. Dialysis of cells with AMP-PNP instead of ATP prevented cholesterol action on M currents. Protein kinase C (PKC) inhibitor, calphostin C, abolished cholesterol-induced inhibition whereas the PKC activator, PDBu, mimicked the inhibition of M currents by cholesterol. The in vitro kinase assay showed that KCNQ2 subunits of M channel can be phosphorylated by PKC. A KCNQ2 mutant that is defective in phosphorylation by PKC failed to show current inhibition not only by PDBu but also by cholesterol. These results indicate that cholesterol-induced inhibition of M currents is mediated by PKC phosphorylation. The inhibition of M currents by PDBu and cholesterol was completely blocked by PIP(2) loading, indicating that the decrease in PIP(2)-channel interaction underlies M channel inhibition by PKC-mediated phosphorylation. We conclude that cholesterol specifically regulates M currents in SCG neurons via PKC activation.
Collapse
Affiliation(s)
| | - Hyun-Kyung Choi
- Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea and
| | - Seong-Tae Kim
- Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea and
| | | | | | - Jung-Hwa Cho
- the WCU Neurocytomics Program Project, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul 110-799, Korea
| | - Won-Kyung Ho
- the WCU Neurocytomics Program Project, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul 110-799, Korea
| | - Hana Cho
- From the Departments of Physiology and
| |
Collapse
|
4
|
Yue C, Remy S, Su H, Beck H, Yaari Y. Proximal persistent Na+ channels drive spike afterdepolarizations and associated bursting in adult CA1 pyramidal cells. J Neurosci 2006; 25:9704-20. [PMID: 16237175 PMCID: PMC6725731 DOI: 10.1523/jneurosci.1621-05.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In many principal brain neurons, the fast, all-or-none Na+ spike initiated at the proximal axon is followed by a slow, graded after depolarization (ADP). The spike ADP is critically important in determining the firing mode of many neurons; large ADPs cause neurons to fire bursts of spikes rather than solitary spikes. Nonetheless, not much is known about how and where spike ADPs are initiated. We addressed these questions in adult CA1 pyramidal cells, which manifest conspicuous somatic spike ADPs and an associated propensity for bursting, using sharp and patch microelectrode recordings in acutely isolated hippocampal slices and single neurons. Voltage-clamp commands mimicking spike waveforms evoked transient Na+ spike currents that declined quickly after the spike but were followed by substantial sustained Na+ spike after currents. Drugs that blocked the persistent Na+ current (INaP), markedly suppressed the sustained Na+ spike after currents, as well as spike ADPs and associated bursting. Ca2+ spike after currents were much smaller, and reducing them had no noticeable effect on the spike ADPs. Truncating the apical dendrites affected neither spike ADPs nor the firing modes of these neurons. Application of INaP blockers to truncated neurons, or their focal application to the somatic region of intact neurons, suppressed spike ADPs and associated bursting, whereas their focal application to distal dendrites did not. We conclude that the somatic spike ADPs are generated predominantly by persistent Na+ channels located at or near the soma. Through this action, proximal INaP critically determines the firing mode and spike output of adult CA1 pyramidal cells.
Collapse
Affiliation(s)
- Cuiyong Yue
- Department of Physiology, Institute of Medical Sciences, Hebrew University-Hadassah Faculty of Medicine, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
5
|
Nakajo K, Kubo Y. Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed in Xenopus oocytes. J Physiol 2005; 569:59-74. [PMID: 16179364 PMCID: PMC1464213 DOI: 10.1113/jphysiol.2005.094995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is well established that stimulation of G(q)-coupled receptors such as the M1 muscarinic acetylcholine receptor inhibits KCNQ/M currents. While it is generally accepted that this muscarinic inhibition is mainly caused by the breakdown of PIP(2), the role of the subsequent activation of protein kinase C (PKC) is not well understood. By reconstituting M currents in Xenopus oocytes, we observed that stimulation of coexpressed M1 receptors with 10 microm oxotremorine M (oxo-M) induces a positive shift (4-30 mV, depending on which KCNQ channels are expressed) in the conductance-voltage relationship (G-V) of KCNQ channels. When we applied phorbol 12-myristate 13-acetate (PMA), a potent PKC activator, we observed a large positive shift (17.8 +/- 1.6 mV) in the G-V curve for KCNQ2, while chelerythrine, a PKC inhibitor, attenuated the shift caused by the stimulation of M1 receptors. By contrast, reducing PIP(2) had little effect on the G-V curve for KCNQ2 channels; although pretreating cells with 10 mum wortmannin for 30 min reduced KCNQ2 current amplitude by 80%, the G-V curve was shifted only slightly (5 mV). Apparently, the shift induced by muscarinic stimulation in Xenopus oocytes was mainly caused by PKC activation. When KCNQ2/3 channels were expressed in HEK 293T cells, the G-V curve seemed already to be shifted in a positive direction, even before activation of PKC, and PMA failed to shift the curve any further. That alkaline phosphatase in the patch pipette shifted the G-V curve in a negative direction suggests KCNQ2/3 channels are constitutively phosphorylated in HEK 293T cells.
Collapse
Affiliation(s)
- Koichi Nakajo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
| | | |
Collapse
|
6
|
Lin JY, Chung KKH, de Castro D, Funk GD, Lipski J. Effects of muscarinic acetylcholine receptor activation on membrane currents and intracellular messengers in medium spiny neurones of the rat striatum. Eur J Neurosci 2004; 20:1219-30. [PMID: 15341594 DOI: 10.1111/j.1460-9568.2004.03576.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholine, acting through muscarinic receptors, modulates the excitability of striatal medium spiny neurones. However, the underlying membrane conductances and intracellular signalling pathways have not been fully determined. Our aim was to characterize excitatory effects mediated by M1 muscarinic acetylcholine receptors in these neurones using whole-cell patch-clamp recordings in brain slices of postnatal rats. Under voltage-clamp, muscarine evoked an inward current associated with an increase in cell membrane resistance. The current, which reversed at -85 mV, was sensitive to the M1 receptor antagonist pirenzepine. Blocking the potassium conductance attenuated the response and the residual current was further reduced by ruthenium red (50 microm) and reversed at +15 mV. Simultaneous recordings from cholinergic interneurones and medium spiny neurones in conjunction with spike-triggered averaging revealed small unitary excitatory postsynaptic currents in four of 39 cell pairs tested. The muscarine-induced inward current was attenuated by a phospholipase C (PLC) inhibitor, U73122, but not by a protein kinase C inhibitor, chelerythrine, or by the intracellular calcium chelator 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid, suggesting that the current was associated with PLC in a protein kinase C- and Ca2+ -independent manner. The phosphatidylinositol 4-kinase inhibitor wortmannin (10 microm) reduced the recovery of the inward current, indicating that the recovery process was dependent on the removal of diacylglycerol and/or inositol 1,4,5 triphosphate or resynthesis of phospholipid phosphatidylinositol 4,5-bisphophate. Ratiometric measurement of intracellular calcium after cell loading with fura-2 demonstrated a muscarine-induced increase in calcium signal that originated mainly from intracellular stores. Thus, the cholinergic excitatory effect in striatal medium spiny neurones, which is important in motor disorders associated with altered cholinergic transmission in the striatum such as Parkinson's disease, is mediated through M1 receptors and the PLC-dependent pathway.
Collapse
Affiliation(s)
- John Y Lin
- Division of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92-019, New Zealand
| | | | | | | | | |
Collapse
|
7
|
Hoshi N, Zhang JS, Omaki M, Takeuchi T, Yokoyama S, Wanaverbecq N, Langeberg LK, Yoneda Y, Scott JD, Brown DA, Higashida H. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci 2003; 6:564-71. [PMID: 12754513 PMCID: PMC3941299 DOI: 10.1038/nn1062] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 03/21/2003] [Indexed: 12/12/2022]
Abstract
M-type (KCNQ2/3) potassium channels are suppressed by activation of G(q/11)-coupled receptors, thereby increasing neuronal excitability. We show here that rat KCNQ2 can bind directly to the multivalent A-kinase-anchoring protein AKAP150. Peptides that block AKAP150 binding to the KCNQ2 channel complex antagonize the muscarinic inhibition of the currents. A mutant form of AKAP150, AKAP(DeltaA), which is unable to bind protein kinase C (PKC), also attenuates the agonist-induced current suppression. Analysis of recombinant KCNQ2 channels suggests that targeting of PKC through association with AKAP150 is important for the inhibition. Phosphorylation of KCNQ2 channels was increased by muscarinic stimulation; this was prevented either by coexpression with AKAP(DeltaA) or pretreatment with PKC inhibitors that compete with diacylglycerol. These inhibitors also reduced muscarinic inhibition of M-current. Our data indicate that AKAP150-bound PKC participates in receptor-induced inhibition of the M-current.
Collapse
Affiliation(s)
- Naoto Hoshi
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stemkowski PL, Tse FW, Peuckmann V, Ford CP, Colmers WF, Smith PA. ATP-inhibition of M current in frog sympathetic neurons involves phospholipase C but not Ins P(3), Ca(2+), PKC, or Ras. J Neurophysiol 2002; 88:277-88. [PMID: 12091553 DOI: 10.1152/jn.2002.88.1.277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Suppression of the voltage-activated, noninactivating K(+) conductance (M conductance; g(M)) by muscarinic agonists, P(2Y) agonists or bradykinin increases neuronal excitability. All agonist effects are mediated, at least in part, via the Gq/(11) class of G protein. We found, using whole cell or perforated patch recording from bullfrog sympathetic B neurons that ATP-induced suppression of g(M) was attenuated by the phospholipase C (PLC) inhibitor, U73122 (IC(50) approximately 0.14 microM) but not by the inactive isomer, U73343. The ability of extracellularly applied U73122 to inhibit PLC was confirmed by its antagonism of ATP-induced elevation of intracellular Ca(2+) as measured by fura-2 photometry. ATP-induced g(M) suppression was not antagonized by the protein kinase C (PKC) inhibitor, chelerythrine (5 microM extracellular +10 microM intracellular), by the Ca(2+)-ATPase inhibitor, thapsigargin (5 microM), or by inositol trisphosphate (InsP(3)) receptor antagonists, heparin (approximaterly 300 microM) or xestospongin C (1.8 microM). The effect of ATP on g(M) was thus dependent on PLC yet independent of PKC and of InsP(3)-induced release of intracellular Ca(2+). We therefore tested the involvement of a PKC-independent action of diacylglycerol (DAG) that could occur via activation of Ras. This low-molecular-weight G protein is activated following DAG binding to Ras-GRP, a neuronal Ras-GTP exchange factor. However, impairment of Ras function by culturing neurons with isoprenylation inhibitors (perillic acid, 0.1 mM, or alpha-hydroxyfarnesyl-phosphonic acid, 10 microM) failed to affect ATP-induced g(M) suppression. Inhibition of MEK (mitogen-activated protein kinase), a downstream target of Ras, by using PD 98059 (10 microM) was also ineffective. The transduction mechanism used by ATP to suppress g(M) in frog sympathetic neurons therefore differs from the PLC-independent mechanism used by muscarine and from the PLC and Ca(2+)-dependent mechanism used by bradykinin and UTP in mammalian ganglia. The possibility remains that "lipid-signaling" mechanisms, perhaps involving PLC-induced depletion of phosphatidylinositol bisphosphate, are involved in PLC-mediated inhibition of g(M) by ATP in amphibian sympathetic neurons.
Collapse
Affiliation(s)
- Patrick L Stemkowski
- Department of Pharmacology and University Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Brown BS, Yu SP. Modulation and genetic identification of the M channel. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:135-66. [PMID: 10958929 DOI: 10.1016/s0079-6107(00)00004-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Potassium channels constitute a superfamily of the most diversified ion channels, acting in delicate and accurate ways to control or modify many physiological and pathological functions including membrane excitability, transmitter release, cell proliferation and cell degeneration. The M-type channel is a unique ligand-regulated and voltage-gated K(+) channel showing distinct physiological and pharmacological characteristics. This review will cover some important progress in the study of M channel modulation, particularly focusing on membrane transduction mechanisms. The K(+) channel genes corresponding to the M channel have been identified and will be reviewed in detail. It has been a long journey since the discovery of M current in 1980 to our present understanding of the mysterious mechanisms for M channel modulation; a journey which exemplifies tremendous achievements in ion channel research and exciting discoveries of elaborate modulatory systems linked to these channels. While substantial evidence has accumulated, challenging questions remain to be answered.
Collapse
Affiliation(s)
- B S Brown
- General Pharmacology Department, DuPont Pharmaceuticals Company, Wilmington, DE 19880-0400, USA
| | | |
Collapse
|
10
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
11
|
Cruzblanca H, Koh DS, Hille B. Bradykinin inhibits M current via phospholipase C and Ca2+ release from IP3-sensitive Ca2+ stores in rat sympathetic neurons. Proc Natl Acad Sci U S A 1998; 95:7151-6. [PMID: 9618554 PMCID: PMC22770 DOI: 10.1073/pnas.95.12.7151] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A variety of intracellular signaling pathways can modulate the properties of voltage-gated ion channels. Some of them are well characterized. However, the diffusible second messenger mediating suppression of M current via G protein-coupled receptors has not been identified. In superior cervical ganglion neurons, we find that the signaling pathways underlying M current inhibition by B2 bradykinin and M1 muscarinic receptors respond very differently to inhibitors. The bradykinin pathway was suppressed by the phospholipase C inhibitor U-73122, by blocking the IP3 receptor with pentosan polysulfate or heparin, and by buffering intracellular calcium, and it was occluded by allowing IP3 to diffuse into the cytoplasm via a patch pipette. By contrast, the muscarinic pathway was not disrupted by any of these treatments. The addition of bradykinin was accompanied by a [Ca2+]i rise with a similar onset and time to peak as the inhibition of M current. The M current inhibition and the rise of [Ca2+]i were blocked by depletion of Ca2+ internal stores by thapsigargin. We conclude that bradykinin receptors inhibit M current of sympathetic neurons by activating phospholipase C and releasing Ca2+ from IP3-sensitive Ca2+ stores, whereas muscarinic receptors do not use the phospholipase C pathway to inhibit M current channels.
Collapse
Affiliation(s)
- H Cruzblanca
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
12
|
Abstract
M-current is a non-inactivating potassium current found in many neuronal cell types. In each cell type, it is dominant in controlling membrane excitability by being the only sustained current in the range of action potential initiation. It can be modulated by a large array of receptor types, and the modulation can occur either by suppression or enhancement. Modulation of M-current has dramatic effects on neuronal excitability. This review discusses the numerous second messenger pathways that converge on regulation of this current: in particular, two forms of regulation of the M-current, receptor-mediated modulation and the control of macroscopic current amplitude by intracellular calcium. Both types of regulation are discussed with reference to the modulation of single-channel gating properties.
Collapse
Affiliation(s)
- N V Marrion
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| |
Collapse
|
13
|
Abstract
The M current regulates neuronal excitability, with its amplitude resulting from high open probability modal M channel behavior. The M current is affected by changing intracellular calcium levels. It is proposed that internal calcium acts by regulating M channel modal gating. Intracellular application of a preactivated form of the calcium-dependent phosphatase calcineurin (CaN420) inhibited the macroscopic M current, while its application to excised inside-out patches reduced high open probability M channel activity. Addition of ATP reversed the action of CaN420 on excised patches. The change in M channel gating induced by CaN420 was different from the effect of muscarine. A kinetic model supports the proposition that shifts in channel gating induced by calcium-dependent phosphorylation and dephosphorylation control M current amplitude.
Collapse
Affiliation(s)
- N V Marrion
- Vollum Institute, Oregon Health Sciences University, Portland 97201-3098, USA
| |
Collapse
|
14
|
Selyanko AA, Brown DA. Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron 1996; 16:151-62. [PMID: 8562079 DOI: 10.1016/s0896-6273(00)80032-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Complex effects of altering intracellular [Ca2+] on M-type K+ currents have previously been reported using whole-cell current recording. To study the direct effect of Ca2+ on M-channel activity, we have applied Ca2+ to the inside face of membrane patches excised from rat superior cervical sympathetic ganglion cells. Ca2+ rapidly and reversibly inhibited M-channel activity in 28/44 patches by up to 87%, with a mean IC50 of 100 nM. This effect persisted in the absence of ATP, implying that it was not due to phosphorylation/dephosphorylation. A similar effect was observed in 13/13 cell-attached patches when cells were transiently "Ca(2+)-loaded" by adding 2 mM Ca2+ to a 25 mM K+ solution bathing the extrapatch cell membrane. These observations provide new evidence that Ca2+ can directly inhibit M channels, so supporting the view that Ca2+ might mediate M current inhibition following muscarinic receptor activation.
Collapse
Affiliation(s)
- A A Selyanko
- Department of Pharmacology, University College London, United Kingdom
| | | |
Collapse
|
15
|
Yu SP. Roles of arachidonic acid, lipoxygenases and phosphatases in calcium-dependent modulation of M-current in bullfrog sympathetic neurons. J Physiol 1995; 487 ( Pt 3):797-811. [PMID: 8544140 PMCID: PMC1156664 DOI: 10.1113/jphysiol.1995.sp020919] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. M-current (IM) is regulated by intracellular free Ca2+ ([Ca2+]i). Suppression and overrecovery of IM induced by muscarine and luteinizing-hormone releasing hormone (LHRH) are also regulated by [Ca2+]i. The role of the arachidonic acid (AA) pathway in the Ca(2+)-dependent modulation of IM was investigated using whole-cell voltage clamp and intracellular perfusion in dissociated bullfrog sympathetic B neurons. 2. Quinacrine (10-20 microM) and 4-bromophenacyl bromide (4-BPB; 4-10 microM), the inhibitors of phospholipase A2, blocked the enhancement of IM evoked by raising [Ca2+]i. 3. AA (6-120 microM) increased IM by about 50% of the control current in a Ca(2+)-dependent manner. 4. Enhancements of IM by Ca2+ and AA were blocked by the lipoxygenase (LO) inhibitors nordihydroguaiaretic acid (NDGA; 1-5 microM) and 5,8,11-eicosatrynoic acid (ETI; 10 microM). The cyclo-oxygenase inhibitor indomethacin (10 microM) had no effect. 5. Enhancement of IM by Ca2+ was abolished by the selective 12-LO inhibitors baicalein (1-2 microM) and 15(S)-hydroxy-5-cis-8-cis-11-cis-13-trans-eicosatetraenoic acid (15-HETE; 6.5 microM). A 12-LO product, 2(S)-hydroxy-5-cis-8-cis-10-trans-14-cis- eicosatetraenoic acid (12-HETE; 13-20 microM), increased IM without Ca2+ requirement. 6. Enhancement of IM by Ca2+ was not affected by the selective 5-LO inhibitors AA-861 (10 microM), 5,6-dehydroarachidonic acid (5,6-DAA, 10 microM) and L-651,896 (10 microM). The 5-LO metabolites leukotriene C4 (1.5-8 microM) and leukotriene B4 (1.5-5 microM) showed no obvious effect on IM. 7. NDGA alone inhibited IM with an IC50 of 0.73 microM at 120 nM Cai(2+). 8. NDGA did not affect suppression of IM by muscarine or LHRH; however, overrecovery of IM upon removing these agonists was totally eliminated by 1 microM NDGA. 9. Inhibitors of phosphatases, calyculin A (0.1 microM) and okadaic acid (1 microM), completely abolished overrecovery of IM. Calyculin A also blocked the Ca(2+)-induced IM enhancement. 10. It is suggested that Ca2+ enhances IM by stimulating the AA metabolic pathway. Dephosphorylation probably upregulates IM. Overrecovery of IM is probably a result of stimulation of the LO pathway and phosphatases by increased [Ca2+]i.
Collapse
Affiliation(s)
- S P Yu
- Howard Hughes Medical Institute, Department of Neurobiology and Behavior, State University of New York at Stony Brook 11794, USA
| |
Collapse
|
16
|
Minota S. Delayed onset and slow time course of the non-M-type muscarinic current in bullfrog sympathetic neurons. Pflugers Arch 1995; 429:570-7. [PMID: 7617448 DOI: 10.1007/bf00704163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The onset and time course of the muscarinic currents induced by brief applications of acetylcholine (ACh) were examined in voltage-clamped neurons of bullfrog sympathetic ganglia bathed in a solution containing d-tubocurarine. At a potential of -40 mV, the ACh-induced current (IACh) appeared within 1.2 s and rapidly increased to its peak with a half-activation time of 2.2 s. This initial current was termed the fast IACh and was blocked by 4 mM Ba2+. At a potential more negative than -60 mV, the fast IACh disappeared and the remaining IACh activated with a delay of 3.9 s and slowly increased to its peak with a half-activation time of 8.2 s. This delayed current was termed the slow IACh and is thought to be associated with inhibition of a K+ current, or IM, as well as activation of an inward current through non-M-type muscarinic cation channels. The slow IACh was not inhibited by Ba2+, but its amplitude was reduced with depolarization (the extrapolated reversal potential was +3 mV). In Na(+)-free solution, the amplitude of the slow IACh reduced, but its polarity did not reverse in the voltage region examined (-30 to -100 mV). The slow excitatory postsynaptic current was also recorded, and was shown to have a similar delay in onset and slow time course. The results demonstrate that ACh activates the non-M-type muscarinic current three times more slowly than it inhibits IM.
Collapse
Affiliation(s)
- S Minota
- Department of Physiology, Saga Medical School, Japan
| |
Collapse
|