1
|
Velasco M, Díaz-García CM, Larqué C, Hiriart M. Modulation of Ionic Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta Cells. Mol Pharmacol 2016; 90:341-57. [PMID: 27436126 DOI: 10.1124/mol.116.103861] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic beta cells, unique cells that secrete insulin in response to an increase in glucose levels, play a significant role in glucose homeostasis. Glucose-stimulated insulin secretion (GSIS) in pancreatic beta cells has been extensively explored. In this mechanism, glucose enters the cells and subsequently the metabolic cycle. During this process, the ATP/ADP ratio increases, leading to ATP-sensitive potassium (KATP) channel closure, which initiates depolarization that is also dependent on the activity of TRP nonselective ion channels. Depolarization leads to the opening of voltage-gated Na(+) channels (Nav) and subsequently voltage-dependent Ca(2+) channels (Cav). The increase in intracellular Ca(2+) triggers the exocytosis of insulin-containing vesicles. Thus, electrical activity of pancreatic beta cells plays a central role in GSIS. Moreover, many growth factors, incretins, neurotransmitters, and hormones can modulate GSIS, and the channels that participate in GSIS are highly regulated. In this review, we focus on the principal ionic channels (KATP, Nav, and Cav channels) involved in GSIS and how classic and new proteins, hormones, and drugs regulate it. Moreover, we also discuss advances on how metabolic disorders such as metabolic syndrome and diabetes mellitus change channel activity leading to changes in insulin secretion.
Collapse
Affiliation(s)
- Myrian Velasco
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Manlio Díaz-García
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Larqué
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Proft J, Weiss N. G protein regulation of neuronal calcium channels: back to the future. Mol Pharmacol 2014; 87:890-906. [PMID: 25549669 DOI: 10.1124/mol.114.096008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022] Open
Abstract
Neuronal voltage-gated calcium channels have evolved as one of the most important players for calcium entry into presynaptic endings responsible for the release of neurotransmitters. In turn, and to fine-tune synaptic activity and neuronal communication, numerous neurotransmitters exert a potent negative feedback over the calcium signal provided by G protein-coupled receptors. This regulation pathway of physiologic importance is also extensively exploited for therapeutic purposes, for instance in the treatment of neuropathic pain by morphine and other μ-opioid receptor agonists. However, despite more than three decades of intensive research, important questions remain unsolved regarding the molecular and cellular mechanisms of direct G protein inhibition of voltage-gated calcium channels. In this study, we revisit this particular regulation and explore new considerations.
Collapse
Affiliation(s)
- Juliane Proft
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
3
|
Cha CY, Nakamura Y, Himeno Y, Wang J, Fujimoto S, Inagaki N, Earm YE, Noma A. Ionic mechanisms and Ca2+ dynamics underlying the glucose response of pancreatic β cells: a simulation study. ACTA ACUST UNITED AC 2011; 138:21-37. [PMID: 21708953 PMCID: PMC3135323 DOI: 10.1085/jgp.201110611] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clarify the mechanisms underlying the pancreatic β-cell response to varying glucose concentrations ([G]), electrophysiological findings were integrated into a mathematical cell model. The Ca2+ dynamics of the endoplasmic reticulum (ER) were also improved. The model was validated by demonstrating quiescent potential, burst–interburst electrical events accompanied by Ca2+ transients, and continuous firing of action potentials over [G] ranges of 0–6, 7–18, and >19 mM, respectively. These responses to glucose were completely reversible. The action potential, input impedance, and Ca2+ transients were in good agreement with experimental measurements. The ionic mechanisms underlying the burst–interburst rhythm were investigated by lead potential analysis, which quantified the contributions of individual current components. This analysis demonstrated that slow potential changes during the interburst period were attributable to modifications of ion channels or transporters by intracellular ions and/or metabolites to different degrees depending on [G]. The predominant role of adenosine triphosphate–sensitive K+ current in switching on and off the repetitive firing of action potentials at 8 mM [G] was taken over at a higher [G] by Ca2+- or Na+-dependent currents, which were generated by the plasma membrane Ca2+ pump, Na+/K+ pump, Na+/Ca2+ exchanger, and TRPM channel. Accumulation and release of Ca2+ by the ER also had a strong influence on the slow electrical rhythm. We conclude that the present mathematical model is useful for quantifying the role of individual functional components in the whole cell responses based on experimental findings.
Collapse
Affiliation(s)
- Chae Young Cha
- Biosimulation Project, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006; 27:621-76. [PMID: 16868246 DOI: 10.1210/er.2005-0888] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology L1:03, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
5
|
Hosoi N, Arai I, Tachibana M. Group III metabotropic glutamate receptors and exocytosed protons inhibit L-type calcium currents in cones but not in rods. J Neurosci 2006; 25:4062-72. [PMID: 15843608 PMCID: PMC6724956 DOI: 10.1523/jneurosci.2735-04.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Light responses of photoreceptors (rods and cones) are transmitted to the second-order neurons (bipolar cells and horizontal cells) via glutamatergic synapses located in the outer plexiform layer of the retina. Although it has been well established that postsynaptic group III metabotropic glutamate receptors (mGluRs) of ON bipolar cells contribute to generating the ON signal, presynaptic roles of group III mGluRs remain to be elucidated at this synaptic connection. We addressed this issue by applying the slice patch-clamp technique to the newt retina. OFF bipolar cells and horizontal cells generate a steady inward current in the dark and a transient inward current at light offset, both of which are mediated via postsynaptic non-NMDA receptors. A group III mGluR-specific agonist, L-2-amino-4-phosphonobutyric acid (L-AP-4), inhibited both the steady and off-transient inward currents but did not affect the glutamate-induced current in these postsynaptic neurons. L-AP-4 inhibited the presynaptic L-type calcium current (ICa) in cones by shifting the voltage dependence of activation to more positive membrane potentials. The inhibition of ICa was most prominent around the physiological range of cone membrane potentials. In contrast, L-AP-4 did not affect L-type ICa in rods. Paired recordings from photoreceptors and the synaptically connected second-order neurons confirmed that L-AP-4 inhibited both ICa and glutamate release in cones but not in rods. Furthermore, we found that exocytosed protons also inhibited ICa in cones but not in rods. Selective modulation of ICa in cones may help broaden the dynamic range of synaptic transfer by controlling the amount of transmitter release from cones.
Collapse
Affiliation(s)
- Nobutake Hosoi
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
6
|
Gilon P, Henquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 2001; 22:565-604. [PMID: 11588141 DOI: 10.1210/edrv.22.5.0440] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acetylcholine (ACh), the major parasympathetic neurotransmitter, is released by intrapancreatic nerve endings during the preabsorptive and absorptive phases of feeding. In beta-cells, ACh binds to muscarinic M(3) receptors and exerts complex effects, which culminate in an increase of glucose (nutrient)-induced insulin secretion. Activation of PLC generates diacylglycerol. Activation of PLA(2) produces arachidonic acid and lysophosphatidylcholine. These phospholipid-derived messengers, particularly diacylglycerol, activate PKC, thereby increasing the efficiency of free cytosolic Ca(2+) concentration ([Ca(2+)](c)) on exocytosis of insulin granules. IP3, also produced by PLC, causes a rapid elevation of [Ca(2+)](c) by mobilizing Ca(2+) from the endoplasmic reticulum; the resulting fall in Ca(2+) in the organelle produces a small capacitative Ca(2+) entry. ACh also depolarizes the plasma membrane of beta-cells by a Na(+)- dependent mechanism. When the plasma membrane is already depolarized by secretagogues such as glucose, this additional depolarization induces a sustained increase in [Ca(2+)](c). Surprisingly, ACh can also inhibit voltage-dependent Ca(2+) channels and stimulate Ca(2+) efflux when [Ca(2+)](c) is elevated. However, under physiological conditions, the net effect of ACh on [Ca(2+)](c) is always positive. The insulinotropic effect of ACh results from two mechanisms: one involves a rise in [Ca(2+)](c) and the other involves a marked, PKC-mediated increase in the efficiency of Ca(2+) on exocytosis. The paper also discusses the mechanisms explaining the glucose dependence of the effects of ACh on insulin release.
Collapse
Affiliation(s)
- P Gilon
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, B-1200 Brussels, Belgium.
| | | |
Collapse
|
7
|
Scholze A, Plant TD, Dolphin AC, Nürnberg B. Functional expression and characterization of a voltage-gated CaV1.3 (alpha1D) calcium channel subunit from an insulin-secreting cell line. Mol Endocrinol 2001; 15:1211-21. [PMID: 11435619 DOI: 10.1210/mend.15.7.0666] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
L-type calcium channels mediate depolarization-induced calcium influx in insulin-secreting cells and are thought to be modulated by G protein-coupled receptors (GPCRs). The major fraction of L-type alpha1-subunits in pancreatic beta-cells is of the neuroendocrine subtype (CaV1.3 or alpha1D). Here we studied the biophysical properties and receptor regulation of a CaV1.3 subunit previously cloned from HIT-T15 cells. In doing so, we compared this neuroendocrine CaV1.3 channel with the cardiac L-type channel CaV1.2a (or alpha1C-a) after expression together with alpha2delta- and beta3-subunits in Xenopus oocytes. Both the current voltage relation and voltage dependence of inactivation for the neuroendocrine CaV1.3 channel were shifted to more negative potentials compared with the cardiac CaV1.2 channel. In addition, the CaV1.3 channel activated and inactivated more rapidly than the CaV1.2a channel. Both subtypes showed a similar sensitivity to the dihydropyridine (+)isradipine. More interestingly, the CaV1.3 channels were found to be stimulated by ligand-bound G(i)/G(o)-coupled GPCRs whereas a neuronal CaV2.2 (or alpha1B) channel was inhibited. The observed receptor-induced stimulation of CaV1.3 channels could be mimicked by phorbol-12-myristate-13-acetate and was sensitive to inhibitors of protein kinases, but not to the phosphoinositol-3-kinase-inhibitor wortmannin, pointing to serine/threonine kinase-dependent regulation. Taken together, we describe a neuroendocrine L-type CaV1.3 calcium channel that is stimulated by G(i)/G(o)-coupled GPCRs and differs significantly in distinct biophysical characteristics from the cardiac subtype (CaV1.2a), suggesting that the channels have different roles in native cells.
Collapse
Affiliation(s)
- A Scholze
- Institut für Pharmakologie, Freie Universität Berlin 14195 Berlin, Germany
| | | | | | | |
Collapse
|
8
|
Dolphin AC. L-type calcium channel modulation. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:153-77. [PMID: 10218118 DOI: 10.1016/s1040-7952(99)80009-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- A C Dolphin
- Department of Pharmacology, University College of London, England
| |
Collapse
|
9
|
Safayhi H, Haase H, Kramer U, Bihlmayer A, Roenfeldt M, Ammon HP, Froschmayr M, Cassidy TN, Morano I, Ahlijanian MK, Striessnig J. L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Mol Endocrinol 1997; 11:619-29. [PMID: 9139805 DOI: 10.1210/mend.11.5.9922] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Opening of dihydropyridine-sensitive voltage-dependent L-type Ca2+-channels (LTCCs) represents the final common pathway for insulin secretion in pancreatic beta-cells and related cell lines. In insulin-secreting cells their exact subunit composition is unknown. We therefore investigated the subunit structure of (+)-[3H]isradipine-labeled LTCCs in insulin-secreting RINm5F cells. Using subunit-specific antibodies we demonstrate that alpha1C subunits (199 kDa, short form) contribute only a minor portion of the total alpha1 immunoreactivity in membranes and partially purified Ca2+-channel preparations. However, alpha1C forms a major constituent of (+)-[3H]isradipine-labeled LTCCs as 54% of solubilized (+)-[3H]isradipine-binding activity was specifically immunoprecipitated by alpha1C antibodies. Phosphorylation of immunopurified alpha1C with cAMP-dependent protein kinase revealed the existence of an additional 240-kDa species (long form), that remained undetected in Western blots. Fifty seven percent of labeled LTCCs were immunoprecipitated by an anti-beta-antibody directed against all known beta-subunits. Isoform-specific antibodies revealed that these mainly corresponded to beta1b- and beta3-subunits. We found beta2- and beta4-subunits to be major constituents of cardiac and brain L-type channels, respectively, but not part of L-type channels in RINm5F cells. We conclude that alpha1C is a major constituent of dihydropyridine-labeled LTCCs in RINm5F cells, its long form serving as a substrate for cAMP-dependent protein kinase. beta1b- and beta3-Subunits were also found to associate with L-type channels in these cells. These isoforms may therefore represent biochemical targets for the modulation of LTCC activity in RINm5F cells.
Collapse
Affiliation(s)
- H Safayhi
- Pharmazeutisches Institut, Lehrstuhl Pharmakologie, Universität Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gilon P, Yakel J, Gromada J, Zhu Y, Henquin JC, Rorsman P. G protein-dependent inhibition of L-type Ca2+ currents by acetylcholine in mouse pancreatic B-cells. J Physiol 1997; 499 ( Pt 1):65-76. [PMID: 9061640 PMCID: PMC1159337 DOI: 10.1113/jphysiol.1997.sp021911] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The effect of acetylcholine (ACh) on voltage-dependent Ca2+ currents in mouse pancreatic B-cells was studied using the whole-cell configuration of the patch-clamp technique. 2. ACh (0.25-250 microM) reversibly and dose-dependently inhibited the Ca2+ current elicited by depolarizations from -80 mV to +10 mV. Maximal inhibition was observed at concentrations > 25 microM where it amounted to approximately 35%. The effect was voltage independent and prevented by atropine (10 microM) suggesting that it was mediated by muscarinic receptors. 3. The inhibitory action of ACh on the Ca2+ current was abolished when the cytoplasmic solution contained GDP beta S (2 mM) and became irreversible when the non-hydrolysable GTP analogue GTP gamma S (10 microM) was included in the pipette. This indicates the participation of G proteins in the inhibitory effect of ACh but pretreatment of the cells with either pertussis or cholera toxin failed to prevent the effect of ACh on the Ca2+ current. 4. ACh remained equally effective as an inhibitor of the whole-cell Ca2+ current in the presence of the L-type Ca2+ channel agonist (-)-Bay K 8644 and after partial inhibition of the current by nifedipine. Addition of omega-agatoxin IVA, omega-conotoxin GVIA or omega-conotoxin MVIIC neither affected the peak Ca2+ current amplitude nor the extent of inhibition produced by ACh. These pharmacological properties indicate that ACh acts by inhibiting L-type Ca2+ channels. 5. The inhibitory action of ACh on the B-cell Ca2+ current was not secondary to elevation of [Ca2+]i and ACh remained equally effective as an inhibitor when Ba2+ was used as the charge carrier, when [Ca2+]i was buffered to low concentrations using EGTA and under experimental conditions preventing the mobilization of Ca2+ from intracellular stores. 6. These results suggest that ACh reduces the whole-cell Ca2+ current in the B-cell through a G protein-regulated, voltage- and Ca(2+)-independent inhibition of L-type Ca2+ channels.
Collapse
Affiliation(s)
- P Gilon
- Islet Cell Phsyiology, Novo Nordisk A/S, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
11
|
Netzer R, Pflimlin P, Trube G. Tonic inhibition of neuronal calcium channels by G proteins removed during whole-cell patch-clamp experiments. Pflugers Arch 1994; 426:206-13. [PMID: 8183631 DOI: 10.1007/bf00374773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The barium current through voltage-dependent calcium channels was recorded from cultured rat cortical neurons with the whole-cell configuration of the patch-clamp technique. The maximal current evoked by depolarising pulses from -80 mV to 0 mV was divided into inactivating and non-inactivating fractions. During the first minutes of whole-cell recording, the amplitude of the inactivating fraction increased from less than 0.1 nA to an average value of 1 nA, whereas the amplitude of the non-inactivating component remained essentially the same. This increase in amplitude was prevented when the "perforated-patch technique" was used, suggesting that some intracellular factor that inhibited the barium current was lost or destroyed during conventional whole-cell experiments. When GTP[gamma-S] or GTP was added to the pipette solution, no increase or only a weak rise of the inactivating current was seen, whereas GDP[beta-S] accelerated its increase. The results suggest that some of the calcium channels expressed in cultured cortical neurons are inhibited by a G protein even in the absence of added neurotransmitter. The current increase observed during whole-cell recordings may be due to a loss of intracellular GTP and the subsequent inactivation of an inhibitory G protein.
Collapse
Affiliation(s)
- R Netzer
- Pharma Division, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | |
Collapse
|
12
|
Ashcroft FM, Proks P, Smith PA, Ammälä C, Bokvist K, Rorsman P. Stimulus-secretion coupling in pancreatic beta cells. J Cell Biochem 1994; 55 Suppl:54-65. [PMID: 7929618 DOI: 10.1002/jcb.240550007] [Citation(s) in RCA: 208] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Insulin secretion is triggered by a rise in the intracellular Ca2+ concentration that results from the activation of voltage-gated Ca2+ channels in the beta-cell plasma membrane. Multiple types of beta-cell Ca2+ channel have been identified in both electrophysiological and molecular biological studies, but it appears that the L-type Ca2+ channel plays a dominant role in regulating Ca2+ influx. Activity of this channel is potentiated by protein kinases A and C and is inhibited by GTP-binding proteins, which may mediate the effects of potentiators and inhibitors of insulin secretion on Ca2+ influx, respectively. The mechanisms by which elevation of intracellular Ca2+ leads to the release of insulin granules is not fully understood but appears to involve activation of Ca2+/calmodulin-dependent protein kinase. Phosphorylation by either protein kinase A or C, probably at different substrates, potentiates insulin secretion by acting at some late stage in the secretory process. There is also evidence that small GTP-binding proteins are involved in regulating exocytosis in beta cells. The identification and characterisation of the proteins involved in exocytosis in beta cells and clarification of the mechanism(s) of action of Ca2+ is clearly an important goal for the future.
Collapse
Affiliation(s)
- F M Ashcroft
- University Laboratory of Physiology, Oxford, England
| | | | | | | | | | | |
Collapse
|
13
|
Kozlowski RZ, Goodstadt LJ, Twist VW, Powell T. Activation of L-type Ca2+ currents in cardiac myocytes by photoreleased GTP. Proc Biol Sci 1993; 250:35-42. [PMID: 1361060 DOI: 10.1098/rspb.1992.0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
L-type calcium currents (ICa) were recorded from isolated ventricular myocytes by using standard patch-clamp methods. In the absence of agonist, photorelease of GTP by flash photolysis of intracellularly applied caged-GTP rapidly increased the amplitude of ICa over a wide range of membrane potentials. Control experiments clearly demonstrated that this effect was not due to either the release of photolytic by-products or to the light flash itself. The timecourse for activation of ICa by photolysis of caged-GTP was markedly altered by intracellular application of either GDP beta S or GTP gamma S. Upon maximal stimulation of ICa by intracellular dialysis with cAMP, photoreleased GTP induced a small, rapid increase in ICa followed by a gradual inhibition. The presence of Rp-cAMPS intracellularly reduced both the magnitude of the response to photoreleased GTP and its time to peak. Similar effects were observed when protein kinase inhibitor dialysed the cell interior, suggesting that both cAMP-dependent and independent processes were involved in this effect. We conclude that rapid release of GTP within ventricular myocytes, in the absence of agonist, causes rapid activation of L-type Ca2+ current. Mechanisms underlying this effect include stimulation of adenylate cyclase, together with other, as yet uncharacterized, GTP-dependent pathways for increasing ICa in the heart.
Collapse
|