1
|
Berkey CA, Styke C, Yoshitake H, Sonoki Y, Uchiyama M, Dauskardt RH. Carbon dioxide foam bubbles enhance skin penetration through the stratum corneum layer with mechanical mechanism. Colloids Surf B Biointerfaces 2023; 231:113538. [PMID: 37738871 DOI: 10.1016/j.colsurfb.2023.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Topical skin formulations often include penetration enhancers that interact with the outer stratum corneum (SC) layer to chemically enhance diffusion. Alternatively, penetration can be mechanically enhanced with simple rubbing in the presence of solid particles sometimes included to exfoliate the top layers of the SC. Our goal was to evaluate micron-sized carbon dioxide bubbles included in a foamed moisturizing formulation as a mechanical penetration enhancement strategy. We show that moisturizing foam bubbles cause an increase in SC formulation penetration using both mechanical and spectroscopic characterization. Our results suggest viscous liquid film drainage between coalescing gaseous bubbles creates local regions of increased hydrodynamic pressure in the foam liquid layer adjacent to the SC surface that enhances treatment penetration. An SC molecular diffusion model is used to rationalize the observed behavior. The findings indicate marked increased levels of treatment concentration in the SC at 2 h and that persists to 18 h after exposure, far exceeding non-foamed treatments. The study suggests an alternate strategy for increasing formulation penetration with a non-chemical mechanism.
Collapse
Affiliation(s)
- Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Cassandra Styke
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | | | | | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
3
|
McArthur S. Regulation of Physiological Barrier Function by the Commensal Microbiota. Life (Basel) 2023; 13:life13020396. [PMID: 36836753 PMCID: PMC9964120 DOI: 10.3390/life13020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A fundamental characteristic of living organisms is their ability to separate the internal and external environments, a function achieved in large part through the different physiological barrier systems and their component junctional molecules. Barrier integrity is subject to multiple influences, but one that has received comparatively little attention to date is the role of the commensal microbiota. These microbes, which represent approximately 50% of the cells in the human body, are increasingly recognized as powerful physiological modulators in other systems, but their role in regulating barrier function is only beginning to be addressed. Through comparison of the impact commensal microbes have on cell-cell junctions in three exemplar physiological barriers-the gut epithelium, the epidermis and the blood-brain barrier-this review will emphasize the important contribution microbes and microbe-derived mediators play in governing barrier function. By extension, this will highlight the critical homeostatic role of commensal microbes, as well as identifying the puzzles and opportunities arising from our steadily increasing knowledge of this aspect of physiology.
Collapse
Affiliation(s)
- Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| |
Collapse
|
4
|
Voegeli R, Rawlings AV. Moisturizing at a molecular level - The basis of Corneocare. Int J Cosmet Sci 2022; 45:133-154. [PMID: 36453857 DOI: 10.1111/ics.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND This review covers the last 20 years of research we and our collaborators have conducted on ethnic differences in facial skin moisturization placed in historical context with previous research. METHODS We have focussed particularly on the biochemical and cellular gradients of the stratum corneum (SC) with the aim of discovering new skin moisturization and SC maturation mechanisms, identifying new technologies and/or providing conceptual innovations for ingredients that will improve our understanding and treatment of dry skin. Specifically, we discuss gradients for corneodesmosomes and proteases, corneocyte phenotype-inducing enzymes, filaggrin and natural moisturizing factor (NMF), and barrier lipids. These gradients are interdependent and influence greatly corneocyte maturation. RESULTS The interrelationship between corneodesmolysis and the covalent attachment of ω-hydroxy ceramides and ω-hydroxy fatty acids to the corneocyte protein envelope forming the corneocyte lipid envelope is especially relevant in our new understanding of mechanisms leading to dry skin. This process is initiated by a linoleoyl-ω-acyl ceramide transforming enzyme cascade including 12R lipoxygenase (12R-LOX), epidermal lipoxygenase-3 (eLOX3), epoxide hydrolase 3 (EPHX3), short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7), ceramidase and transglutaminase 1. CONCLUSION Our research has opened the opportunity of using novel treatment systems for dry skin based on lipids, humectants, niacinamide and inhibitors of the plasminogen system. It is clear that skin moisturization is a more complex mechanism than simple skin hydration.
Collapse
|
5
|
Roberts MS, Cheruvu HS, Mangion SE, Alinaghi A, Benson HA, Mohammed Y, Holmes A, van der Hoek J, Pastore M, Grice JE. Topical drug delivery: History, percutaneous absorption, and product development. Adv Drug Deliv Rev 2021; 177:113929. [PMID: 34403750 DOI: 10.1016/j.addr.2021.113929] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Topical products, widely used to manage skin conditions, have evolved from simple potions to sophisticated delivery systems. Their development has been facilitated by advances in percutaneous absorption and product design based on an increasingly mechanistic understanding of drug-product-skin interactions, associated experiments, and a quality-by-design framework. Topical drug delivery involves drug transport from a product on the skin to a local target site and then clearance by diffusion, metabolism, and the dermal circulation to the rest of the body and deeper tissues. Insights have been provided by Quantitative Structure Permeability Relationships (QSPR), molecular dynamics simulations, and dermal Physiologically Based PharmacoKinetics (PBPK). Currently, generic product equivalents of reference-listed products dominate the topical delivery market. There is an increasing regulatory interest in understanding topical product delivery behavior under 'in use' conditions and predicting in vivo response for population variations in skin barrier function and response using in silico and in vitro findings.
Collapse
|
6
|
Klein AL, Lubda M, Skov PS, Vogt A, Keck CM, Lademann J, Beckers I, von Hagen J, Patzelt A. Investigation of transfollicular caffeine penetration using microdialysis on ex vivo porcine ear skin. Eur J Pharm Biopharm 2020; 157:1-8. [PMID: 33022388 DOI: 10.1016/j.ejpb.2020.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
The aim of this study was to develop an ex vivo method that allows to quantify the transfollicular penetration of topically applied substances by combining microdialysis and selective follicular closure with varnish. An experimental setup with three skin areas on ex vivo intact porcine ear skin was designed (varnish on hair follicle, varnish next to hair follicle, no varnish). On each area, 10 µl/cm2 caffeine-hydroxyethyl-cellulose-gel was applied. Samples were collected for 22 h by microdialysis. After sampling, the skin layers were separated, homogenized and caffeine was quantified by high pressure liquid chromatography (HPLC) in all samples. Potential impact of the varnish placed next to the follicle by tension on the follicle during the drying process was monitored by a microscopic setup and could be excluded. The microdialysis and homogenization study showed a significantly reduced penetration of caffeine when the hair follicles were closed. In areas with open hair follicles caffeine was detected already in the first ten minutes after application. The reported novel combination of two methods is suitable to investigate ex vivo transfollicular penetration. Possible impact of the closure material in the control area can be ruled out by adjusting the design of the control area in future studies.
Collapse
Affiliation(s)
- Anna Lena Klein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité Universitätsmedizin Berlin, Germany.
| | | | - Per Stahl Skov
- RefLab ApS, Copenhagen, Denmark; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, Odense, Denmark
| | - Annika Vogt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Germany
| | - Jürgen Lademann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité Universitätsmedizin Berlin, Germany
| | | | | | - Alexa Patzelt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
7
|
Klein AL, Lubda M, Akbarzadeh Taghavi P, Lademann J, Beckers I, von Hagen J, Kolmar H, Patzelt A. Solvent-Containing Closure Material Can Be Used to Prevent Follicular Penetration of Caffeine and Fluorescein Sodium Salt on Porcine Ear Skin. Skin Pharmacol Physiol 2020; 33:117-126. [PMID: 32045923 DOI: 10.1159/000505839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/08/2020] [Indexed: 01/15/2023]
Abstract
AIM The skin represents a drug delivery portal. The establishment of a skin model capable of distinguishing between the follicular and intercellular penetration pathways remains a challenge. The study described herein was aimed at showing the influence of two nail varnishes as closure material and four application techniques to spread the active pharmaceutical ingredient (API) on a successful follicular closure without inducing penetration-enhancing effects. MATERIALS AND METHODS For all experiments, ex vivo porcine ear skin was used. In study design A, a standard and a solvent-free nail varnish were compared. It was tested whether the different application techniques (spreading with pipette, careful finger massage, 5-Hz finger massage, 5-Hz automatic massage) potentially destroy an intact follicular closure. Laser scanning microscopy imaging was used to measure if the model drug (fluorescein sodium salt) penetrated into the hair follicles. Study design B investigated how the penetration is affected when applying standard nail varnish containing solvents to skin. It was tested if the varnish blocks the API (caffeine) on completely covered areas and if adjacent areas show increased penetration. Furthermore, lateral diffusion of the API was investigated. After 20 h, the skin layers were separated by tape stripping and heat separation. The tissue samples were homogenized. Caffeine was quantified by chromatography. RESULTS In study design A, the standard nail varnish showed a secure follicular closure, while the solvent-free nail varnish was not able to prevent follicular penetration. Moreover, rapid application techniques were found to destroy an intact follicular closure. Only the two most gentle application techniques kept the follicular closing intact. In study design B, no caffeine was detected in both skin areas that were completely covered. Since no significant difference in caffeine penetration between the two uncovered groups was found, any influence of the applied closure material on adjacent areas was excluded. CONCLUSION This study clearly demonstrates that a standard nail varnish in combination with a gentle application technique of the API provides a secure follicular closure. The presented study only investigated the closure for the substances caffeine and fluorescein sodium salt. The results might not be transferable to all kinds of APIs.
Collapse
Affiliation(s)
- Anna Lena Klein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology, and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany,
| | | | - Paniz Akbarzadeh Taghavi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology, and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany.,Beuth University of Applied Sciences Berlin, Berlin, Germany
| | - Jürgen Lademann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology, and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | | | | | - Harald Kolmar
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexa Patzelt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology, and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
8
|
Lipsky ZW, German GK. Ultraviolet light degrades the mechanical and structural properties of human stratum corneum. J Mech Behav Biomed Mater 2019; 100:103391. [DOI: 10.1016/j.jmbbm.2019.103391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
|
9
|
Dong P, Nikolaev V, Kröger M, Zoschke C, Darvin ME, Witzel C, Lademann J, Patzelt A, Schäfer-Korting M, Meinke MC. Barrier-disrupted skin: Quantitative analysis of tape and cyanoacrylate stripping efficiency by multiphoton tomography. Int J Pharm 2019; 574:118843. [PMID: 31759105 DOI: 10.1016/j.ijpharm.2019.118843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
Numerous studies have employed tape stripping (TS) or cyanoacrylate stripping (CS) to induce skin barrier disruption of the stratum corneum (SC) in human and porcine skin. However, the thickness of the remaining SC and the respective changes of the skin permeability have been rarely quantified. By using high-resolution multiphoton tomography, about 5 µm thick SC was found remaining on human skin after the performance of 30 times TS or 2 times CS. 50 tape strips or 4 times CS removed the entire human SC, but on porcine skin 2-3 µm thick SC was still left. TS can only reach the transition zone between the SC and the stratum granulosum because of the limited adhesion, whereas CS was able to remove viable skin layers. Permeation investigations on porcine skin revealed that the apparent permeability coefficient of the hydrophilic nitroxide spin 2,5,5-Tetramethyl-1-pyrrolidinyloxy-3-carboxylic acid increased 15-, 18-, and 21-fold when the SC amount remaining in the skin was 30%, 16%, and 8%, respectively. It is recommended to use at most 30 times TS or 3 times CS to obtain ex vivo barrier-disrupted skin that mimics diseased skin. The study provides quantitative information for the utility of TS and CS in skin penetration research.
Collapse
Affiliation(s)
- Pin Dong
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Viktor Nikolaev
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany; Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS), Tomsk, Russia; Tomsk State University, Faculty of Physics, Tomsk, Russia
| | - Marius Kröger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Christian Zoschke
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Berlin, Germany
| | - Maxim E Darvin
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Christian Witzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Plastic and Reconstructive Surgery, Department of Surgery, CVK CCM, Berlin, Germany
| | - Jürgen Lademann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Alexa Patzelt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Monika Schäfer-Korting
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Berlin, Germany
| | - Martina C Meinke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany.
| |
Collapse
|
10
|
Jain P, Rahi P, Pandey V, Asati S, Soni V. Nanostructure lipid carriers: A modish contrivance to overcome the ultraviolet effects. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Priyanka Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470 003, India
| | - Prerna Rahi
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470 003, India
| | - Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470 003, India
| | - Saket Asati
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470 003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470 003, India
| |
Collapse
|
11
|
Guo S, Domanov Y, Donovan M, Ducos B, Pomeau Y, Gourier C, Perez E, Luengo GS. Anisotropic cellular forces support mechanical integrity of the Stratum Corneum barrier. J Mech Behav Biomed Mater 2019; 92:11-23. [PMID: 30654216 DOI: 10.1016/j.jmbbm.2018.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 11/30/2022]
Abstract
The protective function of biological surfaces that are exposed to the exterior of living organisms is the result of a complex arrangement and interaction of cellular components. This is the case for the most external cornified layer of skin, the stratum corneum (SC). This layer is made of corneocytes, the elementary 'flat bricks' that are held together through adhesive junctions. Despite the well-known protective role of the SC under high mechanical stresses and rapid cell turnover, the subtleties regarding the adhesion and mechanical interaction among the individual corneocytes are still poorly known. Here, we explore the adhesion of single corneocytes at different depths of the SC, by pulling them using glass microcantilevers, and measuring their detachment forces. We measured their interplanar adhesion between SC layers, and their peripheral adhesion among cells within a SC layer. Both adhesions increased considerably with depth. At the SC surface, with respect to adhesion, the corneocyte population exhibited a strong heterogeneity, where detachment forces differed by more than one order of magnitude for corneocytes located side by side. The measured detachment forces indicated that in the upper-middle layers of SC, the peripheral adhesion was stronger than the interplanar one. We conclude that the stronger peripheral adhesion of corneocytes in the SC favors an efficient barrier which would be able to resist strong stresses.
Collapse
Affiliation(s)
- Shuo Guo
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, l'université de recherche Paris Sciences et Lettres, CNRS UMR 8550, Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC) University of Paris 06, Université Paris Diderot, 75005 Paris, France
| | - Yegor Domanov
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Mark Donovan
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Bertrand Ducos
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, l'université de recherche Paris Sciences et Lettres, CNRS UMR 8550, Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC) University of Paris 06, Université Paris Diderot, 75005 Paris, France
| | - Yves Pomeau
- University of Arizona, Department of Mathematics, Tucson, AZ, USA
| | - Christine Gourier
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, l'université de recherche Paris Sciences et Lettres, CNRS UMR 8550, Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC) University of Paris 06, Université Paris Diderot, 75005 Paris, France
| | - Eric Perez
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, l'université de recherche Paris Sciences et Lettres, CNRS UMR 8550, Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC) University of Paris 06, Université Paris Diderot, 75005 Paris, France.
| | | |
Collapse
|
12
|
Ashtikar M, Langelüddecke L, Fahr A, Deckert V. Tip-enhanced Raman scattering for tracking of invasomes in the stratum corneum. Biochim Biophys Acta Gen Subj 2017; 1861:2630-2639. [DOI: 10.1016/j.bbagen.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/06/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
|
13
|
Joshi A, Joshi A, Patel H, Ponnoth D, Stagni G. Cutaneous Penetration-Enhancing Effect of Menthol: Calcium Involvement. J Pharm Sci 2017; 106:1923-1932. [PMID: 28400197 DOI: 10.1016/j.xphs.2017.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/27/2022]
Abstract
Menthol is a naturally occurring terpene used as a penetration enhancer in topical and transdermal formulations. Literature shows a growing interest in menthol's interactions with the transient receptor potential melastatin 8. A decrease in extracellular Ca2+ due to the activation of the transient receptor potential melastatin 8 receptor produces inhibition of E-cadherin expression that is responsible for cell-cell adhesion. Because calcium is present in the entire epidermis, the purpose of this study is to evaluate whether the aforementioned properties of menthol are also related to its penetration-enhancing effects. We formulated 16 gels: (i) drug-alone (diphenhydramine or lidocaine), (ii) drug with menthol, (iii) drug, menthol, and calcium channel blocker (CCB; verapamil or diltiazem), and (iv) drug and CCB. In vitro studies showed no effect of the CCB on the release of the drugs either with or without menthol. In vivo experiments were performed for each drug/menthol/CCB combination gel by applying 4 formulations on a shaved rabbit's dorsum on the same day. Dermis concentration profiles were assessed with microdialysis. The gels containing menthol showed higher penetration of drugs than those without whereas the addition of the CCB consistently inhibited the penetration-enhancing effects of menthol. In summary, these findings strongly support the involvement of calcium in the penetration-enhancing effect of menthol.
Collapse
Affiliation(s)
- Amit Joshi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Abhay Joshi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Hiren Patel
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Dovenia Ponnoth
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Grazia Stagni
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201.
| |
Collapse
|
14
|
The global mechanical properties and multi-scale failure mechanics of heterogeneous human stratum corneum. Acta Biomater 2016; 43:78-87. [PMID: 27431879 DOI: 10.1016/j.actbio.2016.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/03/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022]
Abstract
UNLABELLED The outermost layer of skin, or stratum corneum, regulates water loss and protects underlying living tissue from environmental pathogens and insults. With cracking, chapping or the formation of exudative lesions, this functionality is lost. While stratum corneum exhibits well defined global mechanical properties, macroscopic mechanical testing techniques used to measure them ignore the structural heterogeneity of the tissue and cannot provide any mechanistic insight into tissue fracture. As such, a mechanistic understanding of failure in this soft tissue is lacking. This insight is critical to predicting fracture risk associated with age or disease. In this study, we first quantify previously unreported global mechanical properties of isolated stratum corneum including the Poisson's ratio and mechanical toughness. African American breast stratum corneum is used for all assessments. We show these parameters are highly dependent on the ambient humidity to which samples are equilibrated. A multi-scale investigation assessing the influence of structural heterogeneities on the microscale nucleation and propagation of cracks is then performed. At the mesoscale, spatially resolved equivalent strain fields within uniaxially stretched stratum corneum samples exhibit a striking heterogeneity, with localized peaks correlating closely with crack nucleation sites. Subsequent crack propagation pathways follow inherent topographical features in the tissue and lengthen with increased tissue hydration. At the microscale, intact corneocytes and polygonal shaped voids at crack interfaces highlight that cracks propagate in superficial cell layers primarily along intercellular junctions. Cellular fracture does occur however, but is uncommon. STATEMENT OF SIGNIFICANCE Human stratum corneum protects the body against harmful environmental pathogens and insults. Upon mechanical failure, this barrier function is lost. Previous studies characterizing the mechanics of stratum corneum have used macroscopic testing equipment designed for homogenous materials. Such measurements ignore the tissue's rich topography and heterogeneous structure, and cannot describe the underlying mechanistic process of tissue failure. For the first time, we establish a mechanistic insight into the failure mechanics of soft heterogeneous tissues by investigating how cracks nucleate and propagate in stratum corneum. We further quantify previously unreported values of the tissue's Poisson's ratio and toughness, and their dramatic variation with ambient humidity. To date, skin models examining drug delivery, wound healing, and ageing continue to estimate these parameters.
Collapse
|
15
|
Champagne AM, Allen HC, Williams JB. Lipid composition and molecular interactions change with depth in the avian stratum corneum to regulate cutaneous water loss. ACTA ACUST UNITED AC 2015; 218:3032-41. [PMID: 26447196 DOI: 10.1242/jeb.125310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The outermost 10-20 µm of the epidermis, the stratum corneum (SC), consists of flat, dead cells embedded in a matrix of intercellular lipids. These lipids regulate cutaneous water loss (CWL), which accounts for over half of total water loss in birds. However, the mechanisms by which lipids are able to regulate CWL and how these mechanisms change with depth in the SC are poorly understood. We used attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to measure lipid-lipid and lipid-water interactions as a function of depth in the SC of house sparrows (Passer domesticus Linnaeus) in the winter and summer. We then compared these molecular interactions at each depth with lipid composition at the same depth. We found that in both groups, water content increased with depth in the SC, and likely contributed to greater numbers of gauche defects in lipids in deeper levels of the SC. In winter-caught birds, which had lower rates of CWL than summer-caught birds, water exhibited stronger hydrogen bonding in deeper layers of the SC, and these strong hydrogen bonds were associated with greater amounts of polar lipids such as ceramides and cerebrosides. Based on these data, we propose a model by which polar lipids in deep levels of the SC form strong hydrogen bonds with water molecules to increase the viscosity of water and slow the permeation of water through the SC.
Collapse
Affiliation(s)
- Alex M Champagne
- Department of Biology, University of Southern Indiana, Science Center 1255 8600 University Blvd, Evansville, IN 47712, USA
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, 1102 Newman and Wolfrom Laboratory, 100 W 18th Avenue, Columbus, OH 43210, USA Department of Pathology, The Ohio State University, 129 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - Joseph B Williams
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Corneodesmosomal water content in frozen-hydrated porcine skin. J Invest Dermatol 2015; 135:1689-1691. [PMID: 25741993 DOI: 10.1038/jid.2015.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Kawakami H, Uchiyama M, Maeda T, Tsunoda T, Mitsuhashi Y, Tsuboi R. A Case of Inflammatory Generalized Type of Peeling Skin Syndrome Possibly Caused by a Homozygous Missense Mutation of CDSN. Case Rep Dermatol 2014; 6:232-8. [PMID: 25473393 PMCID: PMC4241645 DOI: 10.1159/000368823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm) compared with that of an age- and site-matched control (406.6 ± 182.3 nm). We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling.
Collapse
Affiliation(s)
- Hiroshi Kawakami
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Masaki Uchiyama
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Tatsuo Maeda
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Takahiko Tsunoda
- Department of Dermatology, Yamagata City Hospital Saiseikan, Yamagata, Japan
| | | | - Ryoji Tsuboi
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
18
|
Ishida-Yamamoto A, Igawa S. The biology and regulation of corneodesmosomes. Cell Tissue Res 2014; 360:477-82. [DOI: 10.1007/s00441-014-2037-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/09/2014] [Indexed: 11/30/2022]
|
19
|
Gene expression in the skin of dogs sensitized to the house dust mite Dermatophagoides farinae. G3-GENES GENOMES GENETICS 2014; 4:1787-95. [PMID: 25098772 PMCID: PMC4199687 DOI: 10.1534/g3.114.013003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atopic dermatitis is a multifactorial allergic skin disease in humans and dogs. Genetic predisposition, immunologic hyperreactivity, a defective skin barrier, and environmental factors play a role in its pathogenesis. The aim of this study was to analyze gene expression in the skin of dogs sensitized to house dust mite antigens. Skin biopsy samples were collected from six sensitized and six nonsensitized Beagle dogs before and 6 hr and 24 hr after challenge using skin patches with allergen or saline as a negative control. Transcriptome analysis was performed by the use of DNA microarrays and expression of selected genes was validated by quantitative real-time RT-PCR. Expression data were compared between groups (unpaired design). After 24 hr, 597 differentially expressed genes were detected, 361 with higher and 226 with lower mRNA concentrations in allergen-treated skin of sensitized dogs compared with their saline-treated skin and compared with the control specimens. Functional annotation clustering and pathway- and co-citation analysis showed that the genes with increased expression were involved in inflammation, wound healing, and immune response. In contrast, genes with decreased expression in sensitized dogs were associated with differentiation and barrier function of the skin. Because the sensitized dogs did not show differences in the untreated skin compared with controls, inflammation after allergen patch test probably led to a decrease in the expression of genes important for barrier formation. Our results further confirm the similar pathophysiology of human and canine atopic dermatitis and revealed genes previously not known to be involved in canine atopic dermatitis.
Collapse
|
20
|
Feng L, Chandar P, Lu N, Vincent C, Bajor J, McGuiness H. Characteristic differences in barrier and hygroscopic properties between normal and cosmetic dry skin. II. Depth profile of natural moisturizing factor and cohesivity. Int J Cosmet Sci 2014; 36:231-8. [DOI: 10.1111/ics.12118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/27/2014] [Indexed: 01/17/2023]
Affiliation(s)
- L. Feng
- Unilever Research and Development Trumbull; 40 Merritt Boulevard Trumbull CT 06611 CT USA
| | - P. Chandar
- Unilever Research and Development Trumbull; 40 Merritt Boulevard Trumbull CT 06611 CT USA
| | - N. Lu
- Unilever Research and Development Trumbull; 40 Merritt Boulevard Trumbull CT 06611 CT USA
| | - C. Vincent
- Unilever Research and Development Trumbull; 40 Merritt Boulevard Trumbull CT 06611 CT USA
| | - J. Bajor
- Unilever Research and Development Trumbull; 40 Merritt Boulevard Trumbull CT 06611 CT USA
| | - H. McGuiness
- Unilever Research and Development Trumbull; 40 Merritt Boulevard Trumbull CT 06611 CT USA
| |
Collapse
|
21
|
Björklund S, Ruzgas T, Nowacka A, Dahi I, Topgaard D, Sparr E, Engblom J. Skin membrane electrical impedance properties under the influence of a varying water gradient. Biophys J 2014; 104:2639-50. [PMID: 23790372 DOI: 10.1016/j.bpj.2013.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022] Open
Abstract
The stratum corneum (SC) is an effective permeability barrier. One strategy to increase drug delivery across skin is to increase the hydration. A detailed description of how hydration affects skin permeability requires characterization of both macroscopic and molecular properties and how they respond to hydration. We explore this issue by performing impedance experiments on excised skin membranes in the frequency range 1 Hz to 0.2 MHz under the influence of a varying gradient in water activity (aw). Hydration/dehydration induces reversible changes of membrane resistance and effective capacitance. On average, the membrane resistance is 14 times lower and the effective capacitance is 1.5 times higher when the outermost SC membrane is exposed to hydrating conditions (aw = 0.992), as compared to the case of more dehydrating conditions (aw = 0.826). Molecular insight into the hydration effects on the SC components is provided by natural-abundance (13)C polarization transfer solid-state NMR and x-ray diffraction under similar hydration conditions. Hydration has a significant effect on the dynamics of the keratin filament terminals and increases the interchain spacing of the filaments. The SC lipids are organized into lamellar structures with ∼ 12.6 nm spacing and hexagonal hydrocarbon chain packing with mainly all-trans configuration of the acyl chains, irrespective of hydration state. Subtle changes in the dynamics of the lipids due to mobilization and incorporation of cholesterol and long-chain lipid species into the fluid lipid fraction is suggested to occur upon hydration, which can explain the changes of the impedance response. The results presented here provide information that is useful in explaining the effect of hydration on skin permeability.
Collapse
Affiliation(s)
- Sebastian Björklund
- Division of Physical Chemistry, The Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
22
|
Li X, Upadhyay AK, Bullock AJ, Dicolandrea T, Xu J, Binder RL, Robinson MK, Finlay DR, Mills KJ, Bascom CC, Kelling CK, Isfort RJ, Haycock JW, MacNeil S, Smallwood RH. Skin stem cell hypotheses and long term clone survival--explored using agent-based modelling. Sci Rep 2013; 3:1904. [PMID: 23712735 PMCID: PMC3664904 DOI: 10.1038/srep01904] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022] Open
Abstract
Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation.
Collapse
Affiliation(s)
- X Li
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
BACKGROUND The stratum corneum (SC) is the outermost region of the epidermis and plays key roles in cutaneous barrier function in mammals. The SC is composed of 'bricks', represented by flattened, protein-enriched corneocytes, and 'mortar', represented by intercellular lipid-enriched layers. As a result of this 'bricks and mortar' structure, the SC can be considered as a 'rampart' that encloses water and solutes essential for physiological homeostasis and that protects mammals from physical, chemical and biological assaults. STRUCTURES AND FUNCTIONS The corneocyte cytoskeleton contains tight bundles of keratin intermediate filaments aggregated with filaggrin monomers, which are subsequently degraded into natural moisturizing compounds by various proteases, including caspase 14. A cornified cell envelope is formed on the inner surface of the corneocyte plasma membrane by transglutaminase-catalysed cross-linking of involucrin and loricrin. Ceramides form a lipid envelope by covalently binding to the cornified cell envelope, and extracellular lamellar lipids play an important role in permeability barrier function. Corneodesmosomes are the main adhesive structures in the SC and are degraded by certain serine proteases, such as kallikreins, during desquamation. CLINICAL RELEVANCE The roles of the different SC components, including the structural proteins in corneocytes, extracellular lipids and some proteins associated with lipid metabolism, have been investigated in genetically engineered mice and in naturally occurring hereditary skin diseases, such as ichthyosis, ichthyosis syndrome and atopic dermatitis in humans, cattle and dogs.
Collapse
Affiliation(s)
- Koji Nishifuji
- Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | | |
Collapse
|
24
|
Igawa S, Kishibe M, Honma M, Murakami M, Mizuno Y, Suga Y, Seishima M, Ohguchi Y, Akiyama M, Hirose K, Ishida-Yamamoto A, Iizuka H. Aberrant distribution patterns of corneodesmosomal components of tape-stripped corneocytes in atopic dermatitis and related skin conditions (ichthyosis vulgaris, Netherton syndrome and peeling skin syndrome type B). J Dermatol Sci 2013; 72:54-60. [PMID: 23810772 DOI: 10.1016/j.jdermsci.2013.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 05/02/2013] [Accepted: 05/22/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atopic dermatitis (AD), Netherton syndrome (NS) and peeling skin syndrome type B (PSS) may show some clinical phenotypic overlap. Corneodesmosomes are crucial for maintaining stratum corneum integrity and the components' localization can be visualized by immunostaining tape-stripped corneocytes. In normal skin, they are detected at the cell periphery. OBJECTIVE To determine whether AD, NS, PSS and ichthyosis vulgaris (IV) have differences in the corneodesmosomal components' distribution and corneocytes surface areas. METHODS Corneocytes were tape-stripped from a control group (n=12) and a disease group (37 AD cases, 3 IV cases, 4 NS cases, and 3 PSS cases), and analyzed with immunofluorescent microscopy. The distribution patterns of corneodesmosomal components: desmoglein 1, corneodesmosin, and desmocollin 1 were classified into four types: peripheral, sparse diffuse, dense diffuse and partial diffuse. Corneocyte surface areas were also measured. RESULTS The corneodesmosome staining patterns were abnormal in the disease group. Other than in the 3 PSS cases, all three components showed similar patterns in each category. In lesional AD skin, the dense diffuse pattern was prominent. A high rate of the partial diffuse pattern, loss of linear cell-cell contacts, and irregular stripping manners were unique to NS. Only in PSS was corneodesmosin staining virtually absent. The corneocyte surface areas correlated significantly with the rate of combined sparse and dense diffuse patterns of desmoglein 1. CONCLUSION This method may be used to assess abnormally differentiated corneocytes in AD and other diseases tested. In PSS samples, tape stripping analysis may serve as a non-invasive diagnostic test.
Collapse
Affiliation(s)
- Satomi Igawa
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stratum corneum proteases and dry skin conditions. Cell Tissue Res 2012; 351:217-35. [DOI: 10.1007/s00441-012-1501-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
|
26
|
Lin TK, Crumrine D, Ackerman LD, Santiago JL, Roelandt T, Uchida Y, Hupe M, Fabriàs G, Abad JL, Rice RH, Elias PM. Cellular changes that accompany shedding of human corneocytes. J Invest Dermatol 2012; 132:2430-2439. [PMID: 22739796 PMCID: PMC3447115 DOI: 10.1038/jid.2012.173] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Corneocyte desquamation has been ascribed to either: 1) proteolytic degradation of corneodesmosomes (CD); 2) disorganization of extracellular lamellar bilayers; and/or 3) ‘swell-shrinkage-slough’ (SSS) from hydration/dehydration. To address the cellular basis for normal exfoliation, we compared changes in lamellar bilayer architecture and CD structure in DSquame® strips from the 1st vs. 5th stripping (‘outer’ vs. ‘mid’-stratum corneum [SC], respectively) from 9 normal adult forearms. Strippings were either processed for standard EM or for ruthenium (Ru-V)- or osmium-tetroxide (Os-V) vapor fixation, followed by immediate epoxy embedment, an artifact-free protocol that to our knowledge is previously unreported. CDs are largely intact in the mid-SC, but replaced by electron-dense (hydrophilic) clefts (lacunae) that expand laterally, splitting lamellar arrays in the outer SC. Some undegraded DSG1/DSC1 redistribute uniformly into corneocyte envelopes (CEs) in the outer SC (shown by proteomics, Z-stack confocal imaging and immunoEM). CEs then thicken, likely facilitating exfoliation by increasing corneocyte rigidity. In vapor-fixed images, hydration only altered the volume of the extracellular compartment, expanding lacunae further separating membrane arrays. During dehydration, air replaced water, maintaining the expanded extracellular compartment. Hydration also provoked degradation of membranes by activating contiguous acidic ceramidase activity. Together, these studies identify several parallel mechanisms that orchestrate exfoliation from the surface of normal human skin.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, National Cheng Kung University Hospital, and Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Debra Crumrine
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA
| | - Larry D Ackerman
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA
| | - Juan-Luis Santiago
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, Hospital General de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Truus Roelandt
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Yoshikazu Uchida
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA
| | - Melanie Hupe
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA
| | - Gemma Fabriàs
- Department of Biomedicinal Chemistry, Institut de Química Avançada de Catalunya, CSIC, Barcelona, Spain
| | - Jose L Abad
- Department of Biomedicinal Chemistry, Institut de Química Avançada de Catalunya, CSIC, Barcelona, Spain
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | - Peter M Elias
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
27
|
|
28
|
Dillon MB. Skin as a potential source of infectious foot and mouth disease aerosols. Proc Biol Sci 2011; 278:1761-9. [PMID: 21450741 DOI: 10.1098/rspb.2010.2430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review examines whether exfoliated, virus-infected animal skin cells could be an important source of infectious foot and mouth disease virus (FMDV) aerosols. Infectious material rafting on skin cell aerosols is an established means of transmitting other diseases. The evidence for a similar mechanism for FMDV is: (i) FMDV is trophic for animal skin and FMDV epidermis titres are high, even in macroscopically normal skin; (ii) estimates for FMDV skin cell aerosol emissions appear consistent with measured aerosol emission rates and are orders of magnitude larger than the minimum infectious dose; (iii) the timing of infectious FMDV aerosol emissions is consistent with the timing of high FMDV skin concentrations; (iv) measured FMDV aerosol sizes are consistent with skin cell aerosols; and (v) FMDV stability in natural aerosols is consistent with that expected for skin cell aerosols. While these findings support the hypothesis, this review is insufficient, in and of itself, to prove the hypothesis and specific follow-on experiments are proposed. If this hypothesis is validated, (i) new FMDV detection, management and decontamination approaches could be developed and (ii) the relevance of skin cells to the spread of viral disease may need to be reassessed as skin cells may protect viruses against otherwise adverse environmental conditions.
Collapse
Affiliation(s)
- Michael B Dillon
- Lawrence Livermore National Laboratory, PO Box 808, L-103, Livermore, CA 94551, USA.
| |
Collapse
|
29
|
Involvement of corneodesmosome degradation and lamellar granule transportation in the desquamation process. Med Mol Morphol 2011; 44:1-6. [DOI: 10.1007/s00795-010-0513-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/26/2010] [Indexed: 12/13/2022]
|
30
|
Chu M, Kollias N. Documentation of normal stratum corneum scaling in an average population: features of differences among age, ethnicity and body site. Br J Dermatol 2011; 164:497-507. [PMID: 21054338 DOI: 10.1111/j.1365-2133.2010.10120.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Scaling skin involves an imbalance between cell proliferation and desquamation, resulting in partially detached corneocytes at the stratum corneum (SC) surface that become visible as they scatter light. OBJECTIVES The purpose of this study was to document scaling skin with no associated pathology, to estimate the range of normal corneocyte detachment in the average population, and to determine if age, pigmentation and/or body sites of different exposures contribute to differences observed in the SC. METHODS Healthy African-American and Caucasian female subjects (n = 151) from a typical central New Jersey population, aged between 14 and 75 years, were evaluated on the dorsal forearm and upper inner arm. Dermatoscopy and adhesive tape were used to evaluate the appearance and adhesion of surface corneocytes. Transepidermal water loss and conductivity were measured to assess water-handling properties of the SC. Measurements were conducted during the winter. RESULTS Corneocyte detachment observed with dermatoscopy became more prevalent with age and was more severe on the dorsal forearm and in Caucasian subjects. The distribution of the amount of corneocyte removal with adhesive tape increased with age. The range of values was larger in the dorsal forearm than the upper inner arm and was greater in Caucasian subjects than African-American subjects. Minimal changes were observed for water-handling properties. CONCLUSIONS The architecture of the outer SC appears different between ages, body sites of different exposures, and individuals of different pigmentation groups, but minimal differences in water-handling properties are observed.
Collapse
Affiliation(s)
- M Chu
- Johnson & Johnson Consumer and Personal Products Worldwide, Skillman, NJ 08558, USA.
| | | |
Collapse
|
31
|
Amputee skin condition: occlusion, stratum corneum hydration and free amino acid levels. Arch Dermatol Res 2010; 303:117-24. [PMID: 21161543 DOI: 10.1007/s00403-010-1111-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/22/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
Patients with a prosthetic limb report negative skin effects, including irritation, rash and chafing, which can lead to infection, discomfort and reduced wear time to significantly impact normal activities. The aims were to examine the epidermal integrity (transepidermal water loss, TEWL), stratum corneum (SC) hydration [moisture accumulation rate (MAT)], friction and biomechanical properties in active below the knee amputees and to determine the effects of an inert sock liner on skin condition. The liner reduced hydration, TEWL and friction and increased elasticity versus the amputee's conventional skin care methods. Residual limb TEWL was increased and MAT was reduced versus the contralateral normal skin. In a second study, we hypothesized that complete occlusion would decrease free amino acids (FAA) and quantified them by high performance liquid chromatography in an adult volar forearm model. Occlusion with a water vapor impermeable wet dressing led to increased TEWL, erythema and dryness and reduced MAT versus normal skin, comparable to the results in the amputees. The FAA levels were significantly reduced for the occluded sites. The results suggest that residual limb occlusion in amputees may block the formation of FAA in the upper SC. Therapies based on replacement of water binding FAAs, may alleviate the consequences of long-term occlusion.
Collapse
|
32
|
Igawa S, Kishibe M, Murakami M, Honma M, Takahashi H, Iizuka H, Ishida-Yamamoto A. Tight junctions in the stratum corneum explain spatial differences in corneodesmosome degradation. Exp Dermatol 2010; 20:53-7. [PMID: 20955201 DOI: 10.1111/j.1600-0625.2010.01170.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To maintain stratum corneum integrity while simultaneously desquamating at a steady rate, degradation of corneodesmosomes must proceed in a controlled manner. It is unknown why corneodesmosomes are present only at the cell periphery in the upper stratum corneum. To explore this, we studied distributions of three major corneodesmosomal components, corneodesmosin, desmoglein 1 and desmocollin 1 in normal adult human epidermis. Immunofluorescent microscopy studies of skin surface corneocytes detected all three components only at the cell edges. Immunoelectron microscopy revealed selective loss of these components at the central areas starting from the deep cornified layers. We hypothesized that tight junctions (TJs) formed in the superficial granular layer may prevent protease access by functioning as a barrier between the peripheral and the central intercellular spaces in the stratum corneum. Ultrastructural examination demonstrated TJs up to the junctions between the seventh and the eighth deepest cornified layers. Immunoelectron microscopy also detected clusters of occludin and claudin-1 immunolabels at the cell periphery, and kallikrein 7 immunolabels outside of TJs in the lower cornified layers. With colloidal lanthanum nitrate perfusion assay of stripped stratum corneum, the tracer was excluded from TJ domains. Taken together, we propose that TJs inhibit access of proteases to the peripheral corneodesmosomes forming the structural basis for the basket-weave-like appearance of the stratum corneum.
Collapse
Affiliation(s)
- Satomi Igawa
- Department of Dermatology, Asahikawa Medical College, Asahikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Naoe Y, Hata T, Tanigawa K, Kimura H, Masunaga T. Bidimensional analysis of desmoglein 1 distribution on the outermost corneocytes provides the structural and functional information of the stratum corneum. J Dermatol Sci 2010; 57:192-8. [PMID: 20116975 DOI: 10.1016/j.jdermsci.2009.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 12/22/2009] [Accepted: 12/26/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND The stratum corneum (SC) plays an important role in cutaneous barrier function. Recent clarification of the pathophysiology of several keratoses has suggested that adhesive molecules contribute not only to SC construction but also to SC barrier function. OBJECTIVE The purpose of this study is to clarify how the distribution of adhesion molecules on corneocytes contributes to the construction of the SC and the overall organization and function of the cutaneous barrier. METHODS To investigate the distribution of desmoglein 1 (Dsg1), which may be a main component of corneodesmosomes (CDSs) in the SC, we used a bidimensional observation method using tape-stripped corneocytes and several immunohistochemical techniques to demonstrate the distribution of Dsg1 and to deduce internal events in the SC. RESULTS Immunofluorescence labeling showed that Dsg1 distributed on corneocytes of the outermost SC with a characteristic pattern at the periphery, or over the entire surface, and differences in this distribution pattern correlated with the transepidermal water loss (TEWL). Furthermore, electron microscopic analysis showed that (1) Dsg1 was localized on CDSs involved in adhesion, and (2) CDSs on the periphery of corneocytes contributed to the generation of the characteristic basket-weave structure. CONCLUSION We explored the distribution pattern of Dsg1 in the SC via a non-invasive investigation tool. Our findings indicate the significance of adhesion molecules in the formation and function of the SC, and suggest that adhesion molecules are one of the important elements in barrier formation in addition to corneocytes, which act as bricks, and intercellular lipids, which act as mortar.
Collapse
Affiliation(s)
- Yoshikazu Naoe
- Fundamental Research Laboratories, KOSE Corporation, 1-18-4 Azusawa, Itabashi-ku, Tokyo 174-0051, Japan
| | | | | | | | | |
Collapse
|
34
|
From telogen to exogen: mechanisms underlying formation and subsequent loss of the hair club fiber. J Invest Dermatol 2009; 129:2100-8. [PMID: 19340011 DOI: 10.1038/jid.2009.66] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hair follicle has the unique capacity to undergo periods of growth, regression, and rest before regenerating itself to restart the cycle. This dynamic cycling capacity enables mammals to change their coats, and for hair length to be controlled on different body sites. More recently, the process of club fiber shedding has been described as a distinct cycle phase known as exogen, and proposed to be an active phase of the hair cycle. This review focuses on the importance of the shedding phase of the hair cycle and, in the context of current literature, analyzes the processes of club fiber formation, retention, and release, which may influence progression through exogen, particularly in relation to human hair.
Collapse
|
35
|
Son DN, Li L, Katsuyama H, Komatsu N, Saito M, Tanii H, Saijoh K. Abundant expression of Kallikrein 1 gene in human keratinocytes was mediated by GATA3. Gene 2009; 436:121-7. [PMID: 19232384 DOI: 10.1016/j.gene.2009.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/27/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Among Tissue kallikrein genes (KLKs), KLK1 is abundantly expressed in human skin. Although its putative promoter is known to have various cis-elements, they have not been functionally tested. In the present study, the regulation mechanism of KLK1 promoter supporting such abundant expression was examined. Luciferase assay targeting the KLK1 promoter (nucleotide -1153/+40 from the major transcriptional start site) was performed on NHEK human keratinocyte. -954/-855, -428/-236, and -100/+40 had the induction activity. The motif search program failed to find unique binding motifs in -428/-236, whereas both -954/-855 and -100/+40 had a unique GATAs binding motif. Electrophoretic mobility shift assay (EMSA) and DNA footprinting confirmed the binding of NHEK nuclear protein to these motifs that were supershifted by anti-GATA3 antibody. Among GATA isoforms, GATA3 alone could be amplified in RNA obtained from NHEK. Moreover, introduction of GATA3 into fibroblastic NIH3T3 cells enhanced the activity of KLK1 promoter containing -954/+40, while that of GATA3 dominant negative mutant to NHEK cells impaired the same promoter's activity. Thus, GATA3 was found to bind the site located at -954/-855 and to be a key regulator of abundant KLK1 expression in human keratinocyte.
Collapse
Affiliation(s)
- Do Ngoc Son
- Department of Hygiene, Kanazawa University School of Medicine, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Fluhr JW, Darlenski R, Surber C. Glycerol and the skin: holistic approach to its origin and functions. Br J Dermatol 2008; 159:23-34. [PMID: 18510666 DOI: 10.1111/j.1365-2133.2008.08643.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycerol is a trihydroxy alcohol that has been included for many years in topical dermatological preparations. In addition, endogenous glycerol plays a role in skin hydration, cutaneous elasticity and epidermal barrier repair. The aquaporin-3 transport channel and lipid metabolism in the pilosebaceous unit have been evidenced as potential pathways for endogenous delivery of glycerol and for its metabolism in the skin. Multiple effects of glycerol on the skin have been reported. The diverse actions of the polyol glycerol on the epidermis include improvement of stratum corneum hydration, skin barrier function and skin mechanical properties, inhibition of the stratum corneum lipid phase transition, protection against irritating stimuli, enhancement of desmosomal degradation, and acceleration of wound-healing processes. Even an antimicrobial effect has been demonstrated. Topical application of glycerol-containing products improves skin properties in diseases characterized by xerosis and impaired epidermal barrier function, such as atopic dermatitis. The increase of epidermal hydration by glycerol is critical in skin conditions aggravated by dry and cold environmental conditions, e.g. winter xerosis. This paper provides a review on effects of glycerol on the skin, the mechanisms of its action, and the potential applications of glycerol in dermatology.
Collapse
Affiliation(s)
- J W Fluhr
- Bioskin, Seydelstr. 18, 10117 Berlin, Germany.
| | | | | |
Collapse
|
37
|
HAFTEK M, SIMON M, KANITAKIS J, MARECHAL S, CLAUDY A, SERRE G, SCHMITT D. Expression of corneodesmosin in the granular layer and stratum corneum of normal and diseased epidermis. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1997.19792087.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Kaur IP, Kapila M, Agrawal R. Role of novel delivery systems in developing topical antioxidants as therapeutics to combat photoageing. Ageing Res Rev 2007; 6:271-88. [PMID: 17933593 DOI: 10.1016/j.arr.2007.08.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/17/2007] [Accepted: 08/17/2007] [Indexed: 01/11/2023]
Abstract
Ageing proceeds by highly complicated biochemical processes, in which the involvement of the reactive oxygen species (ROS) and free radicals has been implicated. Reactive oxygen species are dramatically enhanced by exposure to the ultraviolet radiation. Free radical scavengers and antioxidants can thus provide a long-term protection against these changes. Currently, dermaceutical and cosmetic industry is growing immensely with its main focus on packaging the active into a suitable/novel delivery system. This not only enhances the customer acceptance but offers better targeting to the upper skin layer, with faster onset, at a lower concentration of the active. Later also counter toxic or adverse effects observed with large doses especially when administered orally. Several of the antioxidant molecules are labile to degradation in the presence of oxygen, water and light, hence it becomes all the more appropriate to use a delivery system which will augment their stability and hence enhance the performance. In the present review, we focus on the pioneering research on novel delivery systems which can promote the therapeutic value of antioxidants for combating UV-induced photoageing.
Collapse
Affiliation(s)
- Indu P Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | | | | |
Collapse
|
39
|
Houben E, De Paepe K, Rogiers V. A keratinocyte's course of life. Skin Pharmacol Physiol 2006; 20:122-32. [PMID: 17191035 DOI: 10.1159/000098163] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 10/05/2006] [Indexed: 12/30/2022]
Abstract
An adequate permeability barrier function of the mammalian epidermis is guaranteed by the characteristic architecture of the stratum corneum. This uppermost layer consists of a highly organized extracellular lipid compartment which is tightly joined to the corneocytes. The generation of the extracellular lipid compartment and the transformation of the keratinocytes into corneocytes are the main features of epidermal differentiation. However, equally important is the continuous renewal of the stratum corneum, which is insured by a careful balance between the replenishment of new keratinocytes from the proliferating basal layer, and the well-orchestrated loss of the most superficial cells after the so-called 'epidermal programmed cell death'. In this overview, the complete life of keratinocytes is described, from the proliferative organization to the process of desquamation.
Collapse
Affiliation(s)
- E Houben
- Department of Toxicology, Dermato-cosmetology and Pharmacognosy, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
40
|
Wu KS, Stefik MM, Ananthapadmanabhan KP, Dauskardt RH. Graded delamination behavior of human stratum corneum. Biomaterials 2006; 27:5861-70. [PMID: 16934326 DOI: 10.1016/j.biomaterials.2006.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 08/04/2006] [Indexed: 11/21/2022]
Abstract
An in vitro adhesion test method has been adapted to quantify the through-thickness intercellular delamination energy of isolated human stratum corneum (SC). Both untreated and delipidized tissues were tested. Measured delamination energies were found to increase from approximately 3 J/m(2) near the surface to approximately 15 J/m(2) for the inner layers of the tissue. For delipidized SC, the location of the initial debond was located closer to the center of the tissue. Delamination energy values were elevated compared to untreated specimens, increasing from approximately 7 J/m(2) near the surface to approximately 18 J/m(2) for the inner layers of the SC. Further tests were run to measure delamination energies of SC as a function of hydration (15-100% relative humidity (RH)) at approximately 25 degrees C and as a function of temperature (10-90 degrees C) at several hydrations (15, 45, 100% RH). Delamination energies were observed to decrease with increasing hydration and increasing temperature with the most significant changes occurring for 100% RH conditioned SC. Additional SC was treated with pH-buffered solutions (pH 4.2, 6.7, 9.9) and selected surfactant solutions (1%, 10% wt/wt sodium dodecyl sulfate (SDS)) for comparison to untreated controls. While statistically significant differences were observed, the SC was found to be resistant to large changes in delamination energy with pH and 1% wt/wt SDS treatments with values in the range 4.2-5.1J/m(2) compared to control values of 4.4 J/m(2). More substantially elevated values were observed for SC treated with a 10%wt/wt SDS solution (6.6J/m(2)) and a chloroform-methanol extraction (11.2J/m(2)).
Collapse
Affiliation(s)
- Kenneth S Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
41
|
Komatsu N, Saijoh K, Sidiropoulos M, Tsai B, Levesque MA, Elliott MB, Takehara K, Diamandis EP. Quantification of Human Tissue Kallikreins in the Stratum Corneum: Dependence on Age and Gender. J Invest Dermatol 2005; 125:1182-9. [PMID: 16354188 DOI: 10.1111/j.0022-202x.2005.23933.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human tissue kallikreins are a family of 15 trypsin or chymotrypsin-like secreted serine proteases (hK1-hK15). hK5, hK6, hK7, hK8, and hK13 have been identified in the stratum corneum (SC), stratum granulosum, and skin appendages. It has been reported that hK5 and hK7 degrade desmosomes/corneodesmosomes, suggesting that kallikreins are responsible for desquamation. We report the quantification of hK5, hK6, hK7, hK8, hK10, hK11, hK13, and hK14 in the SC by ELISA and their variation among age groups. The total SC trypsin and chymotrypsin-like activities were also measured. The amount of hK7, hK8, and hK11 (ng per mg dry weight) were high, and varied from 6 to 14, hK5 (2.0-4.0) was present at intermediate levels, and hK10 (0.65-1.0), hK14 (0.1-0.3), hK6 (0.1-0.3), and hK13 (0.02-0.1) were present at lower levels. hK6 and hK14 were significantly lower in females between 20 and 59 y. hK5, hK7, hK10, hK11, and hK14 were not significantly different across the age groups. hK8 was lowest at extremes of age (highest at 30-39 y), hK6 was lower at >30 y, and hK13 was lower at >20 y. Overall trypsin-like activity did not differ across age groups but was higher in subjects <11 y. Overall chymotrypsin-like activity was not related to age. In conclusion, we found multiple kallikreins in the SC and suggest that these enzymes may be responsible for desquamation through an enzymatic cascade pathway.
Collapse
Affiliation(s)
- Nahoko Komatsu
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu KS, van Osdol WW, Dauskardt RH. Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 2005; 27:785-95. [PMID: 16095683 DOI: 10.1016/j.biomaterials.2005.06.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 06/24/2005] [Indexed: 11/30/2022]
Abstract
An in vitro mechanics approach to quantify the intercellular delamination energy and mechanical behavior of isolated human stratum corneum (SC) in a direction perpendicular to the skin surface is presented. The effects of temperature, hydration, and a chloroform-methanol treatment to remove intercellular lipids were explored. The delamination energy for debonding of cells within the SC layer was found to be sensitive to the moisture content of the tissue and to the test temperature. Delamination energies for untreated stratum corneum were measured in the range of 1-8J/m(2) depending on test temperature. Fully hydrated specimen energies decreased with increasing temperature, while room-humidity-hydrated specimens exhibited more constant values of 2-4J/m(2). Lipid-extracted specimens exhibited higher delamination energies of approximately 12J/m(2), with values decreasing to approximately 4J/m(2) with increasing test temperature. The peak separation stress decreased with increasing temperature and hydration, but lipid-extracted specimens exhibited higher peak stresses than untreated controls. The delaminated surfaces revealed an intercellular failure path with no evidence of tearing or fracture of cells. The highly anisotropic mechanical behavior of the SC is discussed in relation to the underlying SC structure.
Collapse
Affiliation(s)
- Kenneth S Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
43
|
Al-Amoudi A, Dubochet J, Norlén L. Nanostructure of the Epidermal Extracellular Space as Observed by Cryo-Electron Microscopy of Vitreous Sections of Human Skin. J Invest Dermatol 2005; 124:764-77. [PMID: 15816835 DOI: 10.1111/j.0022-202x.2005.23630.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The newly developed method, cryo-electron microscopy of vitreous sections, was used to observe the nanostructure of the epidermal extracellular space. The data were obtained from vitreous sections of freshly taken, fully hydrated, non-cryo-protected human skin. The extracellular space of viable epidermis contains desmosomes, expressing a characteristic extracellular transverse approximately 5 nm periodicity, interconnected by a relatively electron lucent inter-desmosomal space. The extracellular space between viable and cornified epidermis contains transition desmosomes at different stages of reorganization interconnected by widened areas expressing a rich variety of complex membrane-like structures. The extracellular space of cornified epidermis contains approximately 9, approximately 14, approximately 25, approximately 33, approximately 39, approximately 44, and approximately 48 nm thick regions in turn containing one, two, four, six, eight, eight, and ten parallel electron-dense lines, respectively, between adjacent corneocyte lipid envelopes. The eight-line approximately 44 nm thick regions are most prevalent.
Collapse
Affiliation(s)
- Ashraf Al-Amoudi
- Laboratory of Ultrastructural Analysis, Biology Building, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
44
|
Abstract
Since the introduction of the first through the skin (TTS) therapeutic in 1980, a total of 34 TTS products have been marketed and numerous drugs have been tested by more than 50 commercial organisations for their suitability for TTS delivery. Most of the agents which have been tested have had low molecular weights, due to the impermeability of the skin barrier. This barrier resides in the outermost skin layer, the stratum corneum. It is mechanical, anatomical, as well as chemical in nature; laterally overlapping cell multi-layers are sealed by tightly packed, intercellular, lipid multi-lamellae. Chemical skin permeation enhancers increase the transport across the barrier by partly solubilising or extracting the skin lipids and by creating hydrophobic pores. This is often irritating and not always well-tolerated. The TTS approach allows drugs (< 400 kDa in size) to permeate through the resulting pores in the skin, with a short lag-time and subsequent steady-state period. Drug bioavailability for TTS delivery is typically below 50%, avoiding the first pass effect. Wider, hydrophilic channels can be generated by skin poration, with the aid of a small electrical current (> 0.4 mA/cm2) across the skin (iontophoresis) or therapeutic ultrasound (few W/cm2; sonoporation). High-voltage (> 150 V, electroporation) widens the pores even more and often irreversibly. These standard poration methods require experience and equipment and are therefore, not practical; at best, charged/small molecules (< or = 4000 kDa in size) can be delivered efficiently across the skin. In spite of the potential harm of gadget-driven skin poration, this method is used to deliver molecules which conventional TTS patches are unable to deliver, especially polypeptides. Lipid-based drug carriers (liposomes, niosomes, nanoparticle microemulsions, etc.) were proposed as alternative, low-risk delivery vehicles. Such suspensions provide an improved drug reservoir on the skin, but the aggregates remain confined to the surface. Conventional carrier suspensions increase skin hydration and/or behave as skin permeation enhancers. The recently developed carriers; Transferomes, comprise pharmaceutically-acceptable, established compounds and are thought to penetrate the skin barrier along the naturally occurring transcutaneous moisture gradient. Transfersomes are believed to penetrate the hydrophilic (virtual) channels in the skin and widen the former after non-occlusive administration. Both small and large hydrophobic and hydrophilic molecules are deliverable across the stratum after conjugation with Transfersomes. Drug distribution after transdermal delivery probably proceeds via the lymph. This results in quasi-zero order kinetics with significant systemic drug levels reached after a lag-time of up to a few hours. The relative efficiency of TTS drug delivery with Transfersomes is typically above 50 %; with the added possibility of regional drug targeting.
Collapse
Affiliation(s)
- G Cevc
- Medizinische Biophysik, Klinikum r.d.I., Technische Universität München, Ismaninger Str. 22, D-81675 München, Germany
| |
Collapse
|
45
|
Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, Schmidt R, Egelrud T, Simon M, Serre G. Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J Invest Dermatol 2004; 122:1235-44. [PMID: 15140227 DOI: 10.1111/j.0022-202x.2004.22512.x] [Citation(s) in RCA: 347] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Corneodesmosin (CDSN), desmoglein 1 (DSG1), and desmocollin 1 (DSC1) are adhesive proteins of the extracellular part of the corneodesmosomes, the junctional structures that mediate corneocyte cohesion. The degradation of these proteins at the epidermis surface is necessary for desquamation. Two serine proteases of the kallikrein family synthesized as inactive precursors have been implicated in this process: the stratum corneum chymotryptic enzyme (SCCE/KLK7/hK7) and the stratum corneum tryptic enzyme (SCTE/KLK5/hK5). Here, we analyzed the capacity of these enzymes to cleave DSG1, DSC1, and epidermal or recombinant forms of CDSN, at an acidic pH close to that of the stratum corneum. SCCE directly cleaved CDSN and DSC1 but was unable to degrade DSG1. But incubation with SCTE induced degradation of the three corneodesmosomal components. Using the recombinant form of CDSN, either with its N-glycan chain or enzymatically deglycosylated, we also demonstrated that oligosaccharide residues do not protect CDSN against proteolysis by SCCE. Moreover, our results suggest that SCTE is able to activate the proform of SCCE. These results strongly suggest that the two kalikreins are involved in desquamation. A model is proposed for desquamation that could be regulated by a precisely controlled protease-protease inhibitor balance.
Collapse
Affiliation(s)
- Cécile Caubet
- UMR5165 "Epidermis Differentiation and Rheumatoid Autoimmunity", CNRS-P. Sabatier University (Institut Fédératif de Recherche 30 and INSERM-CNRS-Université P. Sabatier-Centre Hospitalier Universitaire), Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gasser P, Peno-Mazzarino L, Lati E, Djian B. Original semiologic standardized evaluation of stratum corneum hydration by DiagnoskinR stripping sample. Int J Cosmet Sci 2004; 26:117-27. [DOI: 10.1111/j.1467-2494.2004.00209.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Abstract
Our understanding of the formation, structure, composition, and maturation of the stratum corneum (SC) has progressed enormously over the past 30 years. Today, there is a growing realization that this structure, while faithfully providing a truly magnificent barrier to water loss, is a unique, intricate biosensor that responds to environmental challenges and surface trauma by initiating a series of biologic processes which rapidly seek to repair the damage and restore barrier homeostasis. The detailed ultrastructural, biochemical, and molecular dissection of the classic "bricks and mortar" model of the SC has provided insights into the basis of dry, scaly skin disorders that range from the cosmetic problems of winter xerosis to severe conditions such as psoriasis. With this knowledge comes the promise of increasingly functional topical therapies.
Collapse
Affiliation(s)
- Clive R Harding
- Unilever Research and Development, 45 River Road, Edgewater, NJ 07020, USA.
| |
Collapse
|
48
|
Komatsu N, Takata M, Otsuki N, Toyama T, Ohka R, Takehara K, Saijoh K. Expression and localization of tissue kallikrein mRNAs in human epidermis and appendages. J Invest Dermatol 2003; 121:542-9. [PMID: 12925213 DOI: 10.1046/j.1523-1747.2003.12363.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue kallikreins are a group of serine proteases that are found in many organs and biologic fluids. Tissue kallikrein genes (KLKs) are found on chromosome 19q13.3-4 as a gene cluster encoding 15 different serine proteases. In skin, two tissue kallikrein proteins, hK5 and hK7, are expressed in the stratum corneum and are known to be involved in desquamation of corneocytes. The possible involvement of other kallikrein proteins has not been clarified, however, nor has the significance of each member in the serine protease activity of skin been delineated. In the study described here, we examined expression and localization of KLK mRNA in normal human skin by means of RT-PCR and in situ hybridization. Quantitative RT-PCR analysis showed abundant expression of KLK1 and KLK11 mRNA, moderate expression of KLK4, KLK5, KLK6, KLK7, and KLK13 mRNA, and low expression of KLK8 mRNA in normal human skin. For KLK4, KLK8, and KLK13 mRNA, splice variants were identified to be their major mRNA species. Two variants for KLK13 mRNA were novel. The amount of the serine protease inhibitor Kazal-type 5 (SPINK5) mRNA was comparable to KLK1 and KLK11 mRNA. In situ hybridization revealed intense expression of all KLK mRNA studied except KLK12 mRNA in the stratum granulosum of normal epidermis, where SPINK5 mRNA coexisted. Excluding KLK13 mRNA, they are also expressed in hair sheath, eccrine sweat glands, and sebaceous glands. Coexpression of various KLK and SPINK5 mRNA suggests that their proteins are the candidates to balance and maintain serine protease activities in both the skin and appendages.
Collapse
Affiliation(s)
- Nahoko Komatsu
- Department of Dermatology, Graduate School of Medical Science, School of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Jain S, Jain P, Umamaheshwari RB, Jain NK. Transfersomes—A Novel Vesicular Carrier for Enhanced Transdermal Delivery: Development, Characterization, and Performance Evaluation. Drug Dev Ind Pharm 2003; 29:1013-26. [PMID: 14606665 DOI: 10.1081/ddc-120025458] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This work describes the use of a novel vesicular drug carrier system called transfersomes, which is composed of phospholipid, surfactant, and water for enhanced transdermal delivery. The transfersomal system was much more efficient at delivering a low and high molecular weight drug to the skin in terms of quantity and depth. In the present study transfersomes and liposomes were prepared by using dexamethasone as a model drug. The system was evaluated in vitro for vesicle shape and size, entrapment efficiency, degree of deformability, number of vesicles per cubic mm, and drug diffusion across the artificial membrane and rat skin. The effects of surfactant type, composition, charge, and concentration of surfactant were studied. The in vivo performance of selected formulation was evaluated by using a carrageenan-induced rat paw edema model. Fluorescence microscopy by using rhodamine-123 and 6-carboxyfluorescein as fluorescence probe was performed. The stability study was performed at 4 degrees C and 37 degrees C. An in vitro drug release study has shown a nearly zero order release of drug and no lag phase. The absence of lag phase in comparison to liposomes and ointment is attributed to the greater deformability, which may account for better skin permeability of transfersomes. In vivo studies of transfersomes showed better antiedema activity in comparison to liposomes and ointment, indicating better permeation through the penetration barrier of the skin. This was further confirmed through a fluorescence microscopy study. Finally, it may be concluded from the study that complex lipid molecules, transfersomes, can increase the transdermal flux, prolong the release, and improve the site specificity of bioactive molecules.
Collapse
Affiliation(s)
- Subheet Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar (M.P.), India
| | | | | | | |
Collapse
|
50
|
Harding CR, Long S, Richardson J, Rogers J, Zhang Z, Bush A, Rawlings AV. The cornified cell envelope: an important marker of stratum corneum maturation in healthy and dry skin. Int J Cosmet Sci 2003; 25:157-67. [DOI: 10.1046/j.1467-2494.2003.00175.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|