1
|
Iglesia RP, Prado MB, Alves RN, Escobar MIM, Fernandes CFDL, Fortes ACDS, Souza MCDS, Boccacino JM, Cangiano G, Soares SR, de Araújo JPA, Tiek DM, Goenka A, Song X, Keady JR, Hu B, Cheng SY, Lopes MH. Unconventional Protein Secretion in Brain Tumors Biology: Enlightening the Mechanisms for Tumor Survival and Progression. Front Cell Dev Biol 2022; 10:907423. [PMID: 35784465 PMCID: PMC9242006 DOI: 10.3389/fcell.2022.907423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Non-canonical secretion pathways, collectively known as unconventional protein secretion (UPS), are alternative secretory mechanisms usually associated with stress-inducing conditions. UPS allows proteins that lack a signal peptide to be secreted, avoiding the conventional endoplasmic reticulum-Golgi complex secretory pathway. Molecules that generally rely on the canonical pathway to be secreted may also use the Golgi bypass, one of the unconventional routes, to reach the extracellular space. UPS studies have been increasingly growing in the literature, including its implication in the biology of several diseases. Intercellular communication between brain tumor cells and the tumor microenvironment is orchestrated by various molecules, including canonical and non-canonical secreted proteins that modulate tumor growth, proliferation, and invasion. Adult brain tumors such as gliomas, which are aggressive and fatal cancers with a dismal prognosis, could exploit UPS mechanisms to communicate with their microenvironment. Herein, we provide functional insights into the UPS machinery in the context of tumor biology, with a particular focus on the secreted proteins by alternative routes as key regulators in the maintenance of brain tumors.
Collapse
Affiliation(s)
- Rebeca Piatniczka Iglesia
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mariana Brandão Prado
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Nunes Alves
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Isabel Melo Escobar
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Felix de Lima Fernandes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ailine Cibele dos Santos Fortes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Clara da Silva Souza
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jacqueline Marcia Boccacino
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanni Cangiano
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samuel Ribeiro Soares
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Pedro Alves de Araújo
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deanna Marie Tiek
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Anshika Goenka
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xiao Song
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jack Ryan Keady
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bo Hu
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Shi Yuan Cheng
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Marilene Hohmuth Lopes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Marilene Hohmuth Lopes,
| |
Collapse
|
5
|
Abstract
Plants store amino acids for longer periods in the form of specific storage proteins. These are deposited in seeds, in root and shoot tubers, in the wood and bark parenchyma of trees and in other vegetative organs. Storage proteins are protected against uncontrolled premature degradation by several mechanisms. The major one is to deposit the storage proteins into specialized membrane-bounded storage organelles, called protein bodies (PB). In the endosperm cells of maize and rice prolamins are sequestered into PBs which are derived from the endoplasmic reticulum (ER). Globulins, the typical storage proteins of dicotyledonous plants, and prolamins of some cereals are transported from the ER through the Golgi apparatus and then into protein storage vacuoles (PSV) which later become transformed into PBs. Sorting and targeting of storage proteins begins during their biosynthesis on membrane-bound polysomes where an N-terminal signal peptide mediates their segregation into the lumen of the ER. After cleavage of the signal peptide, the polypeptides are glycosylated and folded with the aid of chaperones. While still in the ER, disulfide bridges are formed which stabilize the structure and several polypeptides are joined to form an oligomer which has the proper conformation to be either deposited in ER-derived PB or to be further transferred to the PSV. At the trans-Golgi cisternae transport vesicles are sequestered which carry the storage proteins to the PSV. Several storage proteins are also processed after arriving in the PSVs in order to generate a conformation that is capable of final deposition. Some storage protein precursors have short N- or C-terminal targeting sequences which are detached after arrival in the PSV. Others have been shown to have internal sequence regions which could act as targeting information. In some cases positive targeting information is known to mediate sorting into the PSV whereas in other cases aggregation and membrane association seem to be major sorting mechanisms.
Collapse
Affiliation(s)
- K Müntz
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
| |
Collapse
|
8
|
Adler K, Müntz K. Origin and development of protein bodies in cotyledons of Vicia faba : Proposal for an uniform mechanism. PLANTA 1983; 157:401-410. [PMID: 24264336 DOI: 10.1007/bf00397197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/1982] [Accepted: 11/22/1982] [Indexed: 06/02/2023]
Abstract
Storage proteins of the field bean (Vicia faba L., var. minor, cv. "Fribo") are synthesized and accumulated in the cotyledons during stage 2 of seed development. Deposition of protein reserves takes place in the protein bodies. The generation of protein bodies was investigated electronmicroscopically using ultra-thin sections as well as the freeze-fracturing technique. During the initial period of storage protein formation, globulins are deposited in large vacuoles which later are transformed to give increasing numbers of small vacuoles with decreasing size. The vacuoles disappear early during the stage of storage protein formation and generate the first protein bodies. During the subsequent period of maximum storage protein formation, which takes place at the rough endoplasmic reticulum (rER), swollen ER strands appear which seem to be entirely filled with protein, and these generate ER-produced protein vacuoles (ERPVAC). The vesicles are transformed in a manner comparable to the vacuoles in the initial period of developmental stage 2 and thus generate the major quantity of protein bodies. Both processes seem to represent only two variants of an uniform mechanism of protein body generation.
Collapse
Affiliation(s)
- K Adler
- Zentralinstitut für Genetik und Kulturpflanzenforschung, Akademie der Wissenschaften der DDR, Corrensstrasse 3, DDR-4325, Gatersleben, German Democratic Republic
| | | |
Collapse
|