1
|
Palkovic B, Mustapic S, Saric I, Stuth EAE, Stucke AG, Zuperku EJ. Changes in pontine and preBötzinger/Bötzinger complex neuronal activity during remifentanil-induced respiratory depression in decerebrate dogs. Front Physiol 2023; 14:1156076. [PMID: 37362432 PMCID: PMC10285059 DOI: 10.3389/fphys.2023.1156076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: In vivo studies using selective, localized opioid antagonist injections or localized opioid receptor deletion have identified that systemic opioids dose-dependently depress respiratory output through effects in multiple respiratory-related brainstem areas. Methods: With approval of the subcommittee on animal studies of the Zablocki VA Medical Center, experiments were performed in 53 decerebrate, vagotomized, mechanically ventilated dogs of either sex during isocapnic hyperoxia. We performed single neuron recordings in the Pontine Respiratory Group (PRG, n = 432) and preBötzinger/Bötzinger complex region (preBötC/BötC, n = 213) before and during intravenous remifentanil infusion (0.1-1 mcg/kg/min) and then until complete recovery of phrenic nerve activity. A generalized linear mixed model was used to determine changes in Fn with remifentanil and the statistical association between remifentanil-induced changes in Fn and changes in inspiratory and expiratory duration and peak phrenic activity. Analysis was controlled via random effects for animal, run, and neuron type. Results: Remifentanil decreased Fn in most neuron subtypes in the preBötC/BötC as well as in inspiratory (I), inspiratory-expiratory, expiratory (E) decrementing and non-respiratory modulated neurons in the PRG. The decrease in PRG inspiratory and non-respiratory modulated neuronal activity was associated with an increase in inspiratory duration. In the preBötC, the decrease in I-decrementing neuron activity was associated with an increase in expiratory and of E-decrementing activity with an increase in inspiratory duration. In contrast, decreased activity of I-augmenting neurons was associated with a decrease in inspiratory duration. Discussion: While statistical associations do not necessarily imply a causal relationship, our data suggest mechanisms for the opioid-induced increase in expiratory duration in the PRG and preBötC/BötC and how inspiratory failure at high opioid doses may result from a decrease in activity and decrease in slope of the pre-inspiratory ramp-like activity in preBötC/BötC pre-inspiratory neurons combined with a depression of preBötC/BötC I-augmenting neurons. Additional studies must clarify whether the observed changes in neuronal activity are due to direct neuronal inhibition or decreased excitatory inputs.
Collapse
Affiliation(s)
- Barbara Palkovic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Sanda Mustapic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- University Hospital Dubrava, Zagreb, Croatia
| | - Ivana Saric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- University Hospital Split, Split, Croatia
| | - Eckehard A. E. Stuth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Children’s Wisconsin, Milwaukee, WI, United States
| | - Astrid G. Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Children’s Wisconsin, Milwaukee, WI, United States
| | - Edward J. Zuperku
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J Zablocki Department of Veterans Affairs Medical Center, Milwaukee, WI, United States
| |
Collapse
|
2
|
Milloy KM, White MG, Chicilo JOC, Cummings KJ, Pfoh JR, Day TA. Assessing central and peripheral respiratory chemoreceptor interaction in humans. Exp Physiol 2022; 107:1081-1093. [PMID: 35766127 DOI: 10.1113/ep089983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 06/16/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We investigated the interaction between central and peripheral respiratory chemoreceptors in healthy, awake human participants by (a) using a background of step increases in steady-state normoxic fraction of inspired carbon dioxide to alter central chemoreceptor activation and (b) using the transient hypoxia test to target the peripheral chemoreceptors. What is the main finding and its importance? Our data suggests that the central-peripheral respiratory chemoreceptor interaction is additive in minute ventilation and respiratory rate, but hypoadditive in tidal volume. Our study adds important new data in reconciling chemoreceptor interaction in awake healthy humans, and is consistent with previous reports of simple addition in intact rodents and humans. ABSTRACT Arterial blood gas levels are maintained through respiratory chemoreflexes, mediated by central (CCR) in the CNS and peripheral (PCR) chemoreceptors located in the carotid bodies. The interaction between central and peripheral chemoreceptors is controversial, and few studies have investigated this interaction in awake healthy humans, in part due to methodological challenges. We investigated the interaction between the CCRs and PCRs in healthy humans using a transient hypoxia test (three consecutive breaths of 100% N2 ; TT-HVR), which targets the stimulus and temporal domain specificity of the PCRs. TT-HVRs were superimposed upon three randomized background levels of steady-state inspired fraction of normoxic CO2 (FI CO2 ; 0, 0.02 and 0.04). Chemostimuli (calculated oxygen saturation; ScO2 ) and respiratory variable responses (respiratory rate, inspired tidal volume and ventilation; RR , VTI , V̇I ), were averaged from all three TT-HVR trials at each FI CO2 level. Responses were assessed as (a) a change from BL (delta; ∆) and (b) indexed against ∆ScO2 . Aside from a significantly lower ∆VTI response in 0.04 FI CO2 (P = 0.01), the hypoxic rate responses (∆RR or ∆RR /∆ScO2 ; P = 0.46, P = 0.81), hypoxic tidal volume response (∆VTI /∆ScO2 ; P = 0.08) and the hypoxic ventilatory responses (∆V̇I and (∆V̇I /∆ScO2 ; P = 0.09 and P = 0.31) were not significantly different across FI CO2 trials. Our data suggests simple addition between central and peripheral chemoreceptors in V̇I , which is mediated through simple addition in RR responses, but hypo-addition in VTI responses. Our study adds important new data in reconciling chemoreceptor interaction in awake healthy humans, and is consistent with previous reports of simple addition in intact rodents and humans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kristin M Milloy
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Matthew G White
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Janelle O C Chicilo
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | | | - Jamie R Pfoh
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| |
Collapse
|
3
|
Abstract
The clinical term dyspnea (a.k.a. breathlessness or shortness of breath) encompasses at least three qualitatively distinct sensations that warn of threats to breathing: air hunger, effort to breathe, and chest tightness. Air hunger is a primal homeostatic warning signal of insufficient alveolar ventilation that can produce fear and anxiety and severely impacts the lives of patients with cardiopulmonary, neuromuscular, psychological, and end-stage disease. The sense of effort to breathe informs of increased respiratory muscle activity and warns of potential impediments to breathing. Most frequently associated with bronchoconstriction, chest tightness may warn of airway inflammation and constriction through activation of airway sensory nerves. This chapter reviews human and functional brain imaging studies with comparison to pertinent neurorespiratory studies in animals to propose the interoceptive networks underlying each sensation. The neural origins of their distinct sensory and affective dimensions are discussed, and areas for future research are proposed. Despite dyspnea's clinical prevalence and impact, management of dyspnea languishes decades behind the treatment of pain. The neurophysiological bases of current therapeutic approaches are reviewed; however, a better understanding of the neural mechanisms of dyspnea may lead to development of novel therapies and improved patient care.
Collapse
Affiliation(s)
- Andrew P Binks
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States; Faculty of Health Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
4
|
Wilson RJA, Day TA. CrossTalk opposing view: peripheral and central chemoreceptors have hypoadditive effects on respiratory motor output. J Physiol 2014; 591:4355-7. [PMID: 24037127 DOI: 10.1113/jphysiol.2013.256578] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
5
|
|
6
|
Skow RJ, Tymko MM, MacKay CM, Steinback CD, Day TA. The effects of head-up and head-down tilt on central respiratory chemoreflex loop gain tested by hyperoxic rebreathing. PROGRESS IN BRAIN RESEARCH 2014; 212:149-72. [DOI: 10.1016/b978-0-444-63488-7.00009-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Day TA, Wilson RJA. A negative interaction between brainstem and peripheral respiratory chemoreceptors modulates peripheral chemoreflex magnitude. J Physiol 2008; 587:883-96. [PMID: 19103684 DOI: 10.1113/jphysiol.2008.160689] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interaction between central (brainstem) and peripheral (carotid body) respiratory chemosensitivity is vital to protect blood gases against potentially deleterious fluctuations, especially during sleep. Previously, using an in situ arterially perfused, vagotomized, decerebrate preparation in which brainstem and peripheral chemoreceptors are perfused separately (i.e. dual perfused preparation; DPP), we observed that the phrenic response to specific carotid body hypoxia was larger when the brainstem was held at 25 Torr P(CO(2)) compared to 50 Torr P(CO(2)). This suggests a negative (i.e. hypo-additive) interaction between chemoreceptors. The current study was designed to (a) determine whether this observation could be generalized to all carotid body stimuli, and (b) exclude the possibility that the hypo-additive response was the simple consequence of ventilatory saturation at high brainstem P(CO(2)). Specifically, we tested how steady-state brainstem P(CO(2)) modulates peripheral chemoreflex magnitude in response to carotid body P(CO(2)) and P(O(2)) perturbations, both above and below eupnoeic levels. We found that the peripheral chemoreflex was more responsive the lower the brainstem P(CO(2)) regardless of whether the peripheral chemoreceptors received stimuli which increased or decreased activation. These findings demonstrate a negative interaction between brainstem and peripheral chemosensitivity in the rat in the absence of ventilatory saturation. We suggest that a negative interaction in humans may contribute to increased controller gain associated with sleep-related breathing disorders and propose that the assumption of simple addition between chemoreceptor inputs used in current models of the respiratory control system be reconsidered.
Collapse
Affiliation(s)
- Trevor A Day
- Department of Chemical and Biological Sciences, Mount Royal College, Calgary, Alberta, Canada
| | | |
Collapse
|
8
|
Day TA, Wilson RJA. Brainstem PCO2 modulates phrenic responses to specific carotid body hypoxia in an in situ dual perfused rat preparation. J Physiol 2006; 578:843-57. [PMID: 17082232 PMCID: PMC2151337 DOI: 10.1113/jphysiol.2006.119594] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inputs from central (brainstem) and peripheral (carotid body) respiratory chemoreceptors are coordinated to protect blood gases against potentially deleterious fluctuations. However, the mathematics of the steady-state interaction between chemoreceptors has been difficult to ascertain. Further, how this interaction affects time-dependent phenomena (in which chemoresponses depend upon previous experience) is largely unknown. To determine how central P(CO2) modulates the response to peripheral chemostimulation in the rat, we utilized an in situ arterially perfused, vagotomized, decerebrate preparation, in which central and peripheral chemoreceptors were perfused separately (i.e. dual perfused preparation (DPP)). We carried out two sets of experiments: in Experiment 1, we alternated steady-state brainstem P(CO2) between 25 and 50 Torr in each preparation, and applied specific carotid body hypoxia (60 Torr P(O2) and 40 Torr P(CO2)) under both conditions; in Experiment 2, we applied four 5 min bouts (separated by 5 min) of specific carotid body hypoxia (60 Torr P(O2) and 40 Torr P(CO2)) while holding the brainstem at either 30 Torr or 50 Torr P(CO2). We demonstrate that the level of brainstem P(CO2) modulates (a) the magnitude of the phrenic responses to a single step of specific carotid body hypoxia and (b) the magnitude of time-dependent phenomena. We report that the interaction between chemoreceptors is negative (i.e. hypo-additive), whereby a lower brainstem P(CO2) augments phrenic responses resulting from specific carotid body hypoxia. A negative interaction may underlie the pathophysiology of central sleep apnoea in populations that are chronically hypocapnic.
Collapse
Affiliation(s)
- Trevor A Day
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
9
|
Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol (1985) 2006; 101:618-27. [PMID: 16645192 PMCID: PMC4503231 DOI: 10.1152/japplphysiol.00252.2006] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung sensory receptors with afferent fibers coursing in the vagus nerves are broadly divided into three groups: slowly (SAR) and rapidly (RAR) adapting stretch receptors and bronchopulmonary C fibers. Central terminations of each group are found in largely nonoverlapping regions of the caudal half of the nucleus of the solitary tract (NTS). Second order neurons in the pathways from these receptors innervate neurons located in respiratory-related regions of the medulla, pons, and spinal cord. The relative ease of selective activation of SARs, and to a lesser extent RARs, has allowed for more complete physiological and morphological characterization of the second and higher order neurons in these pathways than for C fibers. A subset of NTS neurons receiving afferent input from SARs (termed pump or P-cells) mediates the Breuer-Hering reflex and inhibits neurons receiving afferent input from RARs. P-cells and second order neurons in the RAR pathway also provide inputs to regions of the ventrolateral medulla involved in control of respiratory motor pattern, i.e., regions containing a predominance of bulbospinal premotor neurons, as well as regions containing respiratory rhythm-generating neurons. Axon collaterals from both P-cells and RAR interneurons, and likely from NTS interneurons in the C-fiber pathway, project to the parabrachial pontine region where they may contribute to plasticity in respiratory control and integration of respiratory control with other systems, including those that provide for voluntary control of breathing, sleep-wake behavior, and emotions.
Collapse
Affiliation(s)
- Leszek Kubin
- Dept. of Physiology-M211, Feinberg School of Medicine, Northwestern Univ., 303 E. Chicago Ave., Chicago, IL 60611-3008, USA
| | | | | | | |
Collapse
|
10
|
Day TA, Wilson RJA. Specific carotid body chemostimulation is sufficient to elicit phrenic poststimulus frequency decline in a novel in situ dual-perfused rat preparation. Am J Physiol Regul Integr Comp Physiol 2005; 289:R532-R544. [PMID: 15802555 DOI: 10.1152/ajpregu.00812.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Time-dependent ventilatory responses to hypoxic and hypercapnic challenges, such as posthypoxic frequency decline (PHxFD) and posthypercapnic frequency decline (PHcFD), could profoundly affect breathing stability. However, little is known about the mechanisms that mediate these phenomena. To determine the contribution of specific carotid body chemostimuli to PHxFD and PHcFD, we developed a novel in situ arterially perfused, vagotomized, decerebrate rat preparation in which central and peripheral chemoreceptors are perfused separately (i.e., a nonanesthetized in situ dual perfused preparation). We confirmed that 1) the perfusion of central and peripheral chemoreceptor compartments was independent by applying specific carotid body hypoxia and hypercapnia before and after carotid sinus nerve transection, 2) the PCO(2) chemoresponse of the dual perfused preparation was similar to other decerebrate preparations, and 3) the phrenic output was stable enough to allow investigation of time-dependent phenomena. We then applied four 5-min bouts (separated by 5 min) of specific carotid body hypoxia (40 Torr PO(2) and 40 Torr PCO(2)) or hypercapnia (100 Torr PO(2) and 60 Torr PCO(2)) while holding the brain stem PO(2) and PCO(2) constant. We report the novel finding that specific carotid body chemostimuli were sufficient to elicit several phrenic time-dependent phenomena in the rat. Hypoxic challenges elicited PHxFD that increased with bout, leading to progressive augmentation of the phrenic response. Conversely, hypercapnia elicited short-term depression and PHcFD, neither of which was bout dependent. These results, placed in the context of previous findings, suggest multiple physiological mechanisms are responsible for PHxFD and PHcFD, a redundancy that may illustrate that these phenomena have significant adaptive advantages.
Collapse
Affiliation(s)
- Trevor A Day
- Dept. of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|