1
|
Lee AR, Kwon M, Kang MK, Kim J, Kim SU, Ro DK. Increased sesqui- and triterpene production by co-expression of HMG-CoA reductase and biotin carboxyl carrier protein in tobacco (Nicotiana benthamiana). Metab Eng 2019; 52:20-28. [PMID: 30389612 DOI: 10.1016/j.ymben.2018.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/29/2018] [Accepted: 10/27/2018] [Indexed: 01/16/2023]
Abstract
Terpenoids are the most diverse natural products with many industrial applications and are all synthesized from simple precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In plants, IPP is synthesized by two distinct metabolic pathways - cytosolic mevalonate (MVA) pathway for C15 sesquiterpene and C30 triterpene, and plastidic methylerythritol phosphate (MEP) pathway for C10 monoterpene and C20 diterpene. A number of studies have altered the metabolic gene expressions in either the MVA or MEP pathway to increase terpene production; however, it remains unknown if the alteration of the acetyl-CoA pool in plastid fatty acid biosynthesis can influence terpenoid flux. Here, we focused on the fact that acetyl-CoA is the precursor for both fatty acid biosynthesis in plastid and terpene biosynthesis in cytosol, and the metabolic impact of increased plastidic acetyl-CoA level on the cytosolic terpene biosynthesis was investigated. In tobacco leaf infiltration studies, the acetyl-CoA carboxylase complex (the enzyme supplying malonyl-CoA in plastid) was partially inhibited by overexpressing the inactive form of biotin carboxyl carrier protein (BCCP) by a negative dominant effect. Overexpression of BCCP showed 1.4-2.4-fold increase of sesquiterpenes in cytosol; however, surprisingly overexpression of BCCP linked to truncated HMG-CoA reductase (tHMGR) by a cleavable peptide 2A showed 20-40-fold increases of C15 sesquiterpenes (α-bisabolol, amorphadiene, and valerenadiene) and a 6-fold increase of C30 β-amyrin. α-Bisabolol and β-amyrin production reached 28.8 mg g-1 and 9.8 mg g-1 dry weight, respectively. Detailed analyses showed that a large increase in flux was achieved by the additive effect of BCCP- and tHMGR-overexpression, and an enhanced tHMGR activity by 2A peptide tag. Kinetic analyses showed that tHMGR-2A has a three-fold higher kcat value than tHMGR. The tHMGR-2A-BCCP1 co-expression strategy in this work provides a new insight into metabolic cross-talks and can be a generally applicable approach to over-produce sesqui- and tri-terpene in plants.
Collapse
Affiliation(s)
- Ah-Reum Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Min-Kyoung Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeonghan Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo-Un Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, Hubei, China.
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada.
| |
Collapse
|
2
|
Fatland BL, Nikolau BJ, Wurtele ES. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. THE PLANT CELL 2005; 17:182-203. [PMID: 15608338 PMCID: PMC544498 DOI: 10.1105/tpc.104.026211] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 10/09/2004] [Indexed: 05/18/2023]
Abstract
Acetyl-CoA provides organisms with the chemical flexibility to biosynthesize a plethora of natural products that constitute much of the structural and functional diversity in nature. Recent studies have characterized a novel ATP-citrate lyase (ACL) in the cytosol of Arabidopsis thaliana. In this study, we report the use of antisense RNA technology to generate a series of Arabidopsis lines with a range of ACL activity. Plants with even moderately reduced ACL activity have a complex, bonsai phenotype, with miniaturized organs, smaller cells, aberrant plastid morphology, reduced cuticular wax deposition, and hyperaccumulation of starch, anthocyanin, and stress-related mRNAs in vegetative tissue. The degree of this phenotype correlates with the level of reduction in ACL activity. These data indicate that ACL is required for normal growth and development and that no other source of acetyl-CoA can compensate for ACL-derived acetyl-CoA. Exogenous malonate, which feeds into the carboxylation pathway of acetyl-CoA metabolism, chemically complements the morphological and chemical alterations associated with reduced ACL expression, indicating that the observed metabolic alterations are related to the carboxylation pathway of cytosolic acetyl-CoA metabolism. The observations that limiting the expression of the cytosolic enzyme ACL reduces the accumulation of cytosolic acetyl-CoA-derived metabolites and that these deficiencies can be alleviated by exogenous malonate indicate that ACL is a nonredundant source of cytosolic acetyl-CoA.
Collapse
Affiliation(s)
- Beth L Fatland
- Department of Genetics and Developmental and Cellular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
3
|
Bender-Machado L, Bäuerlein M, Carrari F, Schauer N, Lytovchenko A, Gibon Y, Kelly AA, Loureiro M, Müller-Röber B, Willmitzer L, Fernie AR. Expression of a yeast acetyl CoA hydrolase in the mitochondrion of tobacco plants inhibits growth and restricts photosynthesis. PLANT MOLECULAR BIOLOGY 2004; 55:645-62. [PMID: 15604707 DOI: 10.1007/s11103-004-1557-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acetyl Coenzyme A (acetyl CoA) is required in the mitochondria to fuel the operation of the Krebs cycle and within the cytosolic, peroxisomal and plastidial compartments wherein it acts as the immediate precursor for a wide range of anabolic functions. Since this metabolite is impermeable to membranes it follows that discrete pathways both for its synthesis and for its utilization must be present in each of these organelles and that the size of the various compartmented pools are independently regulated. To determine the specific role of acetyl CoA in the mitochondria we exploited a transgenic approach to introduce a yeast acetyl CoA hydrolase (EC 3.1.2.1.) into this compartment in tobacco plants. Despite the facts that the introduced enzyme was correctly targeted and that there were marked reductions in the levels of citrate and malate and an increase in the acetate content of the transformants, the transgenic plants surprisingly exhibited increased acetyl CoA levels. The lines were further characterised by a severe growth retardation, abnormal leaf colouration and a dramatic reduction in photosynthetic activity correlated with a marked reduction in the levels of transcripts of photosynthesis and in the content of photosynthetic pigments. The altered rate of photosynthesis in the transgenics was also reflected by a modified carbon partitioning in leaves of these lines, however, further studies revealed that this was most likely caused by a decreased source to sink transport of carbohydrate. In summary these results suggest that the content of acetyl CoA is under tight control and that alterations in the level of this central metabolite have severe metabolic and developmental consequences in tobacco.
Collapse
Affiliation(s)
- Lilia Bender-Machado
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fatland BL, Ke J, Anderson MD, Mentzen WI, Cui LW, Allred CC, Johnston JL, Nikolau BJ, Wurtele ES. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. PLANT PHYSIOLOGY 2002; 130:740-56. [PMID: 12376641 PMCID: PMC166603 DOI: 10.1104/pp.008110] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Revised: 06/12/2002] [Accepted: 06/18/2002] [Indexed: 05/18/2023]
Abstract
Acetyl-coenzyme A (CoA) is used in the cytosol of plant cells for the synthesis of a diverse set of phytochemicals including waxes, isoprenoids, stilbenes, and flavonoids. The source of cytosolic acetyl-CoA is unclear. We identified two Arabidopsis cDNAs that encode proteins similar to the amino and carboxy portions of human ATP-citrate lyase (ACL). Coexpression of these cDNAs in yeast (Saccharomyces cerevisiae) confers ACL activity, indicating that both the Arabidopsis genes are required for ACL activity. Arabidopsis ACL is a heteromeric enzyme composed of two distinct subunits, ACLA (45 kD) and ACLB (65 kD). The holoprotein has a molecular mass of 500 kD, which corresponds to a heterooctomer with an A(4)B(4) configuration. ACL activity and the ACLA and ACLB polypeptides are located in the cytosol, consistent with the lack of targeting peptides in the ACLA and ACLB sequences. In the Arabidopsis genome, three genes encode for the ACLA subunit (ACLA-1, At1g10670; ACLA-2, At1g60810; and ACLA-3, At1g09430), and two genes encode the ACLB subunit (ACLB-1, At3g06650 and ACLB-2, At5g49460). The ACLA and ACLB mRNAs accumulate in coordinated spatial and temporal patterns during plant development. This complex accumulation pattern is consistent with the predicted physiological needs for cytosolic acetyl-CoA, and is closely coordinated with the accumulation pattern of cytosolic acetyl-CoA carboxylase, an enzyme using cytosolic acetyl-CoA as a substrate. Taken together, these results indicate that ACL, encoded by the ACLA and ACLB genes of Arabidopsis, generates cytosolic acetyl-CoA. The heteromeric organization of this enzyme is common to green plants (including Chlorophyceae, Marchantimorpha, Bryopsida, Pinaceae, monocotyledons, and eudicots), species of fungi, Glaucophytes, Chlamydomonas, and prokaryotes. In contrast, all known animal ACL enzymes have a homomeric structure, indicating that a evolutionary fusion of the ACLA and ACLB genes probably occurred early in the evolutionary history of this kingdom.
Collapse
Affiliation(s)
- Beth L Fatland
- Department of Botany, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ke J, Behal RH, Back SL, Nikolau BJ, Wurtele ES, Oliver DJ. The role of pyruvate dehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds. PLANT PHYSIOLOGY 2000; 123:497-508. [PMID: 10859180 PMCID: PMC59018 DOI: 10.1104/pp.123.2.497] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/1999] [Accepted: 02/15/2000] [Indexed: 05/17/2023]
Abstract
Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1alpha- and ptE1beta-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1beta mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1beta mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds.
Collapse
Affiliation(s)
- J Ke
- Department of Botany, Biophysics, and Molecular Biology, Iowa State University, Ames 50011, USA
| | | | | | | | | | | |
Collapse
|
6
|
Rangasamy D, Ratledge C. Genetic enhancement of fatty acid synthesis by targeting rat liver ATP:citrate lyase into plastids of tobacco. PLANT PHYSIOLOGY 2000; 122:1231-8. [PMID: 10759520 PMCID: PMC58959 DOI: 10.1104/pp.122.4.1231] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/1999] [Accepted: 12/16/1999] [Indexed: 05/18/2023]
Abstract
ATP:citrate lyase (ACL) catalyzes the conversion of citrate to acetyl-coenzyme A (CoA) and oxaloacetate and is a key enzyme for lipid accumulation in mammals and oleaginous yeasts and fungi. To investigate whether heterologous ACL genes can be targeted and imported into the plastids of plants, a gene encoding a fusion protein of the rat liver ACL with the transit peptide for the small subunit of ribulose bisphosphate carboxylase was constructed and introduced into the genome of tobacco. This was sufficient to provide import of the heterologous protein into the plastids. In vitro assays of ACL in isolated plastids showed that the enzyme was active and synthesized acetyl-CoA. Overexpression of the rat ACL gene led to up to a 4-fold increase in the total ACL activity; this increased the amount of fatty acids by 16% but did not cause any major change in the fatty acid profile. Therefore, increasing the availability of acetyl-CoA as a substrate for acetyl-CoA carboxylase and subsequent reactions of fatty acid synthetase has a slightly beneficial effect on the overall rate of lipid synthesis in plants.
Collapse
Affiliation(s)
- D Rangasamy
- Department of Biological Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | | |
Collapse
|
7
|
Rangasamy D, Ratledge C. Compartmentation of ATP:citrate lyase in plants. PLANT PHYSIOLOGY 2000; 122:1225-30. [PMID: 10759519 PMCID: PMC58958 DOI: 10.1104/pp.122.4.1225] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/1999] [Accepted: 12/16/1999] [Indexed: 05/20/2023]
Abstract
Extracts prepared from young leaves of Pea (Pisum sativum), tobacco (Nicotiana tabacum), rape (Brassica napus), and spinach (Spinacia oleracea) all contained ATP:citrate lyase (ACL) activity, which was most active in rape leaflets (130 nmol min(-1) g fresh weight). In rape and spinach, ACL activity was predominantly localized in the plastids (between about 78% and 90% of the total activity), whereas in pea and tobacco, distribution was mainly cytosolic (about 85% and 78%, respectively, of the total). These distributions were calculated from the relative distributions of plastid and cytosol marker enzymes. Cross-reactivity between plant and rat ACL antibody was carried out by immunoblot analysis and, in rape and spinach, showed that a 120-kD protein, presumably indicating homomeric ACL proteins, was present in both cytosolic and plastidic fractions. In pea, two cross-reacting proteins were detected, the major material being in the cytosol fraction. Therefore, ACL occurs both in the cytosol and plastids of higher plants, but the distribution of activity changes according to the species. The plastidic ACL is proposed to function for the supply of acetyl-coenzyme A for lipid biosynthesis de novo, whereas the cytosolic ACL may provide acetyl-coenzyme A for the mevalonate pathway or fatty acid elongation.
Collapse
Affiliation(s)
- D Rangasamy
- Department of Biological Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | | |
Collapse
|
8
|
Genchi G, Spagnoletta A, De Santis A, Stefanizzi L, Palmieri F. Purification and characterization of the reconstitutively active citrate carrier from maize mitochondria. PLANT PHYSIOLOGY 1999; 120:841-8. [PMID: 10398720 PMCID: PMC59323 DOI: 10.1104/pp.120.3.841] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/1998] [Accepted: 03/28/1999] [Indexed: 05/22/2023]
Abstract
The citrate carrier from maize (Zea mays) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and hydroxyapatite/celite in the presence of cardiolipin. SDS-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 31 kD. When reconstituted into liposomes, the citrate carrier catalyzed a pyridoxal 5'-P-sensitive citrate/citrate exchange. It was purified 224-fold with a recovery of 50% and a protein yield of 0.22% with respect to the mitochondrial extract. In the reconstituted system the purified citrate carrier catalyzed a first-order reaction of citrate/citrate (0.065 min-1) or citrate/malate exchange (0.075 min-1). Among the various substrates and inhibitors tested, the reconstituted protein transported citrate, cis-aconitate, isocitrate, L-malate, succinate, malonate, glutarate, alpha-ketoglutarate, oxaloacetate, and alpha-ketoadipate and was inhibited by pyridoxal 5'-P, phenylisothiocyanate, mersalyl, and p-hydroxymercuribenzoate (but not N-ethylmaleimide), 1,2, 3-benzentricarboxylate, benzylmalonate, and butylmalonate. The activation energy of the citrate/citrate exchange was 66.5 kJ/mol between 10 degrees C and 35 degrees C; the half-saturation constant (Km) for citrate was 0.65 +/- 0.05 mM and the maximal rate (Vmax) of the citrate/citrate exchange was 13.0 +/- 1.0 micromol min-1 mg-1 protein at 25 degrees C.
Collapse
Affiliation(s)
- G Genchi
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari and Consiglio Nazionale delle Ricerche Unit for the Study of Mitochondria and Bioenergetics, 70125 Bari, Italy
| | | | | | | | | |
Collapse
|
9
|
Hanning I, Baumgarten K, Schott K, Heldt HW. Oxaloacetate transport into plant mitochondria. PLANT PHYSIOLOGY 1999; 119:1025-32. [PMID: 10069840 PMCID: PMC32083 DOI: 10.1104/pp.119.3.1025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/1998] [Accepted: 11/11/1998] [Indexed: 05/21/2023]
Abstract
The properties of oxaloacetate (OA) transport into mitochondria from potato (Solanum tuberosum) tuber and pea (Pisum sativum) leaves were studied by measuring the uptake of 14C-labeled OA into liposomes with incorporated mitochondrial membrane proteins preloaded with various dicarboxylates or citrate. OA was found to be transported in an obligatory counterexchange with malate, 2-oxoglutarate, succinate, citrate, or aspartate. Phtalonate inhibited all of these countertransports. OA-malate countertransport was inhibited by 4, 4'-dithiocyanostilbene-2,2'-disulfonate and pyridoxal phosphate, and also by p-chloromercuribenzene sulfonate and mersalyl, indicating that a lysine and a cysteine residue of the translocator protein are involved in the transport. From these and other inhibition studies, we concluded that plant mitochondria contain an OA translocator that differs from all other known mitochondrial translocators. Major functions of this translocator are the export of reducing equivalents from the mitochondria via the malate-OA shuttle and the export of citrate via the citrate-OA shuttle. In the cytosol, citrate can then be converted either into 2-oxoglutarate for use as a carbon skeleton for nitrate assimilation or into acetyl-coenzyme A for use as a precursor for fatty acid elongation or isoprenoid biosynthesis.
Collapse
Affiliation(s)
- I Hanning
- Abteilung fur Biochemie der Pflanze, Albrecht-von-Haller-Institut fur Pflanzenwissenschaften der Universitat Gottingen, Untere Karspule 2, D-37073 Gottingen, Germany
| | | | | | | |
Collapse
|
10
|
Anderson MD, Che P, Song J, Nikolau BJ, Wurtele ES. 3-Methylcrotonyl-coenzyme A carboxylase is a component of the mitochondrial leucine catabolic pathway in plants. PLANT PHYSIOLOGY 1998; 118:1127-38. [PMID: 9847087 PMCID: PMC34729 DOI: 10.1104/pp.118.4.1127] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 08/26/1998] [Indexed: 05/17/2023]
Abstract
3-Methylcrotonyl-coenzyme A carboxylase (MCCase) is a mitochondrial biotin-containing enzyme whose metabolic function is not well understood in plants. In soybean (Glycine max) seedlings the organ-specific and developmentally induced changes in MCCase expression are regulated by mechanisms that control the accumulation of MCCase mRNA and the activity of the enzyme. During soybean cotyledon development, when seed-storage proteins are degraded, leucine (Leu) accumulation peaks transiently at 8 d after planting. The coincidence between peak MCCase expression and the decline in Leu content provides correlative evidence that MCCase is involved in the mitochondrial catabolism of Leu. Direct evidence for this conclusion was obtained from radiotracer metabolic studies using extracts from isolated mitochondria. These experiments traced the metabolic fate of [U-14C]Leu and NaH14CO3, the latter of which was incorporated into methylglutaconyl-coenzyme A (CoA) via MCCase. These studies directly demonstrate that plant mitochondria can catabolize Leu via the following scheme: Leu --> alpha-ketoisocaproate --> isovaleryl-CoA --> 3-methylcrotonyl-CoA --> 3-methylglutaconyl-CoA --> 3-hydroxy-3-methylglutaryl-CoA --> acetoacetate + acetyl-CoA. These findings demonstrate for the first time, to our knowledge, that the enzymes responsible for Leu catabolism are present in plant mitochondria. We conclude that a primary metabolic role of MCCase in plants is the catabolism of Leu.
Collapse
|
11
|
Ratledge C, Bowater MD, Taylor PN. Correlation of ATP/citrate lyase activity with lipid accumulation in developing seeds of Brassica napus L. Lipids 1997; 32:7-12. [PMID: 9075187 DOI: 10.1007/s11745-997-0002-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The temporal distribution of ATP/citrate lyase (ACL) activity in developing seeds of Brassica napus L. closely paralleled both that of acetyl-CoA carboxylase and the overall rate of lipid biosynthesis. Maximum ACL activities (250 nmol acetyl-CoA formed min-1.g fresh seed) were recorded between 35 to 42 d after pollination and, if the in vitro data could be extrapolated to the situation in vivo, could account for half of the acetyl-CoA required for the measured rate of fatty acid biosynthesis during seed development. The enzyme appeared to be localized in a subcellular compartment, which was clearly separated from mitochondria on a sucrose gradient and by differential centrifugation, and which corresponded to the chloroplast organelle.
Collapse
Affiliation(s)
- C Ratledge
- Department of Biological Sciences, University of Hull, United Kingdom
| | | | | |
Collapse
|
12
|
Kakefuda G, Duke SH, Hostak MS. Chloroplast and extrachloroplastic starch-degrading enzymes in Pisum sativum L. PLANTA 1986; 168:175-182. [PMID: 24232019 DOI: 10.1007/bf00402961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/1985] [Accepted: 01/28/1986] [Indexed: 06/02/2023]
Abstract
Starch-degrading enzymes in isolated pea (Pisum sativum L. cv. Laxton's Progress No. 9) chloroplasts were investigated and compared with those in crude pea leaf and stipule preparations. End-product analysis of amylopectin degradation by chloroplast and crude extracts indicates that maltose is the major product of both. Two multiforms of β-amylase (EC 3.2.1.2) were detected in pea chloroplasts using an electrophoretic transfer technique. A starch-debranching enzyme (EC 3.2.1.10) was detected in chloroplasts by electrophoretic transfer and the degradation of pullulan. A different multiform of debranching enzyme was found in crude preparations. α-Amylases (EC 3.2.1.1) were detected by electrophoretic transfer through gels containing starch and starch azure, and by change in viscosity of a starch solution, but were only found in crude preparations indicating an extrachloroplastic location. Incubation of maltotriose with chloroplast extracts gave high levels of glucose production and formation of oligosaccharides with degrees of polymerization larger than that of maltotriose indicating transglycosylase (EC 2.4.1.25) activity. Neither α-glucosidase (EC 3.2.1.20) nor maltose-phosphorylase (EC 2.4.1.1) activity were found in either chloroplast or crude preparations, whereas starch-phosphorylase (EC 2.4.1.1) activity was in both. The possible role of these enzymes in starch degradation by pea chloroplasts is discussed.
Collapse
Affiliation(s)
- G Kakefuda
- Department of Agronomy, University of Wisconsin, 53706, Madison, WI, USA
| | | | | |
Collapse
|