Rodrigues JCF, Godinho JLP, de Souza W. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure.
Subcell Biochem 2014;
74:1-42. [PMID:
24264239 DOI:
10.1007/978-94-007-7305-9_1]
[Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Leishmania and Trypanosoma belong to the Trypanosomatidae family and cause important human infections such as leishmaniasis, Chagas disease, and sleeping sickness. Leishmaniasis, caused by protozoa belonging to Leishmania, affects about 12 million people worldwide and can present different clinical manifestations, i.e., visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), diffuse cutaneous leishmaniasis (DCL), and post-kala-azar dermal leishmaniasis (PKDL). Chagas disease, also known as American trypanosomiasis, is caused by Trypanosoma cruzi and is mainly prevalent in Latin America but is increasingly occurring in the United States, Canada, and Europe. Sleeping sickness or human African trypanosomiasis (HAT), caused by two sub-species of Trypanosoma brucei (i.e., T. b. rhodesiense and T. b. gambiense), occurs only in sub-Saharan Africa countries. These pathogenic trypanosomatids alternate between invertebrate and vertebrate hosts throughout their lifecycles, and different developmental stages can live inside the host cells and circulate in the bloodstream or in the insect gut. Trypanosomatids have a classical eukaryotic ultrastructural organization with some of the same main organelles found in mammalian host cells, while also containing special structures and organelles that are absent in other eukaryotic organisms. For example, the mitochondrion is ramified and contains a region known as the kinetoplast, which houses the mitochondrial DNA. Also, the glycosomes are specialized peroxisomes containing glycolytic pathway enzymes. Moreover, a layer of subpellicular microtubules confers mechanic rigidity to the cell. Some of these structures have been investigated to determine their function and identify potential enzymes and metabolic pathways that may constitute targets for new chemotherapeutic drugs.
Collapse