1
|
Zhang S, de Boer AH, van Duijn B. Auxin effects on ion transport in Chara corallina. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:37-44. [PMID: 26943501 DOI: 10.1016/j.jplph.2016.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 05/26/2023]
Abstract
The plant hormone auxin has been widely studied with regard to synthesis, transport, signaling and functions among the land plants while there is still a lack of knowledge about the possible role for auxin regulation mechanisms in algae with "plant-like" structures. Here we use the alga Chara corallina as a model to study aspects of auxin signaling. In this respect we measured auxin on membrane potential changes and different ion fluxes (K(+), H(+)) through the plasma membrane. Results showed that auxin, mainly IAA, could hyperpolarize the membrane potential of C. corallina internodal cells. Ion flux measurements showed that the auxin-induced membrane potential change may be based on the change of K(+) permeability and/or channel activity rather than through the activation of proton pumps as known in land plants.
Collapse
Affiliation(s)
- Suyun Zhang
- Plant Biodynamics Laboratory, Institute Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Albertus H de Boer
- Department of Structural Biology, Faculty Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085-1087, 1081HV Amsterdam, The Netherlands
| | - Bert van Duijn
- Plant Biodynamics Laboratory, Institute Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Fytagoras, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
2
|
Gruhlke MCH, Hemmis B, Noll U, Wagner R, Lühring H, Slusarenko AJ. The defense substance allicin from garlic permeabilizes membranes of Beta vulgaris, Rhoeo discolor, Chara corallina and artificial lipid bilayers. Biochim Biophys Acta Gen Subj 2014; 1850:602-11. [PMID: 25484312 DOI: 10.1016/j.bbagen.2014.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/06/2014] [Accepted: 11/24/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Allicin (diallylthiosulfinate) is the major volatile- and antimicrobial substance produced by garlic cells upon wounding. We tested the hypothesis that allicin affects membrane function and investigated 1) betanine pigment leakage from beetroot (Beta vulgaris) tissue, 2) the semipermeability of the vacuolar membrane of Rhoeo discolor cells, 3) the electrophysiology of plasmalemma and tonoplast of Chara corallina and 4) electrical conductivity of artificial lipid bilayers. METHODS Garlic juice and chemically synthesized allicin were used and betanine loss into the medium was monitored spectrophotometrically. Rhoeo cells were studied microscopically and Chara- and artificial membranes were patch clamped. RESULTS Beet cell membranes were approximately 200-fold more sensitive to allicin on a mol-for-mol basis than to dimethyl sulfoxide (DMSO) and approximately 400-fold more sensitive to allicin than to ethanol. Allicin-treated Rhoeo discolor cells lost the ability to plasmolyse in an osmoticum, confirming that their membranes had lost semipermeability after allicin treatment. Furthermore, allicin and garlic juice diluted in artificial pond water caused an immediate strong depolarization, and a decrease in membrane resistance at the plasmalemma of Chara, and caused pore formation in the tonoplast and artificial lipid bilayers. CONCLUSIONS Allicin increases the permeability of membranes. GENERAL SIGNIFICANCE Since garlic is a common foodstuff the physiological effects of its constituents are important. Allicin's ability to permeabilize cell membranes may contribute to its antimicrobial activity independently of its activity as a thiol reagent.
Collapse
Affiliation(s)
- Martin C H Gruhlke
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056 Aachen, Germany
| | - Birgit Hemmis
- FB5 Biophysik, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Ulrike Noll
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056 Aachen, Germany
| | - Richard Wagner
- FB5 Biophysik, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Hinrich Lühring
- Institut für Pflanzenwissenschaften (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056 Aachen, Germany.
| |
Collapse
|
3
|
Shimmen T. Unique cellular effect of the herbicide bromoxynil revealed by electrophysiological studies using characean cells. JOURNAL OF PLANT RESEARCH 2010; 123:715-722. [PMID: 20094899 DOI: 10.1007/s10265-009-0297-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 11/21/2009] [Indexed: 05/28/2023]
Abstract
In a previous paper, we proposed that the primary action of the herbicide bromoxynil (BX; 3,5-dibromo-4-hydroxybenzonitrile) is cytosol acidification, based on the fact that bromoxynil induced the inhibition of cytoplasmic streaming and cell death of Chara corallina in acidic external medium (Morimoto and Shimmen in J Plant Res 121:227-233, 2008). In the present study, electrophysiological analysis of the BX effect was carried out in internodal cells of C. corallina. Upon addition of BX, a large and rapid pH-dependent depolarization was induced, supporting our hypothesis. Ioxynil, which belongs to the same group as bromoxynil, also induced a large and rapid membrane depolarization in a pH-dependent manner. On the other hand, four herbicides belonging to other groups of herbicides did not induce such a membrane depolarization. Thus, BX has a unique cellular effect. The decrease in the electro-chemical potential gradient for H(+) across the plasma membrane appears to result in inhibition of cell growth and disturbance of intracellular homeostasis in the presence of BX.
Collapse
Affiliation(s)
- Teruo Shimmen
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo, Japan.
| |
Collapse
|
4
|
Shimmen T. Electrophysiological characterization of the node in Chara corallina: functional differentiation for wounding response. PLANT & CELL PHYSIOLOGY 2008; 49:264-72. [PMID: 18182401 DOI: 10.1093/pcp/pcn002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electrical characteristics of the node were analyzed in comparison with those of the flank of the internodal cell in Chara corallina. The dependence of the membrane potential of the node on pH and K+ concentration was almost the same as that of the flank. In the flank, the increase in the Ca2+ concentration stopped the depolarization in the presence of 100 mM KCl. In the node, however, Ca2+ could not stop the depolarization induced by 100 mM KCl. It has been reported that the node has a function to tranduce the signal of osmotic shock into a transient depolarization. In combination with osmotic shock, 10 mM K+ could induce a long-lasting depolarization of the node. These electrical characteristics of the node were suggested to be responsible for the electrical response to wounding in Characeae.
Collapse
Affiliation(s)
- Teruo Shimmen
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo, 678-1297 Japan
| |
Collapse
|
5
|
|
6
|
Yamashita K, Mimura T, Shimazaki KI. Evidence for nucleotide-dependent passive H+ transport protein in the plasma membrane of barley roots. PLANT & CELL PHYSIOLOGY 2003; 44:55-61. [PMID: 12552147 DOI: 10.1093/pcp/pcg005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasma membranes were isolated from barley roots by two-phase partitioning, and octylglucoside-soluble and -insoluble fractions were obtained. The insoluble fractions were reconstituted into liposomes, and the plasma membrane H(+)-ATPase was shown to participate in MgATP-dependent H(+) transport activity. The H(+) transport was decreased when the octylglucoside-soluble fraction was reconstituted together with the insoluble fraction. The decrease was not due to inhibition of the H(+)-ATPase, but rather was likely due to the increased H(+) leakage from the proteoliposome. The octylglucoside-soluble fraction was, therefore, reconstituted in the liposomes and the passive H(+) transport was determined using the pH jump method. A pH gradient across the membranes was generated by the pH jump, and the gradient was found to be dissipated by passive H(+) transport. The H(+) transport required ATP, K(+), and valinomycin. The H(+)-transport also occurred when ADP, AMP, GTP, or ATP-gamma-S was present instead of ATP, and did not occur when the octylglucoside-soluble fraction was boiled before the reconstitution. These findings suggest that nucleotide-dependent H(+ )transport protein is present in the plasma membrane of root cells.
Collapse
Affiliation(s)
- Kousei Yamashita
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatsu 4-2-1, Fukuoka, 810-8560 Japan
| | | | | |
Collapse
|
7
|
Shimmen T. Electrical perception of "death message" in Chara: involvement of turgor pressure. PLANT & CELL PHYSIOLOGY 2001; 42:366-73. [PMID: 11333306 DOI: 10.1093/pcp/pce047] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants show various defense responses upon wounding. Surviving cells must perceive a "death message" from killed cells in order to start the signal processing that results in defense responses. The initial step in perception of the death message by a surviving cell was studied by taking advantage of the filamentous morphology of characean algae. A specimen comprising two adjoining internodal cells was prepared. One cell (the victim cell) was killed by cutting and any changes in the membrane potential of the neighboring cell (the receptor cell) were analyzed. Upon cutting the victim cell, at least one of three kinds of response were induced in the receptor cell: (1) slow depolarization lasting more than 10 min, (2) action potentials and (3) small spikes. The first of these response types, slow depolarization, was ubiquitous and is the focus of the present study. Two cell properties were essential for generation of this depolarization. (1) Presence of high cell turgor pressure was necessary. (2) The depolarization was generated only at the nodal end of the receptor cell, not at the flank. I concluded that the death message from the killed cell contains the information that turgor pressure has been lost. The mechanism by which this is translated into the slow depolarization of the receptor cell was discussed.
Collapse
Affiliation(s)
- T Shimmen
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo, 678-1297 Japan.
| |
Collapse
|
8
|
Blatt MR, Beilby MJ, Tester M. Voltage dependence of the Chara proton pump revealed by current-voltage measurement during rapid metabolic blockade with cyanide. J Membr Biol 1990; 114:205-23. [PMID: 2157844 DOI: 10.1007/bf01869215] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is generally agreed that solute transport across the Chara plasma membrane is energized by a proton electrochemical gradient maintained by an H(+)-extruding ATPase. Nonetheless, as deduced from steady-state current-voltage (I-V) measurements, the kinetic and thermodynamic constraints on H(+)-ATPase function remain in dispute. Uncertainties necessarily surround long-term effects of the relatively nonspecific antagonists used in the past; but a second, and potentially more serious problem has sprung from the custom of subtracting, across the voltage spectrum, currents recorded following pump inhibition from currents measured in the control. This practice must fail to yield the true I-V profile for the pump when treatments alter the thermodynamic pressure on transport. We have reviewed these issues, using rapid metabolic blockade with cyanide and fitting the resultant whole-cell I-V and difference-current-voltage (dI-V) relations to a reaction kinetic model for the pump and parallel, ensemble leak. Measurements were carried out after blocking excitation with LaCl3, so that steady-state currents could be recorded under voltage clamp between -400 and +100 mV. Exposures to 1 mM NaCN (CN) and 0.4 mM salicylhydroxamic acid (SHAM) depolarized (positive-going) Chara membrane potentials by 44-112 mV with a mean half time of 5.4 +/- 0.8 sec (n = 13). ATP contents, which were followed in parallel experiments, decayed coincidently with a mean half time of 5.3 +/- 0.9 sec [( ATP]t = 0, 0.74 +/- 0.3 mM; [ATP]t = infinity, 0.23 +/- 0.02 mM). Current-voltage response to metabolic blockade was described quantitatively in context of these changes in ATP content and the consequent reduction in pump turnover rate accompanied by variable declines in ensemble leak conductance. Analyses of dI-V curves (+/- CN + SHAM) as well as of families of I-V curves taken at times during CN + SHAM exposures indicated a stoichiometry for the pump of one charge (H+) transported per ATP hydrolyzed and an equilibrium potential near -420 mV at neutral external pH; under these conditions, the pump accounted for approximately 60-75% of the total membrane conductance near Vm. Complementary results were obtained also in fitting previously published I-V data gathered over the external pH range 4.5-7.5. Kinetic features deduced for the pump were dominated by a slow step preceding H+ unloading outside, and by recycling and loading steps on the inside which were in rapid equilibrium.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M R Blatt
- Botany School, University of Cambridge, England
| | | | | |
Collapse
|
9
|
|
10
|
Toko K, Nosaka M, Fujiyoshi T, Yamafuji K, Ogata K. Periodic band pattern as a dissipative structure in ion transport systems with cylindrical shape. Bull Math Biol 1988; 50:255-88. [PMID: 3207955 DOI: 10.1007/bf02458883] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Homble F. Effect of dinitrophenol on membrane potential, membrane resistance and chlorophyll fluorescence of Chara corallina internodal cells at various pH values. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0302-4598(87)80021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Cell Motility and Ionic Relations in Characean Cells as Revealed by Internal Perfusion and Cell Models. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0074-7696(08)61724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Köhler K, Steigner W, Simonis W, Urbach W. Potassium channels in Eremosphaera viridis : I. Influence of cations and pH on resting membrane potential and on an action-potential-like response. PLANTA 1985; 166:490-499. [PMID: 24241614 DOI: 10.1007/bf00391273] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/1985] [Accepted: 05/24/1985] [Indexed: 06/02/2023]
Abstract
The dependence of the membrane potential of Eremosphaera viridis on different external concentrations of potassium, sodium, calcium, and protons was compared with the diffusion potential measured in the dark and in the presence of NaN3. In contrast to some other algae, the membrane potential in the light as well as in the dark seemed to be predominantly determined by the calculated diffusion potential and less by an electrogenic pump which, however, seemed to be involved at potassium concentrations >1 mol·m(-3) and at higher pHos (>pH 6). Furthermore, some characteristics of an action-potential-like response (CAP) triggered by light-off, and independent of the membrane-potential threshold value, were determined. The CAP had a delay period of 5.4 s and needed 4.5 s for polarization to a plateau. On average, the plateau held for 8.8 s and the CAP lasted 37.7 s. The peak amplitudes of CAP (P AP) exactly followed the Nernst potential of potassium. Other cations like sodium, calcium and protons did not appreciably affect the peak amplitudes of CAP. From these and other results it can be assumed that the CAP is caused by a temporary opening of potassium channels in the plasma membrane of Eremosphaera (Köhler et al., 1983, Planta 159, 165-171). The release of a CAP by light-off has been partly explained by the participation of a transient increase of proton concentration in the cytoplasm. It was possible to trigger a CAP by external pH changes and by the addition of sodium acetate, thus supporting the hypothesis that a pH decrease in the cytoplasm may be one element of the signal transfer from the photosynthetic system to the potassium channels in the plasmalemma. Calcium also seemed to have an influence on triggering the CAP.
Collapse
Affiliation(s)
- K Köhler
- Lehrstuhl Botanik I der Universität, Mittlerer Dallenbergweg 64, D-8700, Würzburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
14
|
Morse MJ, Spanswick RM. ATP requirements for the electrogenic pump in perfused Nitella cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1985. [DOI: 10.1016/0005-2736(85)90013-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Takeuchi Y, Kishimoto U, Ohkawa T, Kami-ike N. A kinetic analysis of the electrogenic pump ofChara corallina: II. Dependence of the pump activity on external pH. J Membr Biol 1985. [DOI: 10.1007/bf01871606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
|
17
|
Chapter 4 Control of Electrogenesis by ATP, Mg2+, H+, and Light in Perfused Cells of Chara. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/s0070-2161(08)60694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Lucas WJ, Shimmen T. Intracellular perfusion and cell centrifugation studies on plasmalemma transport processes inChara corallina. J Membr Biol 1981. [DOI: 10.1007/bf01870908] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|