1
|
Le VV, Nguyen AV, Luu DT, Fritschi FB, Nguyen CT, Ho TL. Inhibitory effects of N-trans-cinnamoyltyramine on growth of invasive weeds and weedy rice. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e70017. [PMID: 39493659 PMCID: PMC11531779 DOI: 10.1002/pei3.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
N-trans-cinnamoyltyramine (NTCT) has been identified from an allelopathic Vietnamese rice accession OM 5930. This study employed bioassays to analyze NTCT's effects on shoot and root growth of multiple test and weed species. NTCT demonstrated potent inhibitory effects on cress, lettuce, canola, palmer amaranth, timothy, barnyardgrass, red sprangletop, and weedy rice, with increasing concentrations leading to substantial reductions in growth in all species. Linear regression analysis of dose response curves revealed ED50 values for NTCT, providing critical insights into the concentration required for 50% growth inhibition in each species. They revealed high sensitivity of the test species cress and lettuce, intermediate sensitivities of barnyardgrass, red sprangletop, timothy, and amaranth, and comparatively lower sensitivity of two weedy rice accessions. The findings underscore NTCT's efficacy in suppressing the growth of a wide range of weeds, including both grasses and broadleaf species. As such, NTCT may hold promise as a tool for sustainable weed management, particularly in addressing herbicide-resistant weeds in diverse ecological settings.
Collapse
Affiliation(s)
- Vang V. Le
- College of AgricultureCan Tho UniversityCan ThoVietnam
| | - Ay V. Nguyen
- College of AgricultureCan Tho UniversityCan ThoVietnam
| | - Danh T. Luu
- College of AgricultureCan Tho UniversityCan ThoVietnam
| | - Felix B. Fritschi
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | | | - Thi L. Ho
- College of AgricultureCan Tho UniversityCan ThoVietnam
| |
Collapse
|
2
|
Dembele N, Somboro AA, Traore N, Badiaga M, Cisse S, Cisse M, Nick P. Anti-microtubular activity of total alkaloids and aqueous extract of Detarium microcarpum a medicinal plant harvested in Mali. PROTOPLASMA 2024:10.1007/s00709-024-02003-3. [PMID: 39505773 DOI: 10.1007/s00709-024-02003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
Detarium microcarpum, is a species confined to drier regions of west and central Africa used to treat various diseases including cancer. Phytochemical screening revealed the presence of secondary metabolites (alkaloids) The aim of this work is to study the effect of total aqueous extracts and alkaloid fractions from D. microcarpum leaves, bark and roots on Nicotiana tabacum L. cv. 'Bright Yellow 2' (BY-2) tobacco cell line GFP-TuA3 expressing a N-terminal fusion of GFP. The plant was harvested in two different regions of Mali with a contrasting climate. The effects of the extracts on the microtubules was followed by spinning disc confocal microscopy. We showed that the anti-microtubular effect of the extracts is dose-dependent, depends of the sampling site and the part of the plant used. Total alkaloids extracted of D. microcarpum bark have more effect on microtubules than leaf and root. The bioactivity-guided fractionation should be used to screen out the biologically active compounds of the total alkaloid extracts of the bark of D. microcarpum.
Collapse
Affiliation(s)
| | | | - Nah Traore
- Faculty of Sciences and Techniques, USTTB, Bamako, Mali
| | | | | | - Mody Cisse
- Faculty of Pharmacy, USTTB, Bamako, Mali
| | - Peter Nick
- Karlsruhe Institute for Technologies, KIT, Karlsruhe, Germany
| |
Collapse
|
3
|
Yu G, Zhang L, Xue H, Chen Y, Liu X, Del Pozo JC, Zhao C, Lozano-Duran R, Macho AP. Cell wall-mediated root development is targeted by a soil-borne bacterial pathogen to promote infection. Cell Rep 2024; 43:114179. [PMID: 38691455 DOI: 10.1016/j.celrep.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Yujiao Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
4
|
Bao Z, Guo Y, Deng Y, Zang J, Zhang J, Deng Y, Ouyang B, Qu X, Bürstenbinder K, Wang P. Microtubule-associated protein SlMAP70 interacts with IQ67-domain protein SlIQD21a to regulate fruit shape in tomato. THE PLANT CELL 2023; 35:4266-4283. [PMID: 37668409 PMCID: PMC10689142 DOI: 10.1093/plcell/koad231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Tomato (Solanum lycopersicum) fruit shape is related to microtubule organization and the activity of microtubule-associated proteins (MAPs). However, insights into the mechanism of fruit shape formation from a cell biology perspective remain limited. Analysis of the tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs, including members of the plant-specific MICROTUBULE-ASSOCIATED PROTEIN 70 (MAP70) and IQ67 DOMAIN (IQD, also named SUN in tomato) families, are differentially expressed during fruit development. SlMAP70-1-3 and SlIQD21a are highly expressed during fruit initiation, which relates to the dramatic microtubule pattern rearrangements throughout this developmental stage of tomato fruits. Transgenic tomato lines overexpressing SlMAP70-1 or SlIQD21a produced elongated fruits with reduced cell circularity and microtubule anisotropy, while their loss-of-function mutants showed the opposite phenotype, harboring flatter fruits. Fruits were further elongated in plants coexpressing both SlMAP70-1 and SlIQD21a. We demonstrated that SlMAP70s and SlIQD21a physically interact and that the elongated fruit phenotype is likely due to microtubule stabilization induced by the SlMAP70-SlIQD21a interaction. Together, our results identify SlMAP70 proteins and SlIQD21a as important regulators of fruit elongation and demonstrate that manipulating microtubule function during early fruit development provides an effective approach to alter fruit shape.
Collapse
Affiliation(s)
- Zhiru Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ye Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yaling Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolu Qu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
5
|
Xiang M, Yuan S, Zhang Q, Liu X, Li Q, Leng Z, Sha J, Anderson CT, Xiao C. Galactosylation of xyloglucan is essential for the stabilization of the actin cytoskeleton and endomembrane system through the proper assembly of cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5104-5123. [PMID: 37386914 DOI: 10.1093/jxb/erad237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Xyloglucan, a major hemicellulose, interacts with cellulose and pectin to assemble primary cell walls in plants. Loss of the xyloglucan galactosyltransferase MURUS3 (MUR3) leads to the deficiency of galactosylated xyloglucan and perturbs plant growth. However, it is unclear whether defects in xyloglucan galactosylation influence the synthesis of other wall polysaccharides, cell wall integrity, cytoskeleton behaviour, and endomembrane homeostasis. Here, we found that in mur3-7 etiolated seedlings cellulose was reduced, CELLULOSE SYNTHASE (CESA) genes were down-regulated, the density and mobility of cellulose synthase complexes (CSCs) were decreased, and cellulose microfibrils become discontinuous. Pectin, rhamnogalacturonan II (RGII), and boron contents were reduced in mur3-7 plants, and B-RGII cross-linking was abnormal. Wall porosity and thickness were significantly increased in mur3-7 seedlings. Endomembrane aggregation was also apparent in the mur3-7 mutant. Furthermore, mutant seedlings and their actin filaments were more sensitive to Latrunculin A (LatA) treatment. However, all defects in mur3-7 mutants were substantially restored by exogenous boric acid application. Our study reveals the importance of MUR3-mediated xyloglucan galactosylation for cell wall structural assembly and homeostasis, which is required for the stabilization of the actin cytoskeleton and the endomembrane system.
Collapse
Affiliation(s)
- Min Xiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shuai Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qing Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaohui Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qingyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhengmei Leng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jingjing Sha
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Ortmann S, Marx J, Lampe C, Handrick V, Ehnert TM, Zinecker S, Reimers M, Bonas U, Erickson JL. A conserved microtubule-binding region in Xanthomonas XopL is indispensable for induced plant cell death reactions. PLoS Pathog 2023; 19:e1011263. [PMID: 37578981 PMCID: PMC10449215 DOI: 10.1371/journal.ppat.1011263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an 'ancestral' effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.
Collapse
Affiliation(s)
- Simon Ortmann
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Jolina Marx
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Christina Lampe
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Vinzenz Handrick
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Tim-Martin Ehnert
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Sarah Zinecker
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias Reimers
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ulla Bonas
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica Lee Erickson
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| |
Collapse
|
7
|
Li X, Wang L, Cui Y, Liu C, Liu Y, Lu L, Luo M. The cotton protein GhIQD21 interacts with GhCaM7 and modulates organ morphogenesis in Arabidopsis by influencing microtubule stability. PLANT CELL REPORTS 2023; 42:1025-1038. [PMID: 37010557 DOI: 10.1007/s00299-023-03010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE GhIQD21, a cotton IQ67-domain protein, interacts with GhCaM7 and alters organ shape in Arabidopsis by modulating microtubule stability. Calcium ion (Ca2+) and the calcium sensor calmodulin play crucial roles in the growth and development of plants. GhCaM7, a calmodulin in upland cotton (Gossypium hirsutum L.), is highly expressed in cotton fiber cells during the rapid elongation period and plays an important role in fiber cell development. In this study, we screened for GhCaM7-interacting proteins and identified GhIQD21, which contains a typical IQ67-domain. GhIQD21 was preferentially expressed at the fiber rapid elongation stage, and the protein localized to microtubules (MTs). Ectopic expression of GhIQD21 in Arabidopsis resulted in shorter leaves, petals, siliques, and plant height, thicker inflorescences, and more trichomes when compared with wild type (WT). Further investigation indicated that the morphogenesis of leaf epidermal cells and silique cells was altered. There was less consistency in the orientation of cortical microtubules in cotyledon and hypocotyl epidermal cells. Furthermore, compared with WT, transgenic seedling hypocotyls were more sensitive to oryzalin, a MT depolymerization drug. These results indicated that GhIQD21 is a GhCaM7-interacting protein located in MTs and that it plays a role in plant growth and potentially cotton fiber development. This study provides a foundation for further studies of the function and regulatory mechanism of GhIQD21 in fiber cell development.
Collapse
Affiliation(s)
- Xing Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yupeng Cui
- Anyang Institute of Technology, Anyang, 455000, China
| | - Chen Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yujie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lili Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China.
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
8
|
Kimata Y, Yamada M, Murata T, Kuwata K, Sato A, Suzuki T, Kurihara D, Hasebe M, Higashiyama T, Ueda M. Novel inhibitors of microtubule organization and phragmoplast formation in diverse plant species. Life Sci Alliance 2023; 6:e202201657. [PMID: 36849250 PMCID: PMC9971157 DOI: 10.26508/lsa.202201657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Cell division is essential for development and involves spindle assembly, chromosome separation, and cytokinesis. In plants, the genetic tools for controlling the events in cell division at the desired time are limited and ineffective owing to high redundancy and lethality. Therefore, we screened cell division-affecting compounds in Arabidopsis thaliana zygotes, whose cell division is traceable without time-lapse observations. We then determined the target events of the identified compounds using live-cell imaging of tobacco BY-2 cells. Subsequently, we isolated two compounds, PD-180970 and PP2, neither of which caused lethal damage. PD-180970 disrupted microtubule (MT) organization and, thus, nuclear separation, and PP2 blocked phragmoplast formation and impaired cytokinesis. Phosphoproteomic analysis showed that these compounds reduced the phosphorylation of diverse proteins, including MT-associated proteins (MAP70) and class II Kinesin-12. Moreover, these compounds were effective in multiple plant species, such as cucumber (Cucumis sativus) and moss (Physcomitrium patens). These properties make PD-180970 and PP2 useful tools for transiently controlling plant cell division at key manipulation nodes conserved across diverse plant species.
Collapse
Affiliation(s)
- Yusuke Kimata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Moé Yamada
- Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takashi Murata
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto, Japan
| |
Collapse
|
9
|
Ali MF, Shin JM, Fatema U, Kurihara D, Berger F, Yuan L, Kawashima T. Cellular dynamics of coenocytic endosperm development in Arabidopsis thaliana. NATURE PLANTS 2023; 9:330-342. [PMID: 36646830 DOI: 10.1038/s41477-022-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
After double fertilization, the endosperm in the seeds of many flowering plants undergoes repeated mitotic nuclear divisions without cytokinesis, resulting in a large coenocytic endosperm that then cellularizes. Growth during the coenocytic phase is strongly associated with the final seed size; however, a detailed description of the cellular dynamics controlling the unique coenocytic development in flowering plants has remained elusive. By integrating confocal microscopy live-cell imaging and genetics, we have characterized the entire development of the coenocytic endosperm of Arabidopsis thaliana including nuclear divisions, their timing intervals, nuclear movement and cytoskeleton dynamics. Around each nucleus, microtubules organize into aster-shaped structures that drive actin filament (F-actin) organization. Microtubules promote nuclear movement after division, while F-actin restricts it. F-actin is also involved in controlling the size of both the coenocytic endosperm and the mature seed. The characterization of cytoskeleton dynamics in real time throughout the entire coenocyte endosperm period provides foundational knowledge of plant coenocytic development, insights into the coordination of F-actin and microtubules in nuclear dynamics, and new opportunities to increase seed size and our food security.
Collapse
Affiliation(s)
- Mohammad Foteh Ali
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Ji Min Shin
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Umma Fatema
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
Michels L, Bronkhorst J, Kasteel M, de Jong D, Albada B, Ketelaar T, Govers F, Sprakel J. Molecular sensors reveal the mechano-chemical response of Phytophthora infestans walls and membranes to mechanical and chemical stress. Cell Surf 2022; 8:100071. [PMID: 35059532 PMCID: PMC8760408 DOI: 10.1016/j.tcsw.2021.100071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022] Open
Abstract
Phytophthora infestans, causal agent of late blight in potato and tomato, remains challenging to control. Unravelling its biomechanics of host invasion, and its response to mechanical and chemical stress, could provide new handles to combat this devastating pathogen. Here we introduce two fluorescent molecular sensors, CWP-BDP and NR12S, that reveal the micromechanical response of the cell wall-plasma membrane continuum in P. infestans during invasive growth and upon chemical treatment. When visualized by live-cell imaging, CWP-BDP reports changes in cell wall (CW) porosity while NR12S reports variations in chemical polarity and lipid order in the plasma membrane (PM). During invasive growth, mechanical interactions between the pathogen and a surface reveal clear and localized changes in the structure of the CW. Moreover, the molecular sensors can reveal the effect of chemical treatment to CW and/or PM, thereby revealing the site-of-action of crop protection agents. This mechano-chemical imaging strategy resolves, non-invasively and with high spatio-temporal resolution, how the CW-PM continuum adapts and responds to abiotic stress, and provides information on the dynamics and location of cellular stress responses for which, to date, no other methods are available.
Collapse
Affiliation(s)
- Lucile Michels
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Jochem Bronkhorst
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Michiel Kasteel
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Laboratory of Cell Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Djanick de Jong
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
11
|
Yalçin E, Çavuşoğlu K. Spectroscopic contribution to glyphosate toxicity profile and the remedial effects of Momordica charantia. Sci Rep 2022; 12:20020. [PMID: 36414701 PMCID: PMC9681759 DOI: 10.1038/s41598-022-24692-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, the glyphosate toxicity and the toxicity-reducing role of bitter melon extract (Bmex) (Momordica charantia L.) were investigated in Allium cepa L. test material. The toxicity of glyphosate and protective role of Bmex were investigated with the help of physiological (germination, root elongation and weight gain), cytogenetic (mitotic index-MI, micronucleus-MN and chromosomal abnormalities-CAs), biochemical (malondialdehyde-MDA, superoxide dismutase-SOD and catalase-CAT) and anatomical (root meristem cell damage) parameters. The genotoxicity mechanism of glyphosate was elucidated by spectral analysis. A. cepa bulbs were divided into six groups as one control and five applications. Tap water was applied to the bulbs in the control group for 72 h. Glyphosate (500 mg/L) and two different doses of Bmex (350 and 700 mg/L) were applied to the bulbs in the treatment group for 72 h. At the end of the period, the germinated bulbs were prepared for experimental analyses, measurements and observations by applying routine preparation procedures. As a result, glyphosate administration caused a significant (p < 0.05) decrease in all selected physiological parameter values, and significant (p < 0.05) increases in the number of cytogenetic parameters (except MI), the levels of biochemical parameters and the severity of anatomical damage. Glyphosate promoted CAs such as fragment, sticky chromosome, bridge and unequal distribution of chromatin in root tip meristem cells. By spectral analysis, it was determined that glyphosate interacts directly with DNA and causes genotoxicity. It also caused anatomical damages such as epidermis cell damage, cortex cell damage, flattened cell nucleus, binuclear cell and irregular vascular tissue in root tip meristem cells. Co-administration of glyphosate with Bmex at two different doses (350 and 700 mg/L) reduced the toxicity of glyphosate and led to significant (p < 0.05) improvements in the values of all parameters examined. It was determined that this improvement was even more pronounced at 700 mg/L dose of Bmex. As a result, it was determined that glyphosate herbicide caused multi-dimensional toxicity in A. cepa test material, and Bmex reduced the effects of this toxicity due to its antioxidant properties. Therefore, glyphosate dose ranges need to be reconsidered, especially considering non-target organisms in agricultural applications. In addition, antioxidant products such as Bmex should be included in the daily diet in order to reduce the toxic effects of environmental agents such as pesticides.
Collapse
Affiliation(s)
- Emine Yalçin
- Department of Biology, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey.
| |
Collapse
|
12
|
Giglio A, Vommaro ML. Dinitroaniline herbicides: a comprehensive review of toxicity and side effects on animal non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76687-76711. [PMID: 36175724 PMCID: PMC9581837 DOI: 10.1007/s11356-022-23169-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/18/2022] [Indexed: 05/23/2023]
Abstract
The widespread use of herbicides has increased concern about the hazards and risks to animals living in terrestrial and aquatic ecosystems. A comprehensive understanding of their effective action at different levels of biological organization is critical for establishing guidelines to protect ecosystems and human health. Dinitroanilines are broad-spectrum pre-emergence herbicides currently used for weed control in the conventional agriculture. They are considered extremely safe agrochemicals because they act specifically on tubulin proteins and inhibit shoot and root growth of plants. However, there is a lack of toxicity information regarding the potential risk of exposure to non-target organisms. The aim of the present review is to focus on side effects of the most commonly used active ingredients, e.g. pendimethalin, oryzalin, trifluralin and benfluralin, on animal non-target cells of invertebrates and vertebrates. Acute toxicity varies from slightly to high in terrestrial and aquatic species (i.e. nematodes, earthworms, snails, insects, crustaceans, fish and mammals) depending on the species-specific ability of tested organisms to adsorb and discharge toxicants. Cytotoxicity, genotoxicity and activation of oxidative stress pathways as well as alterations of physiological, metabolic, morphological, developmental and behavioural traits, reviewed here, indicate that exposure to sublethal concentrations of active ingredients poses a clear hazard to animals and humans. Further research is required to evaluate the molecular mechanisms of action of these herbicides in the animal cell and on biological functions at multiple levels, from organisms to communities, including the effects of commercial formulations.
Collapse
Affiliation(s)
- Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy.
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy
| |
Collapse
|
13
|
Caillaud MC. Tools for studying the cytoskeleton during plant cell division. TRENDS IN PLANT SCIENCE 2022; 27:1049-1062. [PMID: 35667969 DOI: 10.1016/j.tplants.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The plant cytoskeleton regulates fundamental biological processes, including cell division. How to experimentally perturb the cytoskeleton is a key question if one wants to understand the role of both actin filaments (AFs) and microtubules (MTs) in a given biological process. While a myriad of mutants are available, knock-out in cytoskeleton regulators, when nonlethal, often produce little or no phenotypic perturbation because such regulators are often part of a large family, leading to functional redundancy. In this review, alternative techniques to modify the plant cytoskeleton during plant cell division are outlined. The different pharmacological and genetic approaches already developed in cell culture, transient assays, or in whole organisms are presented. Perspectives on the use of optogenetics to perturb the plant cytoskeleton are also discussed.
Collapse
Affiliation(s)
- Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France.
| |
Collapse
|
14
|
Macar O, Kalefetoğlu Macar T, Yalçin E, Çavuşoğlu K, Acar A. Molecular docking and spectral shift supported toxicity profile of metaldehyde mollucide and the toxicity-reducing effects of bitter melon extract. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105201. [PMID: 36127072 DOI: 10.1016/j.pestbp.2022.105201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Excessive use of metaldehyde to combat mollusks directly or indirectly endangers non-targeted organisms. The present study aimed to reveal the antitoxic potential of bitter melon (Momordica charantia L.) extract (BME) against metaldehyde-related toxicity in Allium cepa L. The experimental groups formed using A. cepa bulbs were exposed to aqueous solutions containing 350 mg/L BME, 700 mg/L BME, 200 mg/L metaldehyde, 200 mg/L metaldehyde +350 mg/L BME and 200 mg/L metaldehyde +700 mg/L BME, respectively. The bulbs in the control group dipped in tap water. Metaldehyde suppressed growth with respect to germination ratio, root elongation and weight gain parameters. In metaldehyde-administered group, mitotic index (MI) was reduced, while the frequencies of micronucleus (MN) and chromosomal aberrations (CAs) increased. Metaldehyde promoted CAs such as sticky chromosomes, vagrant chromosome, fragment, unequal distribution of chromatin, reverse polarization, bridge and multipolar anaphase in root tip meristem cells. Spectral shift and molecular docking confirmed the genotoxic effect of metaldehyde resulting from DNA-metaldehyde interaction. The DNA damage in root meristems was revealed using the Comet Assay. Metaldehyde stress provoked oxidative stress. Activities superoxide dismutase (SOD) and catalase (CAT) enzymes along with level of malondialdehyde (MDA) accumulation accelerated. In roots treated with metaldehyde, epidermis cell damage, flattened cell nucleus, cortex cell damage and cortex cell wall thickening were observed as meristematic cell damage. BME attenuated metaldehyde-induced toxicity in a dose-dependent manner. This study demonstrated the mitigative potential of plant derived BME with no-to-low side effects against hazardous chemicals including metaldehyde. Nature is the most valuable weapon against toxicity from pollutants. Therefore, the protective potential of BME against other harmful agents should be screened.
Collapse
Affiliation(s)
- Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, Giresun, Turkey.
| | - Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, Giresun, Turkey
| | - Emine Yalçin
- Faculty of Science and Art, Department of Biology, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Faculty of Science and Art, Department of Biology, Giresun University, Giresun, Turkey
| | - Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey
| |
Collapse
|
15
|
Flores-León CD, Dominguez L, Aguayo-Ortiz R. Molecular basis of Toxoplasma gondii oryzalin resistance from a novel α-tubulin binding site model. Arch Biochem Biophys 2022; 730:109398. [PMID: 36116504 DOI: 10.1016/j.abb.2022.109398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Oryzalin (ORY) is a dinitroaniline derivative that inhibits the microtubule polymerization in plants and parasitic protozoa by selectively binding to the α-tubulin subunit. This herbicidal agent exhibits good antiprotozoal activity against major human parasites, such as Toxoplasma gondii (toxoplasmosis), Leishmania mexicana (leishmaniasis), and Plasmodium falciparum (malaria). Previous chemical mutagenesis assays on T. gondii α-tubulin (TgAT) have identified key mutations that lead to ORY resistance. Herein, we employed alchemical free energy methods and molecular dynamics simulations to determine if the ORY resistance mutations either decrease the TgAT's affinity of the compound or increase the protein stability. Our results here suggest that L136F and V202F mutations significantly decrease the affinity of ORY to TgAT, while T239I and V252L mutations diminish TgAT's flexibility. On the other hand, protein stability predictors determined that R243S mutation reduces TgAT stability due to the loss of its salt bridge interaction with E27. Interestingly, molecular dynamics simulations confirm that the loss of this key interaction leads to ORY binding site closure. Our study provides a better insight into the TgAT-ORY interaction, further supporting our recently proposed ORY-binding site.
Collapse
Affiliation(s)
- Carlos D Flores-León
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
16
|
Lafanechère L. The microtubule cytoskeleton: An old validated target for novel therapeutic drugs. Front Pharmacol 2022; 13:969183. [PMID: 36188585 PMCID: PMC9521402 DOI: 10.3389/fphar.2022.969183] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Compounds targeting microtubules are widely used in cancer therapy with a proven efficacy. However, because they also target non-cancerous cells, their administration leads to numerous adverse effects. With the advancement of knowledge on the structure of tubulin, the regulation of microtubule dynamics and their deregulation in pathological processes, new therapeutic strategies are emerging, both for the treatment of cancer and for other diseases, such as neuronal or even heart diseases and parasite infections. In addition, a better understanding of the mechanism of action of well-known drugs such as colchicine or certain kinase inhibitors contributes to the development of these new therapeutic approaches. Nowadays, chemists and biologists are working jointly to select drugs which target the microtubule cytoskeleton and have improved properties. On the basis of a few examples this review attempts to depict the panorama of these recent advances.
Collapse
|
17
|
Acute multiple toxic effects of Trifloxystrobin fungicide on Allium cepa L. Sci Rep 2022; 12:15216. [PMID: 36076029 PMCID: PMC9458729 DOI: 10.1038/s41598-022-19571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Trifloxystrobin (TFS) is a strobilurin-type fungicide that should be investigated due to its risks to non-targeted organisms. The goal of this study was to assess the susceptibility of Allium cepa L. to TFS in a multi-pronged approach. For 72 h, 0.2 g/L, 0.4 g/L and 0.8 g/L doses of TFS were administered to A. cepa bulbs and the control group was treated with tap water. The toxic effects of TFS were tested, considering physiological, cytogenetic, biochemical and anatomical analyses. TFS delayed growth by reducing the rooting ratio, root elongation and weight increase. Following TFS treatments, mitotic index (MI) scores decreased, while the formation of micronucleus (MN) and chromosomal aberrations (CAs) ascended. CAs types induced by TFS were listed according to their frequency as fragment, vagrant chromosome, sticky chromosome, uneven distribution of chromatin, bridge, nucleus with vacuoles, reverse polarization and irregular mitosis. TFS provoked an increment in superoxide dismutase (SOD) and catalase (CAT) enzyme activities as well as an accumulation of malondialdehyde (MDA). Meristematic cells of A. cepa roots treated with TFS had various anatomical damages, including damaged epidermis, flattened cell nucleus, damaged cortex and thickness in the cortex cell wall. All damages arising from TFS treatments exhibited dose-dependency. The findings of the present study revealed the serious toxicity of TFS in a non-targeted plant. It should not be neglected to evaluate the potential hazards of TFS with different toxicity tests.
Collapse
|
18
|
Schneider R, Ehrhardt DW, Meyerowitz EM, Sampathkumar A. Tethering of cellulose synthase to microtubules dampens mechano-induced cytoskeletal organization in Arabidopsis pavement cells. NATURE PLANTS 2022; 8:1064-1073. [PMID: 35982303 PMCID: PMC9477734 DOI: 10.1038/s41477-022-01218-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/07/2022] [Indexed: 05/20/2023]
Abstract
Mechanical forces control development in plants and animals, acting as cues in pattern formation and as the driving force of morphogenesis. In mammalian cells, molecular assemblies residing at the interface of the cell membrane and the extracellular matrix play an important role in perceiving and transmitting external mechanical signals to trigger physiological responses. Similar processes occur in plants, but there is little understanding of the molecular mechanisms and their genetic basis. Here, we show that the number and movement directions of cellulose synthase complexes (CSCs) at the plasma membrane vary during initial stages of development in the cotyledon epidermis of Arabidopsis, closely mirroring the microtubule organization. Uncoupling microtubules and CSCs resulted in enhanced microtubule co-alignment as caused by mechanical stimuli driven either by cell shape or by tissue-scale physical perturbations. Furthermore, micromechanical perturbation resulted in depletion of CSCs from the plasma membrane, suggesting a possible link between cellulose synthase removal from the plasma membrane and microtubule response to mechanical stimuli. Taken together, our results suggest that the interaction of cellulose synthase with cortical microtubules forms a physical continuum between the cell wall, plasma membrane and the cytoskeleton that modulates the mechano-response of the cytoskeleton.
Collapse
Affiliation(s)
- René Schneider
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Plant Physiology Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Elliot M Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
19
|
Jiang D, He Y, Zhou X, Cao Z, Pang L, Zhong S, Jiang L, Li R. Arabidopsis HOPS subunit VPS41 carries out plant-specific roles in vacuolar transport and vegetative growth. PLANT PHYSIOLOGY 2022; 189:1416-1434. [PMID: 35417008 PMCID: PMC9237685 DOI: 10.1093/plphys/kiac167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The homotypic fusion and protein sorting (HOPS) complex is a conserved, multi-subunit tethering complex in eukaryotic cells. In yeast and mammalian cells, the HOPS subunit vacuolar protein sorting-associated protein 41 (VPS41) is recruited to late endosomes after Ras-related protein 7 (Rab7) activation and is essential for vacuole fusion. However, whether VPS41 plays conserved roles in plants is not clear. Here, we demonstrate that in the model plant Arabidopsis (Arabidopsis thaliana), VPS41 localizes to distinct condensates in root cells in addition to its reported localization at the tonoplast. The formation of condensates does not rely on the known upstream regulators but depends on VPS41 self-interaction and is essential for vegetative growth regulation. Genetic evidence indicates that VPS41 is required for both homotypic vacuole fusion and cargo sorting from the adaptor protein complex 3, Rab5, and Golgi-independent pathways but is dispensable for the Rab7 cargo inositol transporter 1. We also show that VPS41 has HOPS-independent functions in vacuolar transport. Taken together, our findings indicate that Arabidopsis VPS41 is a unique subunit of the HOPS complex that carries out plant-specific roles in both vacuolar transport and developmental regulation.
Collapse
Affiliation(s)
- Dong Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilin He
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangui Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiran Cao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Pang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Aguayo-Ortiz R, Dominguez L. Unveiling the Possible Oryzalin-Binding Site in the α-Tubulin of Toxoplasma gondii. ACS OMEGA 2022; 7:18434-18442. [PMID: 35694483 PMCID: PMC9178734 DOI: 10.1021/acsomega.2c00729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/11/2022] [Indexed: 06/09/2023]
Abstract
Dinitroaniline derivatives have been widely used as herbicidal agents to control weeds and grass. Previous studies demonstrated that these compounds also exhibit good antiparasitic activity against some protozoan parasites. Oryzalin (ORY), a representative dinitroaniline derivative, exerts its antiprotozoal activity against Toxoplasma gondii by inhibiting the microtubule polymerization process. Moreover, the identification of ORY-resistant T. gondii lines obtained by chemical mutagenesis confirmed that this compound binds selectively to α-tubulin. Based on experimental information reported so far and a multiple sequence analysis carried out in this work, we propose that the pironetin (PIR) site is the potential ORY-binding site. Therefore, we employed state-of-the-art computational approaches to characterize the interaction profile of ORY at the proposed site in the α-tubulin of T. gondii. An exhaustive search for other possible binding sites was performed using the Wrap "N" Shake method, which showed that ORY exhibits highest stability and affinity for the PIR site. Moreover, our molecular dynamics simulations revealed that the dipropylamine substituent of ORY interacts with a hydrophobic pocket, while the sulfonamide group formed hydrogen bonds with water molecules at the site entrance. Overall, our results suggest that ORY binds to the PIR site on the α-tubulin of the protozoan parasite T. gondii. This information will be very useful for designing less toxic and more potent antiprotozoal agents.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Laura Dominguez
- Departamento
de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
21
|
Valuchova S, Mikulkova P, Pecinkova J, Riha K. Application of Chemical Inhibitors in Live Cell Imaging of Plant Meiosis Using Light Sheet Fluorescence Microscopy. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2484:93-105. [PMID: 35461447 DOI: 10.1007/978-1-0716-2253-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Live imaging combined with the application of chemical inhibitors is a powerful research tool that enables researchers to precisely time the inhibition of cellular processes and study the consequences of these perturbations. This approach is usually applied to in vitro cultivated cells that are easily accessible to chemical treatments and microscopic observations. Here we describe a method for live cell imaging of Arabidopsis meiocytes embedded within floral organs combined with the application of a chemical drug at desired timepoints during meiosis. We describe a customized solution for the Zeiss Z.1 light sheet microscope, including sample preparation and data processing, and demonstrate its utility for the analysis of meiotic progression upon spindle inhibition.
Collapse
Affiliation(s)
- Sona Valuchova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavlina Mikulkova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jana Pecinkova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Karel Riha
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| |
Collapse
|
22
|
Chen J, Yu Q, Owen M, Han H, Patterson E, Sayer C, Powles S. Target-site resistance to trifluralin is more prevalent in annual ryegrass populations from Western Australia. PEST MANAGEMENT SCIENCE 2022; 78:1206-1212. [PMID: 34837476 DOI: 10.1002/ps.6737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Trifluralin is widely used in Australia as one of the important pre-emergence herbicides to control annual ryegrass (Lolium rigidum Gaud.) populations. Trifluralin resistance evolution and mechanisms have been identified in some ryegrass populations. RESULTS In this study, 21 putative resistant field survey populations from Western Australian were screened with trifluralin, and 90% (19 of 21) contained individuals surviving 480 g ha-1 trifluralin treatment. Twelve populations contained individuals possessing the known α-tubulin resistance mutations at Val-202, Thr-239 and Arg-243 in TUA4 (alpha-tubulin 4 n), plus multiple potential resistance mutations in TUA4 pending genetic confirmation. Three populations had only individuals carrying newly identified (but uncharacterized) mutations in TUA3/TUA4. Radioactive work found that six populations evolved metabolic resistance to trifluralin, and at least four of them also possessed the known and/or putative target-site mutations. CONCLUSION These results confirm that a high incidence of resistance to the dinitroaniline herbicide (trifluralin) is present, and target-site tubulin mutations make a major contribution to resistance in these annual ryegrass populations. Co-evolution of both target-site and non-target-site resistance to per-emergence herbicides warrants diverse management tactics.
Collapse
Affiliation(s)
- Jinyi Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Mechelle Owen
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Eric Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Stephen Powles
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| |
Collapse
|
23
|
Arabidopsis pavement cell shape formation involves spatially confined ROPGAP regulators. Curr Biol 2022; 32:532-544.e7. [PMID: 35085497 DOI: 10.1016/j.cub.2021.12.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
In many plant species, pavement cell development relies on the coordinated formation of interdigitating lobes and indentations. Polarity signaling via the activity of antagonistic Rho-related GTPases from plants (ROPs) was implicated in pavement cell development, but the spatiotemporal regulation remained unclear. Here, we report on the role of the PLECKSTRIN HOMOLOGY GTPase ACTIVATING PROTEINS (PHGAPS) during multipolar growth in pavement cell shape establishment. Loss of function in phgap1phgap2 double mutants severely affected the shape of Arabidopsis leaf epidermal pavement cells. Predominantly, PHGAPs interacted with ROP2 and displayed a distinct and microtubule-dependent enrichment along the anticlinal cell face and transfacial boundary of pavement cell indentation regions. This localization was established upon undulation initiation and was maintained throughout the expansion of the cell. Our data suggest that PHGAP1/REN2 and PHGAP2/REN3 are key players in the establishment of ROP2 activity gradients and underscore the importance of locally controlled ROP activity for the orchestrated establishment of multipolarity in epidermal cells.
Collapse
|
24
|
Exposure to the anthelmintic dinitroaniline oryzalin causes changes in meiotic prophase morphology and loss of synaptonemal complexes in the nematode Caenorhabditis elegans. EXPERIMENTAL RESULTS 2021. [DOI: 10.1017/exp.2021.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
The anthelmintic dinitroaniline oryzalin interferes with the formation of microtubules and inhibits meiosis and mitosis in nematodes. Exposure to oryzalin resulted in deterioration in morphology of the oocytes and loss of synaptonemal complexes at meiotic prophase I. The nuclear matrix and envelope were poorly formed, and the central rachis was diminished. These results provide the basis for the loss of fecundity after treatment with the oryzalin resulting in control of parasitic nematodes.
Collapse
|
25
|
A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis. PLoS Genet 2021; 17:e1009779. [PMID: 34591845 PMCID: PMC8509889 DOI: 10.1371/journal.pgen.1009779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/12/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023] Open
Abstract
Meiosis in angiosperm plants is followed by mitotic divisions to form multicellular haploid gametophytes. Termination of meiosis and transition to gametophytic development is, in Arabidopsis, governed by a dedicated mechanism that involves SMG7 and TDM1 proteins. Mutants carrying the smg7-6 allele are semi-fertile due to reduced pollen production. We found that instead of forming tetrads, smg7-6 pollen mother cells undergo multiple rounds of chromosome condensation and spindle assembly at the end of meiosis, resembling aberrant attempts to undergo additional meiotic divisions. A suppressor screen uncovered a mutation in centromeric histone H3 (CENH3) that increased fertility and promoted meiotic exit in smg7-6 plants. The mutation led to inefficient splicing of the CENH3 mRNA and a substantial decrease of CENH3, resulting in smaller centromeres. The reduced level of CENH3 delayed formation of the mitotic spindle but did not have an apparent effect on plant growth and development. We suggest that impaired spindle re-assembly at the end of meiosis limits aberrant divisions in smg7-6 plants and promotes formation of tetrads and viable pollen. Furthermore, the mutant with reduced level of CENH3 was very inefficient haploid inducer indicating that differences in centromere size is not the key determinant of centromere-mediated genome elimination. Meiosis is a reductional cell division that halves number of chromosomes during two successive rounds of chromosome segregation without intervening DNA replication. Such mode of chromosome segregation requires extensive reprogramming of the cell division machinery at the entry to meiosis, and inactivation of the meiotic program upon the formation of haploid spores. Here we showed that Arabidopsis partially deficient in the RNA decay factor SMG7 fail to exit meiosis and continue with attempts to undergo additional cycles of post-meiotic chromosome segregations without genome replication. This results in a reduced number of viable pollen and diminished fertility. To find genes involved in meiotic exit, we performed a suppressor screen for the SMG7-deicient plants that re-gain fertility. We found that reducing the amount of centromeric histone partially restores pollen formation and fertility in smg7 mutants. This is likely due to inefficient formation of centromere-microtubule interactions that impairs spindle reassembly and re-entry into aberrant rounds of post-meiotic chromosome segregation.
Collapse
|
26
|
Production of Doubled Haploid Embryos from Cork Oak Anther Cultures by Antimitotic Agents and Temperature Stress. Methods Mol Biol 2021. [PMID: 34270072 DOI: 10.1007/978-1-0716-1331-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cork oak (Quercus suber L.) is a forest tree species of the family Fagaceae. It is characterized by long life cycles which hamper doubled haploid plant production to obtain homozygotes and pure lines. The time-consuming method of repeated backcrossings by conventional breeding techniques to produce pure lines is impractical in woody species. Nevertheless, biotechnology has offered new tools to make it possible. A doubled haploid plant or embryo is one that is developed by the doubling of a haploid set of chromosomes. A protocol to produce doubled haploids of cork oak has been developed through microspore embryogenesis. By a heat stress treatment, the microspores inside the anther leave the gametophytic pathway and react shifting their development to the sporophytic pathway by means of which haploid embryos are obtained. Chromosome duplication of haploids from cork oak anther cultures occurs either spontaneously or may be induced by the application of antimitotic agents (e.g., colchicine, oryzalin, amiprophos-methyl). Furthermore, a genetic test is designed through microsatellite markers to elucidate whether the diploid embryos obtained are originally haploids which spontaneously duplicated their genome, or alternatively those embryos are generated from the diploid tissue of the anther wall. Here we describe a detailed protocol to produce doubled haploid individuals from cork oak anther cultures by using temperature stress and antimitotic agents.
Collapse
|
27
|
Inhibition of cell expansion enhances cortical microtubule stability in the root apex of Arabidopsis thaliana. ACTA ACUST UNITED AC 2021; 28:13. [PMID: 34082808 PMCID: PMC8173746 DOI: 10.1186/s40709-021-00143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/18/2021] [Indexed: 12/04/2022]
Abstract
Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules. Supplementary Information The online version contains supplementary material available at 10.1186/s40709-021-00143-8.
Collapse
|
28
|
Zhang K, Zhu X, Durst S, Hohenberger P, Han MJ, An G, Sahi VP, Riemann M, Nick P. A rice tubulin tyrosine ligase-like 12 protein affects the dynamic and orientation of microtubules. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:848-864. [PMID: 33336892 DOI: 10.1111/jipb.13059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The detyrosination/retyrosination cycle is the most common post-translational modification of α-tubulin. Removal of the conserved C-terminal tyrosine of α-tubulin by a still elusive tubulin tyrosine carboxypeptidase, and religation of this tyrosine by a tubulin tyrosine ligase (TTL), are probably common to all eukaryotes. Interestingly, for plants, the only candidates qualifying as potential TTL homologs are the tubulin tyrosine ligase-like 12 proteins. To get insight into the biological functions of these potential TTL homologs, we cloned the rice TTL-like 12 protein (OsTTLL12) and generated overexpression OsTTLL12-RFP lines in both rice and tobacco BY-2 cells. We found, unexpectedly, that overexpression of this OsTTLL12-RFP increased the relative abundance of detyrosinated α-tubulin in both coleoptile and seminal root, correlated with more stable microtubules. This was independent of the respective orientation of cortical microtubule, and followed by correspondingly changing growth of coleoptiles and seminal roots. A perturbed organization of phragmoplast microtubules and disoriented cell walls were further characteristics of this phenotype. Thus, the elevated tubulin detyrosination in consequence of OsTTLL12 overexpression affects structural and dynamic features of microtubules, followed by changes in the axiality of cell plate deposition and, consequently, plant growth.
Collapse
Affiliation(s)
- Kunxi Zhang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Xin Zhu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Steffen Durst
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Petra Hohenberger
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Min-Jung Han
- Aptamer Initiative, Postech Biotech Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do, 37673, South Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotech, Kyung Hee University, Yongin, 446-701, South Korea
| | - Vaidurya P Sahi
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| |
Collapse
|
29
|
Hlaing TS, Kondo H, Deguchi A, Miyoshi K. Induction of adventitious shoots and tetraploids in Antirrhinum majus L. by treatment of antimitotic agents in vitro without plant growth regulators. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:145-152. [PMID: 34177334 PMCID: PMC8215452 DOI: 10.5511/plantbiotechnology.20.0731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/31/2020] [Indexed: 06/13/2023]
Abstract
We examined the effects of five antimitotic agents using Antirrhinum majus L. 'Maryland True Pink' on the induction of adventitious shoots resulted in increase of frequencies of chromosome doubling without plant growth regulators. Seeds were treated in vitro with 0, 16.5, 32.9, 65.8, 131.6, or 263.2 µM oryzalin (ORY), amiprofos-methyl (APM), butamifos (BUT), or propham (IPC) or 800, 1,600, 3,200, 6,400, or 12,800 µM colchicine (COL) for 7 day. ORY, COL and APM promoted induction of adventitious shoots on the hypocotyls at maximum frequencies of 57.6% with 16.5 µM ORY, 5.6% with 800 µM COL and 88.8% with 131.6 µM APM. ORY and COL also induced adventitious shoots on the epicotyls adjacent to the cotyledons, particularly at high concentrations, with a maximum frequency of 26.0% at 12,800 µM COL. APM treatment increased frequencies of tetraploids from 0.0 to 93.1%, with a positive correlation between the frequency and concentration. By contrast, ORY and COL induced tetraploids at frequencies of 16.0 to 54.6% and 4.0 to 59.4%, respectively, with peaks at both low and high concentrations of each. Correlation analysis revealed that frequencies of adventitious shoot formation could be useful as an index for the induction of tetraploids. These results showed that three of the antimitotic agents tested induced both adventitious shoot and tetraploid without plant growth regulators, indicating that antimitotic action may play a common role in the induction of adventitious shoot.
Collapse
Affiliation(s)
- The Su Hlaing
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Department of Horticulture, Yezin Agricultural University, Yezin, Nay Pyi Taw 15013, Myanmar
| | - Haruka Kondo
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Ayumi Deguchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Kazumitsu Miyoshi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
30
|
Alonso VL, Carloni ME, Gonçalves CS, Martinez Peralta G, Chesta ME, Pezza A, Tavernelli LE, Motta MCM, Serra E. Alpha-Tubulin Acetylation in Trypanosoma cruzi: A Dynamic Instability of Microtubules Is Required for Replication and Cell Cycle Progression. Front Cell Infect Microbiol 2021; 11:642271. [PMID: 33777851 PMCID: PMC7991793 DOI: 10.3389/fcimb.2021.642271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Trypanosomatids have a cytoskeleton arrangement that is simpler than what is found in most eukaryotic cells. However, it is precisely organized and constituted by stable microtubules. Such microtubules compose the mitotic spindle during mitosis, the basal body, the flagellar axoneme and the subpellicular microtubules, which are connected to each other and also to the plasma membrane forming a helical arrangement along the central axis of the parasite cell body. Subpellicular, mitotic and axonemal microtubules are extensively acetylated in Trypanosoma cruzi. Acetylation on lysine (K) 40 of α-tubulin is conserved from lower eukaryotes to mammals and is associated with microtubule stability. It is also known that K40 acetylation occurs significantly on flagella, centrioles, cilia, basal body and the mitotic spindle in eukaryotes. Several tubulin posttranslational modifications, including acetylation of K40, have been cataloged in trypanosomatids, but the functional importance of these modifications for microtubule dynamics and parasite biology remains largely undefined. The primary tubulin acetyltransferase was recently identified in several eukaryotes as Mec-17/ATAT, a Gcn5-related N-acetyltransferase. Here, we report that T. cruzi ATAT acetylates α-tubulin in vivo and is capable of auto-acetylation. TcATAT is located in the cytoskeleton and flagella of epimastigotes and colocalizes with acetylated α-tubulin in these structures. We have expressed TcATAT with an HA tag using the inducible vector pTcINDEX-GW in T. cruzi. Over-expression of TcATAT causes increased levels of the alpha tubulin acetylated species, induces morphological and ultrastructural defects, especially in the mitochondrion, and causes a halt in the cell cycle progression of epimastigotes, which is related to an impairment of the kinetoplast division. Finally, as a result of TcATAT over-expression we observed that parasites became more resistant to microtubule depolymerizing drugs. These results support the idea that α-tubulin acetylation levels are finely regulated for the normal progression of T. cruzi cell cycle.
Collapse
Affiliation(s)
- Victoria Lucia Alonso
- Laboratorio de Biología y Bioquímica de Trypanosoma cruzi, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
- Facultad de Ciencias Bioquimicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Mara Emilia Carloni
- Facultad de Ciencias Bioquimicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | - Gonzalo Martinez Peralta
- Laboratorio de Biología y Bioquímica de Trypanosoma cruzi, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
- Facultad de Ciencias Bioquimicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Maria Eugenia Chesta
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Alejandro Pezza
- Laboratorio de Biología y Bioquímica de Trypanosoma cruzi, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Luis Emilio Tavernelli
- Laboratorio de Biología y Bioquímica de Trypanosoma cruzi, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Maria Cristina M. Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | - Esteban Serra
- Laboratorio de Biología y Bioquímica de Trypanosoma cruzi, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
- Facultad de Ciencias Bioquimicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
31
|
Ghatge S, Yang Y, Moon S, Song WY, Kim TY, Liu KH, Hur HG. A novel pathway for initial biotransformation of dinitroaniline herbicide butralin from a newly isolated bacterium Sphingopyxis sp. strain HMH. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123510. [PMID: 32736179 DOI: 10.1016/j.jhazmat.2020.123510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 05/27/2023]
Abstract
Butralin (N-sec- Butyl-4-tert-butyl-2,6-dinitroaniline) is a highly persistent dinitroaniline herbicide frequently detected in the environment. In this study, butralin-degrading soil bacterium, Sphingopyxis sp. strain HMH was isolated from agricultural soil samples. Based on whole genome sequence analysis of the strain HMH, the gene encoding a nitroreductase NfnB was identified and expressed in Escherichia coli (E. coli), and protein was purified to homogeneity. NfnB is a flavin-nitroreductase, found to be a functional tetramer, composed of subunit molecular mass of 25 kDa. The metabolites from butralin degradation by strain HMH and purified NfnB were identified using ultra performance liquid chromatography high resolution mass spectrometry (UPLC-HRMS), and a novel mechanism of butralin degradation was proposed. NfnB selectively nitro-reduced butralin into N- (sec-Butyl)-4-(tert-butyl)-6-nitrobenzene- 1,2-diamine, followed by formation of 5-(tert-Butyl)-3 -nitrobenzene-1,2-diamine and butanone by N- dealkylation through possible hydroxylation reaction onto the carbon linked amine of the N-(sec-Butyl) moiety. In our study, we could not detect the hydroxylated product 2-(2-Amino-4-tert-butyl-6-nitro- phenylamino)-butan-2-ol) (carbinolamine), instead its Schiff base product (E)-2-(Butan-2-yildeneamino)-5- (tert-butyl)-3-nitroaniline was detected. The release of butanone was further confirmed by derivatization with 2,4- dinitrophenylhydrazine (DNPH) followed by MS analysis. In conclusion, this study explores a novel multi-functional flavin- nitroreductase family enzyme NfnB, catalyzing unique and sequential nitroreduction and N-dealkylation through oxidative hydroxylation of dinitroaniline herbicide butralin.
Collapse
Affiliation(s)
- Sunil Ghatge
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Youri Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seonyun Moon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Woo-Young Song
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
32
|
Chen J, Yu Q, Patterson E, Sayer C, Powles S. Dinitroaniline Herbicide Resistance and Mechanisms in Weeds. FRONTIERS IN PLANT SCIENCE 2021; 12:634018. [PMID: 33841462 PMCID: PMC8027333 DOI: 10.3389/fpls.2021.634018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 05/08/2023]
Abstract
Dinitroanilines are microtubule inhibitors, targeting tubulin proteins in plants and protists. Dinitroaniline herbicides, such as trifluralin, pendimethalin and oryzalin, have been used as pre-emergence herbicides for weed control for decades. With widespread resistance to post-emergence herbicides in weeds, the use of pre-emergence herbicides such as dinitroanilines has increased, in part, due to relatively slow evolution of resistance in weeds to these herbicides. Target-site resistance (TSR) to dinitroaniline herbicides due to point mutations in α-tubulin genes has been confirmed in a few weedy plant species (e.g., Eleusine indica, Setaria viridis, and recently in Lolium rigidum). Of particular interest is the resistance mutation Arg-243-Met identified from dinitroaniline-resistant L. rigidum that causes helical growth when plants are homozygous for the mutation. The recessive nature of the TSR, plus possible fitness cost for some resistance mutations, likely slows resistance evolution. Furthermore, non-target-site resistance (NTSR) to dinitroanilines has been rarely reported and only confirmed in Lolium rigidum due to enhanced herbicide metabolism (metabolic resistance). A cytochrome P450 gene (CYP81A10) has been recently identified in L. rigidum that confers resistance to trifluralin. Moreover, TSR and NTSR have been shown to co-exist in the same weedy species, population, and plant. The implication of knowledge and information on TSR and NTSR in management of dinitroaniline resistance is discussed.
Collapse
Affiliation(s)
- Jinyi Chen
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, WA, Australia
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, WA, Australia
- *Correspondence: Qin Yu,
| | - Eric Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Chad Sayer
- Nufarm Limited, Melbourne, VIC, Australia
| | - Stephen Powles
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, WA, Australia
| |
Collapse
|
33
|
Adhikari PB, Liu X, Kasahara RD. Mechanics of Pollen Tube Elongation: A Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:589712. [PMID: 33193543 PMCID: PMC7606272 DOI: 10.3389/fpls.2020.589712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 05/13/2023]
Abstract
Pollen tube (PT) serves as a vehicle that delivers male gametes (sperm cells) to a female gametophyte during double fertilization, which eventually leads to the seed formation. It is one of the fastest elongating structures in plants. Normally, PTs traverse through the extracellular matrix at the transmitting tract after penetrating the stigma. While the endeavor may appear simple, the molecular processes and mechanics of the PT elongation is yet to be fully resolved. Although it is the most studied "tip-growing" structure in plants, several features of the structure (e.g., Membrane dynamics, growth behavior, mechanosensing etc.) are only partially understood. In many aspects, PTs are still considered as a tissue rather than a "unique cell." In this review, we have attempted to discuss mainly on the mechanics behind PT-elongation and briefly on the molecular players involved in the process. Four aspects of PTs are particularly discussed: the PT as a cell, its membrane dynamics, mechanics of its elongation, and the potential mechanosensors involved in its elongation based on relevant findings in both plant and non-plant models.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ryushiro D. Kasahara
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
34
|
Coleman NV, Rich DJ, Tang FHM, Vervoort RW, Maggi F. Biodegradation and Abiotic Degradation of Trifluralin: A Commonly Used Herbicide with a Poorly Understood Environmental Fate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10399-10410. [PMID: 32786599 DOI: 10.1021/acs.est.0c02070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trifluralin is a widely used dinitroaniline herbicide, which can persist in the environment and has substantial ecotoxicity, especially to aquatic organisms. Trifluralin is very insoluble in water (0.22 mg/L at 20 °C) and highly volatile (vapor pressure of 6.7 mPa at 20 °C); these physicochemical properties determine a large part of its environmental fate, which includes rapid loss from soils if surface-applied, strong binding to soil organic matter, and negligible leaching into water. The trifluralin structure contains a tertiary amino group, two nitro-groups and a trifluoromethyl- group. Despite the strongly xenobiotic character of some of these substituents, biodegradation of trifluralin does occur, and pure cultures of bacteria and fungi capable of partially degrading the molecule either by dealkylation or nitro-group reduction have been identified. There are many unanswered questions about the environmental fate and metabolism of this herbicide; the genes and enzymes responsible for biodegradation are largely unknown, the relative roles of abiotic processes vs growth-linked biodegradation vs cometabolism are unresolved, and the impact of different environmental factors on the rates and extents of biodegradation are not clear. Here, we summarize the relevant literature on the persistence and environmental fate of trifluralin with a focus on biodegradation pathways and mechanisms, and we identify the current major knowledge gaps for future research.
Collapse
Affiliation(s)
- Nicholas V Coleman
- School of Life and Environmental Sciences, Building F22, University of Sydney, Sydney, New South Wales, Australia, 2006
| | - Deborah J Rich
- School of Life and Environmental Sciences, Building F22, University of Sydney, Sydney, New South Wales, Australia, 2006
| | - Fiona H M Tang
- Laboratory for Advanced Environmental Engineering Research, School of Civil Engineering, Building J05, University of Sydney, Sydney, New South Wales, Australia, 2006
| | - R Willem Vervoort
- School of Life and Environmental Sciences, Building C81, University of Sydney, Sydney, New South Wales, Australia 2006
| | - Federico Maggi
- Laboratory for Advanced Environmental Engineering Research, School of Civil Engineering, Building J05, University of Sydney, Sydney, New South Wales, Australia, 2006
| |
Collapse
|
35
|
Montesinos JC, Abuzeineh A, Kopf A, Juanes-Garcia A, Ötvös K, Petrášek J, Sixt M, Benková E. Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. EMBO J 2020; 39:e104238. [PMID: 32667089 PMCID: PMC7459425 DOI: 10.15252/embj.2019104238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.
Collapse
Affiliation(s)
| | - Anas Abuzeineh
- Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Aglaja Kopf
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Alba Juanes-Garcia
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Krisztina Ötvös
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.,Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Jan Petrášek
- Institute of Experimental Botany, The Czech Academy of Sciences, Praha, Czech Republic
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
36
|
Touchell DH, Palmer IE, Ranney TG. In vitro Ploidy Manipulation for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2020; 11:722. [PMID: 32582252 PMCID: PMC7284393 DOI: 10.3389/fpls.2020.00722] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/06/2020] [Indexed: 05/19/2023]
Abstract
In vitro regeneration systems provide a powerful tool for manipulating ploidy to facilitate breeding and development of new crops. Polyploid induction can expand breeding opportunities, assist with the development of seedless triploid cultivars, enhance ornamental characteristics and environmental tolerances, increase biomass and restore fertility in wide hybrids. In vitro ploidy manipulation is commonly induced using antimitotic agents such as colchicine, oryzalin and trifluralin, while many other antimitotic agents have been relatively unexplored. Successful induction requires a synergistic pairing of efficient penetration of the antimitotic agent and may be dependent the length of exposure and concentrations of antimitotic agents, tissue types, and interactions with basal media and plant growth regulators. In vitro conditions vary among taxa and individual genera, species, and cultivars, often requiring unique treatments to maximize polyploid induction. In some taxa, the induction of polyploidy influences in vitro growth, development, and root formation. Here we provide an overview of mitotic inhibitors and their application for in vitro ploidy manipulation for plant breeding and crop improvement.
Collapse
Affiliation(s)
- Darren H. Touchell
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC, United States
| | | | | |
Collapse
|
37
|
Chen J, Chu Z, Han H, Goggin DE, Yu Q, Sayer C, Powles SB. A Val-202-Phe α-tubulin mutation and enhanced metabolism confer dinitroaniline resistance in a single Lolium rigidum population. PEST MANAGEMENT SCIENCE 2020; 76:645-652. [PMID: 31329340 DOI: 10.1002/ps.5561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND A Lolium rigidum population collected from Western Australia was previously reported as highly resistant to dinitroaniline herbicides mainly due to a Val-202-Phe substitution in the target site α-tubulin protein. To further determine the contribution of the 202 mutation to resistance, two sub-populations, respectively comprising the 202 mutant and wild-type (WT) individuals, were isolated from within the same resistant population and subject to dinitroaniline herbicide doses. A rice transgenic study was conducted to demonstrate whether the amino acid substitution at the 202 residue confers resistance. In addition, as indicated in the phenotyping and genotyping study, non-target enhanced trifluralin metabolism was further examined in the same population. RESULTS The 202 mutants were more resistant than the wild-type plants. Rice calli transformed with the L. rigidum mutant α-tubulin gene (Val-202-Phe) were more resistant to dinitroaniline herbicides relative to calli transformed with the wild-type gene. Also, enhanced trifluralin metabolism was detected in the 202 mutants in comparison to the susceptible seedlings. CONLCUSION Both target-site Val-202-Phe α-tubulin mutation and non-target-site enhanced trifluralin metabolism co-exist in this dinitroaniline-resistant L. rigidum population. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinyi Chen
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Zhizhan Chu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Heping Han
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Danica E Goggin
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | | | - Stephen B Powles
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| |
Collapse
|
38
|
The Effect of Caffeine and Trifluralin on Chromosome Doubling in Wheat Anther Culture. PLANTS 2020; 9:plants9010105. [PMID: 31952150 PMCID: PMC7020159 DOI: 10.3390/plants9010105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 11/17/2022]
Abstract
Challenges for wheat doubled haploid (DH) production using anther culture include genotype variability in green plant regeneration and spontaneous chromosome doubling. The frequency of chromosome doubling in our program can vary from 14% to 80%. Caffeine or trifluralin was applied at the start of the induction phase to improve early genome doubling. Caffeine treatment at 0.5 mM for 24 h significantly improved green plant production in two of the six spring wheat crosses but had no effect on the other crosses. The improvements were observed in Trojan/Havoc and Lancer/LPB14-0392, where green plant numbers increased by 14% and 27% to 161 and 42 green plants per 30 anthers, respectively. Caffeine had no significant effect on chromosome doubling, despite a higher frequency of doubling in several caffeine treatments in the first experiment (67-68%) compared to the control (56%). In contrast, trifluralin significantly improved doubling following a 48 h treatment, from 38% in the control to 51% and 53% in the 1 µM and 3 µM trifluralin treatments, respectively. However, trifluralin had a significant negative effect on green plant regeneration, declining from 31.8 green plants per 20 anthers (control) to 9-25 green plants per 20 anthers in the trifluralin treatments. Further work is required to identify a treatment regime with caffeine and/or anti-mitotic herbicides that consistently increases chromosome doubling in wheat without reducing green plant regeneration.
Collapse
|
39
|
Kirchhelle C, Garcia-Gonzalez D, Irani NG, Jérusalem A, Moore I. Two mechanisms regulate directional cell growth in Arabidopsis lateral roots. eLife 2019; 8:e47988. [PMID: 31355749 PMCID: PMC6748828 DOI: 10.7554/elife.47988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis in plants depends critically on directional (anisotropic) growth. This occurs principally perpendicular to the net orientation of cellulose microfibrils (CMFs), which is in turn controlled by cortical microtubules (CMTs). In young lateral roots of Arabidopsis thaliana, growth anisotropy also depends on RAB-A5c, a plant-specific small GTPase that specifies a membrane trafficking pathway to the geometric edges of cells. Here we investigate the functional relationship between structural anisotropy at faces and RAB-A5c activity at edges during lateral root development. We show that surprisingly, inhibition of RAB-A5c function is associated with increased CMT/CMF anisotropy. We present genetic, pharmacological, and modelling evidence that this increase in CMT/CMF anisotropy partially compensates for loss of an independent RAB-A5c-mediated mechanism that maintains anisotropic growth in meristematic cells. We show that RAB-A5c associates with CMTs at cell edges, indicating that CMTs act as an integration point for both mechanisms controlling cellular growth anisotropy in lateral roots.
Collapse
Affiliation(s)
| | - Daniel Garcia-Gonzalez
- Department of Engineering ScienceUniversity of OxfordOxfordUnited Kingdom
- Department of Continuum Mechanics and Structural AnalysisUniversity Carlos III of MadridMadridSpain
| | - Niloufer G Irani
- Department of Plant SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Antoine Jérusalem
- Department of Engineering ScienceUniversity of OxfordOxfordUnited Kingdom
| | - Ian Moore
- Department of Plant SciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
40
|
Lei K, Liu A, Fan S, Peng H, Zou X, Zhen Z, Huang J, Fan L, Zhang Z, Deng X, Ge Q, Gong W, Li J, Gong J, Shi Y, Jiang X, Zhang S, Jia T, Zhang L, Yuan Y, Shang H. Identification of TPX2 Gene Family in Upland Cotton and Its Functional Analysis in Cotton Fiber Development. Genes (Basel) 2019; 10:E508. [PMID: 31277527 PMCID: PMC6678848 DOI: 10.3390/genes10070508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022] Open
Abstract
Microtubules (MTs) are of importance to fiber development. The Xklp2 (TPX2) proteins as a class of microtubule-associated proteins (MAPs) play a key role in plant growth and development by regulating the dynamic changes of microtubules (MTs). However, the mechanism underlying this is unknown. The interactions between TPX2 proteins and tubulin protein, which are the main structural components, have not been studied in fiber development of upland cotton. Therefore, a genome-wide analysis of the TPX2 family was firstly performed in Gossypiumhirsutum L. This study identified 41 GhTPX2 sequences in the assembled G. hirsutum genome by a series of bioinformatic methods. Generally, this gene family is phylogenetically grouped into six subfamilies, and 41 G. hirsutum TPX2 genes (GhTPX2s) are distributed across 21 chromosomes. A heatmap of the TPX2 gene family showed that homologous GhTPX2 genes, GhWDLA2/7 and GhWDLA4/9, have large differences in expression levels between two upland cotton recombinant inbred lines (69307 and 69362) that are different in fiber quality at 15 and 20 days post anthesis. The relative data indicate that these four genes are down-regulated under oryzalin, which causes microtubule depolymerization, as determined via qRT-PCR. A subcellular localization experiment suggested that GhWDLA2 and GhWDLA7 are localized to the microtubule cytoskeleton, and GhWDLA4 and GhWDLA9 are only localized to the nucleus. However, only GhWDLA7 between GhWDLA2 and GhWDLA7 interacted with GhTUA2 in the yeast two-hybrid assay. These results lay the foundation for further function study of the TPX2 gene family.
Collapse
Affiliation(s)
- Kang Lei
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Huo Peng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhang Zhen
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jinyong Huang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
| | - Liqiang Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhibin Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Shuya Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Lipeng Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China.
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
41
|
Parsons JL, Martin SL, James T, Golenia G, Boudko EA, Hepworth SR. Polyploidization for the Genetic Improvement of Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2019; 10:476. [PMID: 31114593 PMCID: PMC6503105 DOI: 10.3389/fpls.2019.00476] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/28/2019] [Indexed: 05/20/2023]
Abstract
Cannabis sativa L. is a diploid species, cultivated throughout the ages as a source of fiber, food, and secondary metabolites with therapeutic and recreational properties. Polyploidization is considered as a valuable tool in the genetic improvement of crop plants. Although this method has been used in hemp-type Cannabis, it has never been applied to drug-type strains. Here, we describe the development of tetraploid drug-type Cannabis lines and test whether this transformation alters yield or the profile of important secondary metabolites: Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), or terpenes. The mitotic spindle inhibitor oryzalin was used to induce polyploids in a THC/CBD balanced drug-type strain of Cannabis sativa. Cultured axillary bud explants were exposed to a range of oryzalin concentrations for 24 h. Flow cytometry was used to assess the ploidy of regenerated shoots. Treatment with 20-40 μM oryzalin produced the highest number of tetraploids. Tetraploid clones were assessed for changes in morphology and chemical profile compared to diploid control plants. Tetraploid fan leaves were larger, with stomata about 30% larger and about half as dense compared to diploids. Trichome density was increased by about 40% on tetraploid sugar leaves, coupled with significant changes in the terpene profile and a 9% increase in CBD that was significant in buds. No significant increase in yield of dried bud or THC content was observed. This research lays important groundwork for the breeding and development of new Cannabis strains with diverse chemical profiles, of benefit to medical and recreational users.
Collapse
Affiliation(s)
- Jessica L. Parsons
- Canopy Growth Corporation, Smiths Falls, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Sara L. Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
42
|
Sano N, Seo M. Cell cycle inhibitors improve seed storability after priming treatments. JOURNAL OF PLANT RESEARCH 2019; 132:263-271. [PMID: 30637553 PMCID: PMC7205848 DOI: 10.1007/s10265-018-01084-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/14/2018] [Indexed: 05/05/2023]
Abstract
Seed priming is a treatment that controls seed water content to partially activate germination processes such as metabolism but prevents full germination of the seeds. The treatment is well known to enhance seed performance, including germination, but sometimes reduces seed storability or longevity as a side effect. Toward developing a novel priming technique that can maintain seed longevity for a longer time period, chemicals that suppress the seed deterioration under a controlled condition were screened from 80 known biologically active compounds contained in the RIKEN NPDepo authentic library using Arabidopsis thaliana seeds. Seeds primed with mimosine, a cell cycle inhibitor, retained higher survival rate after a controlled deterioration treatment compared to seeds primed without the chemical. In addition, other cell cycle inhibitors such as aphidicolin, hydroxyurea and oryzalin had similar effects on the seed storability after priming. Our results suggest that progression of the cell cycle during priming is an important checkpoint that determines the storability of seeds after the treatment.
Collapse
Affiliation(s)
- Naoto Sano
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
43
|
Mitra D, Klemm S, Kumari P, Quegwer J, Möller B, Poeschl Y, Pflug P, Stamm G, Abel S, Bürstenbinder K. Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:529-543. [PMID: 30407556 PMCID: PMC6322583 DOI: 10.1093/jxb/ery395] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 05/14/2023]
Abstract
Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation, and cell morphology. Their organization and dynamics are co-ordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization, and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles for calcium in regulation of PC morphogenesis. Our work identifies IQD5 as a novel player in PC shape regulation and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Collapse
Affiliation(s)
- Dipannita Mitra
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Sandra Klemm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Pratibha Kumari
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Jakob Quegwer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Birgit Möller
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yvonne Poeschl
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- iDiv, German Integrative Research Center for Biodiversity, Leipzig, Germany
| | - Paul Pflug
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| |
Collapse
|
44
|
Mitra D, Klemm S, Kumari P, Quegwer J, Möller B, Poeschl Y, Pflug P, Stamm G, Abel S, Bürstenbinder K. Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:529-543. [PMID: 30407556 DOI: 10.1101/268466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 05/23/2023]
Abstract
Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation, and cell morphology. Their organization and dynamics are co-ordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization, and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles for calcium in regulation of PC morphogenesis. Our work identifies IQD5 as a novel player in PC shape regulation and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Collapse
Affiliation(s)
- Dipannita Mitra
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Sandra Klemm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Pratibha Kumari
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Jakob Quegwer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Birgit Möller
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yvonne Poeschl
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- iDiv, German Integrative Research Center for Biodiversity, Leipzig, Germany
| | - Paul Pflug
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| |
Collapse
|
45
|
Yang B, Voiniciuc C, Fu L, Dieluweit S, Klose H, Usadel B. TRM4 is essential for cellulose deposition in Arabidopsis seed mucilage by maintaining cortical microtubule organization and interacting with CESA3. THE NEW PHYTOLOGIST 2019; 221:881-895. [PMID: 30277578 PMCID: PMC6585848 DOI: 10.1111/nph.15442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/10/2018] [Indexed: 05/07/2023]
Abstract
The differentiation of the seed coat epidermal (SCE) cells in Arabidopsis thaliana leads to the production of a large amount of pectin-rich mucilage and a thick cellulosic secondary cell wall. The mechanisms by which cortical microtubules are involved in the formation of these pectinaceous and cellulosic cell walls are still largely unknown. Using a reverse genetic approach, we found that TONNEAU1 (TON1) recruiting motif 4 (TRM4) is implicated in cortical microtubule organization in SCE cells, and functions as a novel player in the establishment of mucilage structure. TRM4 is preferentially accumulated in the SCE cells at the stage of mucilage biosynthesis. The loss of TRM4 results in compact seed mucilage capsules, aberrant mucilage cellulosic structure, short cellulosic rays and disorganized cellulose microfibrils in mucilage. The defects could be rescued by transgene complementation of trm4 alleles. Probably, this is a consequence of a disrupted organization of cortical microtubules, observed using fluorescently tagged tubulin proteins in trm4 SCE cells. Furthermore, TRM4 proteins co-aligned with microtubules and interacted directly with CELLULOSE SYNTHASE 3 in two independent assays. Together, the results indicate that TRM4 is essential for microtubule array organization and therefore correct cellulose orientation in the SCE cells, as well as the establishment of the subsequent mucilage architecture.
Collapse
Affiliation(s)
- Bo Yang
- Institute for Botany and Molecular Genetics (IBMG)BioEconomy Science CenterRWTH Aachen University52056AachenGermany
| | - Cătălin Voiniciuc
- Institute for Botany and Molecular Genetics (IBMG)BioEconomy Science CenterRWTH Aachen University52056AachenGermany
- Institute for Bio‐ and Geosciences (IBG‐2: Plant Sciences)Forschungszentrum Jülich52425JülichGermany
| | - Lanbao Fu
- Institute for Botany and Molecular Genetics (IBMG)BioEconomy Science CenterRWTH Aachen University52056AachenGermany
| | - Sabine Dieluweit
- Institute of Complex Systems (ICS‐7)Forschungszentrum Jülich52425JülichGermany
| | - Holger Klose
- Institute for Botany and Molecular Genetics (IBMG)BioEconomy Science CenterRWTH Aachen University52056AachenGermany
- Institute for Bio‐ and Geosciences (IBG‐2: Plant Sciences)Forschungszentrum Jülich52425JülichGermany
| | - Björn Usadel
- Institute for Botany and Molecular Genetics (IBMG)BioEconomy Science CenterRWTH Aachen University52056AachenGermany
- Institute for Bio‐ and Geosciences (IBG‐2: Plant Sciences)Forschungszentrum Jülich52425JülichGermany
| |
Collapse
|
46
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018. [PMID: 30552321 DOI: 10.1038/s41467-018-07662-7664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
47
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018; 9:5313. [PMID: 30552321 PMCID: PMC6294250 DOI: 10.1038/s41467-018-07662-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
48
|
Soleilhac E, Brillet-Guéguen L, Roussel V, Prudent R, Touquet B, Dass S, Aci-Sèche S, Kasam V, Barette C, Imberty A, Breton V, Vantard M, Horvath D, Botté C, Tardieux I, Roy S, Maréchal E, Lafanechère L. Specific Targeting of Plant and Apicomplexa Parasite Tubulin through Differential Screening Using In Silico and Assay-Based Approaches. Int J Mol Sci 2018; 19:ijms19103085. [PMID: 30304836 PMCID: PMC6213459 DOI: 10.3390/ijms19103085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023] Open
Abstract
Dinitroanilines are chemical compounds with high selectivity for plant cell α-tubulin in which they promote microtubule depolymerization. They target α-tubulin regions that have diverged over evolution and show no effect on non-photosynthetic eukaryotes. Hence, they have been used as herbicides over decades. Interestingly, dinitroanilines proved active on microtubules of eukaryotes deriving from photosynthetic ancestors such as Toxoplasma gondii and Plasmodium falciparum, which are responsible for toxoplasmosis and malaria, respectively. By combining differential in silico screening of virtual chemical libraries on Arabidopsis thaliana and mammal tubulin structural models together with cell-based screening of chemical libraries, we have identified dinitroaniline related and non-related compounds. They inhibit plant, but not mammalian tubulin assembly in vitro, and accordingly arrest A. thaliana development. In addition, these compounds exhibit a moderate cytotoxic activity towards T. gondii and P. falciparum. These results highlight the potential of novel herbicidal scaffolds in the design of urgently needed anti-parasitic drugs.
Collapse
Affiliation(s)
- Emmanuelle Soleilhac
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM, BGE U1038, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
| | - Loraine Brillet-Guéguen
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM, BGE U1038, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| | - Véronique Roussel
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM, BGE U1038, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherches 5168 CNRS, CEA, INRA, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
| | - Renaud Prudent
- Institute for Advanced Biosciences (IAB), Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France.
| | - Bastien Touquet
- Institute for Advanced Biosciences (IAB), Team Membrane and Cell Dynamics of Host Parasite Interactions, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France.
| | - Sheena Dass
- Institute for Advanced Biosciences (IAB), Team ApicoLipid, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, 38000 Grenoble, France.
| | - Samia Aci-Sèche
- Institut de Chimie Organique et Analytique (ICOA), UMR7311 CNRS-Université d'Orléans, Université d'Orléans, 45067 Orléans CEDEX 2, France.
| | - Vinod Kasam
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, UMR6533, 4 Avenue Blaise Pascal TSA 60026, CS 60026 63178 Aubière CEDEX, France.
| | - Caroline Barette
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM, BGE U1038, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales, Université Grenoble Alpes, CNRS, 38000 Grenoble, France.
| | - Vincent Breton
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, UMR6533, 4 Avenue Blaise Pascal TSA 60026, CS 60026 63178 Aubière CEDEX, France.
| | - Marylin Vantard
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherches 5168 CNRS, CEA, INRA, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
- Grenoble Institut des Neurosciences; Inserm U1216; Université Grenoble Alpes, 38000 Grenoble, France.
| | - Dragos Horvath
- Laboratoire de Chemoinformatique, UMR7140 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Cyrille Botté
- Institute for Advanced Biosciences (IAB), Team ApicoLipid, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, 38000 Grenoble, France.
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Team Membrane and Cell Dynamics of Host Parasite Interactions, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France.
| | - Sylvaine Roy
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM, BGE U1038, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherches 5168 CNRS, CEA, INRA, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherches 5168 CNRS, CEA, INRA, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
| | - Laurence Lafanechère
- Institute for Advanced Biosciences (IAB), Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
49
|
Kaštier P, Krasylenko YA, Martinčová M, Panteris E, Šamaj J, Blehová A. Cytoskeleton in the Parasitic Plant Cuscuta During Germination and Prehaustorium Formation. FRONTIERS IN PLANT SCIENCE 2018; 9:794. [PMID: 29971075 PMCID: PMC6018488 DOI: 10.3389/fpls.2018.00794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/24/2018] [Indexed: 05/30/2023]
Abstract
Although cytoskeleton is a driving force for cell division and growth in higher plants, there is little evidence about its components in parasitic angiosperms. Microtubules and actin filaments in cells of shoot apical meristem and root-like structure of stem holoparasites European (C. europaea L.) and Eastern (C. monogyna Vahl.) dodders, as well as in prehaustorium, the specific organ adapted to parasitism, were visualized for the first time by immunolabeling and fluorescence microscopy. The significance of cytoskeletal elements during germination and prehaustorium formation was addressed by treatments with taxol, oryzalin, latrunculin B, cytochalasin B/D, jasplakinolide, and 2,3-butanedione monoxime. In shoot apical meristem many dividing cells were observed, in contrast to root-like structure, devoid of cell divisions. Cortical microtubules were oriented transversely and/or obliquely, while actin filaments were randomly distributed in cells of both organs. Furthermore, longitudinal cortical microtubules were present in digitate cells of prehaustorium, and transverse arrays were found in its file cells. Long and short random actin filaments were also observed in prehaustorium cells. Thus, it was shown that the cytoskeleton in dodder shoot cells is organized in a similar way to non-parasitic dicots, while cytoskeletal organization has some peculiarities in quickly senescing root-like structure and prehaustorium.
Collapse
Affiliation(s)
- Peter Kaštier
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Yuliya A. Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Michaela Martinčová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Alžbeta Blehová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
50
|
Chen J, Yu Q, Owen M, Han H, Powles S. Dinitroaniline herbicide resistance in a multiple-resistant Lolium rigidum population. PEST MANAGEMENT SCIENCE 2018; 74:925-932. [PMID: 29148165 DOI: 10.1002/ps.4790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND The pre-emergence dinitroaniline herbicides (such as trifluralin and pendimethalin) are vital to Australian no-till farming systems. A Lolium rigidum population collected from the Western Australian grain belt with a 12-year trifluralin use history was characterised for resistance to dinitroaniline, acetyl CoA carboxylase (ACCase)- and acetolactate synthase (ALS)-inhibiting herbicides. Target-site resistance mechanisms were investigated. RESULTS This L. rigidum population exhibited 32-fold resistance to trifluralin, as compared with the susceptible population. It also displayed 12- to 30-fold cross-resistance to other dinitroaniline herbicides (pendimethalin, ethalfluralin and oryzalin). In addition, this population showed multiple resistance to commonly used post-emergence ACCase- and ALS-inhibiting herbicides. Two target-site α-tubulin gene mutations (Val-202-Phe and Thr-239-Ile) previously documented in other dinitroaniline-resistant weed species were identified, and some known target-site mutations in ACCase (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg) and ALS (Pro-197-Gln/Ser) were found in the same population. An agar-based Petri dish screening method was established for the rapid diagnosis of resistance to dinitroaniline herbicides. CONCLUSION Evolution of target-site resistance to both pre- and post-emergence herbicides was confirmed in a single L. rigidum population. The α-tubulin mutations Val-202-Phe and Thr-239-Ile, documented here for the first time in L. rigidum, are likely to be responsible for dinitroaniline resistance in this population. Early detection of dinitroaniline herbicide resistance and integrated weed management strategies are needed to maintain the effectiveness of dinitroaniline herbicides. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinyi Chen
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture & Environment, University of Western Australia, Crawley, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture & Environment, University of Western Australia, Crawley, Australia
| | - Mechelle Owen
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture & Environment, University of Western Australia, Crawley, Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture & Environment, University of Western Australia, Crawley, Australia
| | - Stephen Powles
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture & Environment, University of Western Australia, Crawley, Australia
| |
Collapse
|