1
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023; 16:757-777. [PMID: 36705032 PMCID: PMC10034643 DOI: 10.1111/1751-7915.14213] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
3
|
Zhang Q, Kobras CM, Gebhard S, Mascher T, Wolf D. Regulation of heterologous subtilin production in Bacillus subtilis W168. Microb Cell Fact 2022; 21:57. [PMID: 35392905 PMCID: PMC8991943 DOI: 10.1186/s12934-022-01782-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Subtilin is a peptide antibiotic (lantibiotic) natively produced by Bacillus subtilis ATCC6633. It is encoded in a gene cluster spaBTCSIFEGRK (spa-locus) consisting of four transcriptional units: spaS (subtilin pre-peptide), spaBTC (modification and export), spaIFEG (immunity) and spaRK (regulation). Despite the pioneer understanding on subtilin biosynthesis, a robust platform to facilitate subtilin research and improve subtilin production is still a poorly explored spot. Results In this work, the intact spa-locus was successfully integrated into the chromosome of Bacillus subtilis W168, which is the by far best-characterized Gram-positive model organism with powerful genetics and many advantages in industrial use. Through systematic analysis of spa-promoter activities in B. subtilis W168 wild type and mutant strains, our work demonstrates that subtilin is basally expressed in B. subtilis W168, and the transition state regulator AbrB strongly represses subtilin biosynthesis in a growth phase-dependent manner. The deletion of AbrB remarkably enhanced subtilin gene expression, resulting in comparable yield of bioactive subtilin production as for B. subtilis ATCC6633. However, while in B. subtilis ATCC6633 AbrB regulates subtilin gene expression via SigH, which in turn activates spaRK, AbrB of B. subtilis W168 controls subtilin gene expression in SigH-independent manner, except for the regulation of spaBTC. Furthermore, the work shows that subtilin biosynthesis in B. subtilis W168 is regulated by the two-component regulatory system SpaRK and strictly relies on subtilin itself as inducer to fulfill the autoregulatory circuit. In addition, by incorporating the subtilin-producing system (spa-locus) and subtilin-reporting system (PpsdA-lux) together, we developed “online” reporter strains to efficiently monitor the dynamics of subtilin biosynthesis. Conclusions Within this study, the model organism B. subtilis W168 was successfully established as a novel platform for subtilin biosynthesis and the underlying regulatory mechanism was comprehensively characterized. This work will not only facilitate genetic (engineering) studies on subtilin, but also pave the way for its industrial production. More broadly, this work will shed new light on the heterologous production of other lantibiotics. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01782-9.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Carolin M Kobras
- Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Susanne Gebhard
- Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Diana Wolf
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany.
| |
Collapse
|
4
|
Fathizadeh H, Saffari M, Esmaeili D, Moniri R, Kafil HS. Bacteriocins: New Potential Therapeutic Candidates in Cancer Therapy. Curr Mol Med 2021; 21:211-220. [PMID: 33109060 DOI: 10.2174/1566524020999200817113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Cancer is one of the most important disorders which is associated with high mortality and high costs of treatment for patients. Despite several efforts, finding, designing and developing, new therapeutic platforms in the treatment of cancer patients are still required. Utilization of microorganisms, particularly bacteria has emerged as new therapeutic approaches in the treatment of various cancers. Increasing data indicated that bacteria could be used in the production of a wide range of anti-cancer agents, including bacteriocins, antibiotics, peptides, enzymes, and toxins. Among these anti-cancer agents, bacteriocins have attractive properties, which make them powerful anti-cancer drugs. Multiple lines evidence indicated that several bacteriocins (i.e., colcins, nisins, pediocins, pyocins, and bovocins) via activation/inhibition different cellular and molecular signaling pathways are able to suppress tumor growth in various stages. Hence, identification and using various bacteriocins could lead to improve and introduce them to clinical practices. Here, we summarized various bacteriocins which could be employed as anti-cancer agents in the treatment of many cancers.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical sciences, Tehran, Iran
| | - Rezvan Moniri
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
5
|
Bacteriocinogenic Bacillus spp. Isolated from Korean Fermented Cabbage (Kimchi)—Beneficial or Hazardous? FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacillus velezensis ST03 and ST32, Bacillus amyloliquefaciens ST06 and ST109, and Bacillus subtilis ST08 were isolated from artisanal-produced kimchi and were identified based on 16S rRNA partial sequencing. DNA obtained from the investigated bacilli generated positive results for lichenicidin, iturin, subtilosin, and surfactin on a strain-specific basis. The strains were found to produce antimicrobial metabolites with activity levels ranging between 800 and 1600 AU/mL on a strain-specific basis, as determined against Listeria monocytogenes ATCC15313. Moreover, all tested strains in this study were still active after treatment with proteolytic enzymes, even with reduced inhibition zones compared to the controls, pointing to additional antimicrobial activity possibly related to a non-proteinaceous molecular structure. Most probably these strains may express surfactin as an additional factor in their complex antimicrobial activity. B. amyloliquefaciens ST09 and B. velezensis ST03 and ST32 were characterized as positive for β-hemolysis. B. subtilis ST08 was shown to be positive for hblC and nheC and B. amyloliquefaciens ST109 for nheB. B. amyloliquefaciens ST109 generated positive results for gelatinase activity. The ability of the studied Bacillus strains to metabolize different carbohydrate sources was done based on the API50CHB test, while the enzyme production profile was recorded by the APIZym kit. All studied strains were positive producers for biogenic amines production. Studied Bacillus spp. strains were resistant to some of the evaluated antibiotics, tested according to recommendations of CLSI and EFSA.
Collapse
|
6
|
Funck GD, Marques JDL, Cruxen CEDS, Sehn CP, Haubert L, Dannenberg GDS, Klajn VM, Silva WP, Fiorentini ÂM. Probiotic potential of Lactobacillus curvatusP99 and viability in fermented oat dairy beverage. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Graciele Daiana Funck
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | | | | | - Carla Pohl Sehn
- Laboratory of Pharmacological and Toxicological Reviews Applied to Bioactive Molecules – LaftamBio Pampa Federal University of Pampa Itaqui Brazil
| | - Louise Haubert
- Technology Development Center Federal University of Pelotas Pelotas Brazil
| | | | - Vera Maria Klajn
- Farroupilha Federal Institute of Education, Science and Technology Santa Rosa Brazil
| | - Wladimir Padilha Silva
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
- Technology Development Center Federal University of Pelotas Pelotas Brazil
| | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| |
Collapse
|
7
|
Halami PM. Sublichenin, a new subtilin-like lantibiotics of probiotic bacterium Bacillus licheniformis MCC 2512T with antibacterial activity. Microb Pathog 2019; 128:139-146. [DOI: 10.1016/j.micpath.2018.12.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022]
|
8
|
Tshikantwa TS, Ullah MW, He F, Yang G. Current Trends and Potential Applications of Microbial Interactions for Human Welfare. Front Microbiol 2018; 9:1156. [PMID: 29910788 PMCID: PMC5992746 DOI: 10.3389/fmicb.2018.01156] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
For a long time, it was considered that interactions between microbes are only inhibitory in nature. However, latest developments in research have demonstrated that within our environment, several classes of microbes exist which produce different products upon interaction and thus embrace a wider scope of useful and potentially valuable aspects beyond simple antibiosis. Therefore, the current review explores different types of microbial interactions and describes the role of various physical, chemical, biological, and genetic factors regulating such interactions. It further explains the mechanism of action of biofilm formation and role of secondary metabolites regulating bacteria-fungi interaction. Special emphasis and focus is placed on microbial interactions which are important in medicine, food industry, agriculture, and environment. In short, this review reveals the recent contributions of microbial interaction for the benefit of mankind.
Collapse
Affiliation(s)
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering Huazhong University of Science and Technology, Wuhan, China
| | - Feng He
- College of Life Sciences Huanggang Normal University, Huanggang, China
| | - Guang Yang
- Department of Biomedical Engineering Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Li J, Liu S, Jiang Z, Sun C. Catechol amide iron chelators produced by a mangrove-derived Bacillus subtilis. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Snyder AB, Worobo RW. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:28-44. [PMID: 23818338 DOI: 10.1002/jsfa.6293] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 05/16/2023]
Abstract
Antimicrobial peptides are produced across all domains of life. Among these diverse compounds, those produced by bacteria have been most successfully applied as agents of biocontrol in food and agriculture. Bacteriocins are ribosomally synthesized, proteinaceous compounds that inhibit the growth of closely related bacteria. Even within the subcategory of bacteriocins, the peptides vary significantly in terms of the gene cluster responsible for expression, and chemical and structural composition. The polycistronic gene cluster generally includes a structural gene and various combinations of immunity, secretion, and regulatory genes and modifying enzymes. Chemical variation can exist in amino acid identity, chain length, secondary and tertiary structural features, as well as specificity of active sites. This diversity posits bacteriocins as potential antimicrobial agents with a range of functions and applications. Those produced by food-grade bacteria and applied in normally occurring concentrations can be used as GRAS-status food additives. However, successful application requires thorough characterization.
Collapse
Affiliation(s)
- Abigail B Snyder
- Department of Food Science, Cornell University, Geneva, NY, 14456, USA
| | | |
Collapse
|
11
|
Christ NA, Bochmann S, Gottstein D, Duchardt-Ferner E, Hellmich UA, Düsterhus S, Kötter P, Güntert P, Entian KD, Wöhnert J. The First structure of a lantibiotic immunity protein, SpaI from Bacillus subtilis, reveals a novel fold. J Biol Chem 2012; 287:35286-35298. [PMID: 22904324 PMCID: PMC3471728 DOI: 10.1074/jbc.m112.401620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/16/2012] [Indexed: 11/06/2022] Open
Abstract
Lantibiotics are peptide-derived antibiotics that inhibit the growth of Gram-positive bacteria via interactions with lipid II and lipid II-dependent pore formation in the bacterial membrane. Due to their general mode of action the Gram-positive producer strains need to express immunity proteins (LanI proteins) for protection against their own lantibiotics. Little is known about the immunity mechanism protecting the producer strain against its own lantibiotic on the molecular level. So far, no structures have been reported for any LanI protein. We solved the structure of SpaI, a LanI protein from the subtilin producing strain Bacillus subtilis ATCC 6633. SpaI is a 16.8-kDa lipoprotein that is attached to the outside of the cytoplasmic membrane via a covalent diacylglycerol anchor. SpaI together with the ABC transporter SpaFEG protects the B. subtilis membrane from subtilin insertion. The solution-NMR structure of a 15-kDa biologically active C-terminal fragment reveals a novel fold. We also demonstrate that the first 20 N-terminal amino acids not present in this C-terminal fragment are unstructured in solution and are required for interactions with lipid membranes. Additionally, growth tests reveal that these 20 N-terminal residues are important for the immunity mediated by SpaI but most likely are not part of a possible subtilin binding site. Our findings are the first step on the way of understanding the immunity mechanism of B. subtilis in particular and of other lantibiotic producing strains in general.
Collapse
Affiliation(s)
- Nina A Christ
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Sophie Bochmann
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Daniel Gottstein
- Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Ute A Hellmich
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Stefanie Düsterhus
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Peter Kötter
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Peter Güntert
- Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Cluster of Excellence "Macromolecular Complexes," Goethe University, 60438 Frankfurt am Main, Germany.
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Cluster of Excellence "Macromolecular Complexes," Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Caboche S, Leclère V, Pupin M, Kucherov G, Jacques P. Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. J Bacteriol 2010; 192:5143-50. [PMID: 20693331 PMCID: PMC2944527 DOI: 10.1128/jb.00315-10] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/26/2010] [Indexed: 11/20/2022] Open
Abstract
Nonribosomal peptides (NRPs) are molecules produced by microorganisms that have a broad spectrum of biological activities and pharmaceutical applications (e.g., antibiotic, immunomodulating, and antitumor activities). One particularity of the NRPs is the biodiversity of their monomers, extending far beyond the 20 proteogenic amino acid residues. Norine, a comprehensive database of NRPs, allowed us to review for the first time the main characteristics of the NRPs and especially their monomer biodiversity. Our analysis highlighted a significant similarity relationship between NRPs synthesized by bacteria and those isolated from metazoa, especially from sponges, supporting the hypothesis that some NRPs isolated from sponges are actually synthesized by symbiotic bacteria rather than by the sponges themselves. A comparison of peptide monomeric compositions as a function of biological activity showed that some monomers are specific to a class of activities. An analysis of the monomer compositions of peptide products predicted from genomic information (metagenomics and high-throughput genome sequencing) or of new peptides detected by mass spectrometry analysis applied to a culture supernatant can provide indications of the origin of a peptide and/or its biological activity.
Collapse
Affiliation(s)
- Ségolène Caboche
- ProBioGEM (UPRES EA 1026), Université Lille Nord de France, USTL, F59655 Villeneuve d'Ascq, France.
| | | | | | | | | |
Collapse
|
13
|
Schinko E, Schad K, Eys S, Keller U, Wohlleben W. Phosphinothricin-tripeptide biosynthesis: an original version of bacterial secondary metabolism? PHYTOCHEMISTRY 2009; 70:1787-1800. [PMID: 19878959 DOI: 10.1016/j.phytochem.2009.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 05/28/2023]
Abstract
Streptomyces viridochromogenes Tü494 produces the herbicide phosphinothricyl-alanyl-alanine (phosphinothricin-tripeptide=PTT; bialaphos). Its bioactive moiety phosphinothricin competitively inhibits bacterial and plant glutamine synthetases. The biosynthesis of PTT includes the synthesis of the unusual amino acid N-acetyl-demethyl-phosphinothricin and a three step condensation via non-ribosomal peptide synthetases. Two characteristics within the PTT biosynthesis make it suitable to study the evolution of secondary metabolism biosynthesis. First, PTT biosynthesis represents the only known system where all peptide synthetase modules are located on separate proteins. This 'single enzyme system' might be an archetype of the multimodular and multienzymatic non-ribosomal peptide synthetases in evolutionary terms. The second interesting feature of PTT biosynthesis is the pathway-specific aconitase Pmi that is involved in the supply of N-acetyl-demethyl-phosphinothricin. Pmi is highly similar to the tricarboxylic acid aconitase AcnA. They share 64% identity at the DNA level and both belong to the Iron-Regulatory-Protein/AcnA family. Despite their high sequence similarity, AcnA and Pmi catalyze different reactions and are not able to substitute for each other. Thus, the enzyme pair AcnA/Pmi presents an example of the evolution of a secondary metabolite-specific enzyme from a primary metabolism enzyme.
Collapse
Affiliation(s)
- Eva Schinko
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
14
|
Newly isolated marine Bacillus pumilus (SP21): A source of novel lipoamides and other antimicrobial agents. PURE APPL CHEM 2009. [DOI: 10.1351/pac-con-08-09-25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A screening of marine bacteria for antimicrobial activity resulted in the isolation of Bacillus pumilus (SP21) from a sediment sample collected in the Bahamas. A bioassay-guided fractionation led to the isolation of five surfactin analogs, glycocholic acid, amicoumacins A and B in addition to three new compounds named lipoamides A-C. The chemical structure of all the bioactive compounds was elucidated using spectroscopic methods including 2D NMR and MS. The antimicrobial activity of each compound was evaluated against a panel of pathogens and is reported herein.
Collapse
|
15
|
Fajardo Bernárdez P, Fuciños González C, Méndez Batán J, Pastrana Castro L, Pérez Guerra N. Performance and intestinal coliform counts in weaned piglets fed a probiotic culture (Lactobacillus casei subsp. casei CECT 4043) or an antibiotic. J Food Prot 2008; 71:1797-805. [PMID: 18810863 DOI: 10.4315/0362-028x-71.9.1797] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The production of biomass and antibacterial extracellular products by Lactobacillus casei subsp. casei CECT 4043 was followed in both batch and in realkalized fed-batch cultures. Enhanced concentrations of biomass and antibacterial extracellular products were obtained with the use of the latter fermentation technique in comparison with the batch mode. The culture obtained by fed-batch fermentation was mixed with skim milk and used to prepare a probiotic feed for weaned piglets. To test the effect of the potentially probiotic culture of L. casei on body weight gain, feed intake, feed conversion efficiency, and on fecal coliform counts of piglets, two groups of animals received either feed supplemented with the probiotic preparation or avilamycin for 28 days. The control group was fed nonsupplemented feed. At the end of the administration period (day 28), the groups receiving probiotic and avilamycin exhibited the highest average body weight gain values, although the mean feed intake and feed conversion efficiency values were not different among the groups (P > 0.05). For the entire experimental period (42 days), the control group exhibited the lowest feed intake value, the probiotic group exhibited the highest feed conversion efficiency value, and the antibiotic group exhibited the highest body weight gain (P < 0.05). Interestingly, no significant difference in body weight gain was observed between the probiotic and the control groups by day 42 (P > 0.05). Fecal coliform values decreased (although not significantly) by day 28 in the three groups. However, the mean counts returned to pretreatment levels by day 42 in all groups.
Collapse
Affiliation(s)
- Paula Fajardo Bernárdez
- Departamento de Química Analítica y Alimentaria, Facultad de Ciencias de Orense, Universidad de Vigo, Las Lagunas s/n, 32004 Orense, Spain
| | | | | | | | | |
Collapse
|
16
|
Sieuwerts S, de Bok FAM, Hugenholtz J, van Hylckama Vlieg JET. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 2008; 74:4997-5007. [PMID: 18567682 PMCID: PMC2519258 DOI: 10.1128/aem.00113-08] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sander Sieuwerts
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands
| | | | | | | |
Collapse
|
17
|
Complete covalent structure of nisin Q, new natural nisin variant, containing post-translationally modified amino acids. Biosci Biotechnol Biochem 2008; 72:1750-5. [PMID: 18603791 DOI: 10.1271/bbb.80066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The third member of the nisin variant, nisin Q, produced by Lactococcus lactis 61-14, is a ribosomally-synthesized antimicrobial peptide, the so-called lantibiotic containing post-translationally modified amino acids such as lanthionine and dehydroalanine. Here, we determined the complete covalent structure of nisin Q, consisting of 34 amino acids, by two-dimensional (1)H nuclear magnetic resonance (NMR) spectroscopy. Sequential assignment of nisin Q containing the unusual amino acids was performed by total correlation spectroscopy (TOCSY) and nuclear Overhauser enhancement spectroscopy (NOESY). The observed long range nuclear Overhauser effect (NOE) in nisin Q indicated assignment of all five sets of lanthionines that intramolecularly bridge residues 3-7, 8-11, 13-19, 23-26, and 25-28. Consequently, the covalent structure of nisin Q was determined to hold the same thioether linkage formation as the other two nisins, but to harbor the four amino acid substitutions, in contrast with nisin A.
Collapse
|
18
|
Wolf DM, Fontaine-Bodin L, Bischofs I, Price G, Keasling J, Arkin AP. Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS One 2008; 3:e1700. [PMID: 18324309 PMCID: PMC2264733 DOI: 10.1371/journal.pone.0001700] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 01/28/2008] [Indexed: 11/19/2022] Open
Abstract
Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These “memory” effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to ‘remember’ 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy.
Collapse
Affiliation(s)
- Denise M. Wolf
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail: (DW); (AA)
| | - Lisa Fontaine-Bodin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Ilka Bischofs
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Gavin Price
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Jay Keasling
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Department of Chemical Engineering, University of California, Berkeley, California, United States of America
| | - Adam P. Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail: (DW); (AA)
| |
Collapse
|
19
|
Genome-scale genotype-phenotype matching of two Lactococcus lactis isolates from plants identifies mechanisms of adaptation to the plant niche. Appl Environ Microbiol 2007; 74:424-36. [PMID: 18039825 DOI: 10.1128/aem.01850-07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lactococcus lactis is a primary constituent of many starter cultures used for the manufacturing of fermented dairy products, but the species also occurs in various nondairy niches such as (fermented) plant material. Three genome sequences of L. lactis dairy strains (IL-1403, SK11, and MG1363) are publicly available. An extensive molecular and phenotypic diversity analysis was now performed on two L. lactis plant isolates. Diagnostic sequencing of their genomes resulted in over 2.5 Mb of sequence for each strain. A high synteny was found with the genome of L. lactis IL-1403, which was used as a template for contig mapping and locating deletions and insertions in the plant L. lactis genomes. Numerous genes were identified that do not have homologs in the published genome sequences of dairy L. lactis strains. Adaptation to growth on substrates derived from plant cell walls is evident from the presence of gene sets for the degradation of complex plant polymers such as xylan, arabinan, glucans, and fructans but also for the uptake and conversion of typical plant cell wall degradation products such as alpha-galactosides, beta-glucosides, arabinose, xylose, galacturonate, glucuronate, and gluconate. Further niche-specific differences are found in genes for defense (nisin biosynthesis), stress response (nonribosomal peptide synthesis and various transporters), and exopolysaccharide biosynthesis, as well as the expected differences in various mobile elements such as prophages, plasmids, restriction-modification systems, and insertion sequence elements. Many of these genes were identified for the first time in Lactococcus lactis. In most cases good correspondence was found with the phenotypic characteristics of these two strains.
Collapse
|
20
|
Dufour A, Hindré T, Haras D, Le Pennec JP. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Rev 2006; 31:134-67. [PMID: 17096664 DOI: 10.1111/j.1574-6976.2006.00045.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lantibiotics are antimicrobial peptides from the bacteriocin family, secreted by Gram-positive bacteria. These peptides differ from other bacteriocins by the presence of (methyl)lanthionine residues, which result from enzymatic modification of precursor peptides encoded by structural genes. Several groups of lantibiotics have been distinguished, the largest of which is the lacticin 481 group. This group consists of at least 16 members, including lacticin 481, streptococcin A-FF22, mutacin II, nukacin ISK-1, and salivaricins. We present the first review devoted to this lantibiotic group, knowledge of which has increased significantly within the last few years. After updating the group composition and defining the common properties of these lantibiotics, we highlight the most recent developments. The latter concern: transcriptional regulation of the lantibiotic genes; understanding the biosynthetic machinery, in particular the ability to perform in vitro prepeptide maturation; characterization of a novel type of immunity protein; and broad application possibilities. This group differs in many aspects from the best known lantibiotic group (nisin group), but shares properties with less-studied groups such as the mersacidin, cytolysin and lactocin S groups.
Collapse
Affiliation(s)
- Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, Université de Bretagne Sud, Lorient, France.
| | | | | | | |
Collapse
|
21
|
Wu S, Jia S, Sun D, Chen M, Chen X, Zhong J, Huan L. Purification and characterization of two novel antimicrobial peptides Subpeptin JM4-A and Subpeptin JM4-B produced by Bacillus subtilis JM4. Curr Microbiol 2005; 51:292-6. [PMID: 16211432 DOI: 10.1007/s00284-005-0004-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
An antimicrobial peptides-producing strain was isolated from soil and identified as Bacillus subtilis JM4 according to biochemical tests and 16S rDNA sequence analysis. The corresponding antimicrobial peptides were purified to homogeneity by ammonium sulfate precipitation, sequential SP-Sepharose Fast Flow, Sephadex G-25 and C18 reverse-phase chromatography, and in the final purification step, two active fractions were harvested, designated as Subpeptin JM4-A and Subpeptin JM4-B. The molecular weights, determined by mass spectrometry, were 1422.71 Da for Subpeptin JM4-A and 1422.65 Da for Subpeptin JM4-B, respectively. Amino acid sequencing showed that they differed from each other only at the seventh amino acid except for three unidentified residues, and the two peptides had no significant sequence homology to the known peptides in the database, indicating that they are two novel antimicrobial peptides. In addition, characteristic measurements indicated that both peptides had a relatively broad inhibitory spectrum and remained active over a wide pH and temperature range.
Collapse
Affiliation(s)
- Shimei Wu
- Molecular Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Hu J, Wu WC, Sastry S. Modeling Subtilin Production in Bacillus subtilis Using Stochastic Hybrid Systems. HYBRID SYSTEMS: COMPUTATION AND CONTROL 2004. [DOI: 10.1007/978-3-540-24743-2_28] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Widdick DA, Dodd HM, Barraille P, White J, Stein TH, Chater KF, Gasson MJ, Bibb MJ. Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005. Proc Natl Acad Sci U S A 2003; 100:4316-21. [PMID: 12642677 PMCID: PMC153090 DOI: 10.1073/pnas.0230516100] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Accepted: 01/28/2003] [Indexed: 11/18/2022] Open
Abstract
Lantibiotics are ribosomally synthesized oligopeptide antibiotics that contain lanthionine bridges derived by the posttranslational modification of amino acid residues. Here, we describe the cinnamycin biosynthetic gene cluster (cin) from Streptomyces cinnamoneus cinnamoneus DSM 40005, the first, to our knowledge, lantibiotic gene cluster from a high G+C bacterium to be cloned and sequenced. The cin cluster contains many genes not found in lantibiotic clusters from low G+C Gram-positive bacteria, including a Streptomyces antibiotic regulatory protein regulatory gene, and lacks others found in such clusters, such as a LanT-type transporter and a LanP-type protease. Transfer of the cin cluster to Streptomyces lividans resulted in heterologous production of cinnamycin. Furthermore, modification of the cinnamycin structural gene (cinA) led to production of two naturally occurring lantibiotics, duramycin and duramycin B, closely resembling cinnamycin, whereas attempts to make a more widely diverged derivative, duramycin C, failed to generate biologically active material. These results provide a basis for future attempts to construct extensive libraries of cinnamycin variants.
Collapse
Affiliation(s)
- D A Widdick
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, Norfolk NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Stein T, Heinzmann S, Kiesau P, Himmel B, Entian KD. The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol 2003; 47:1627-36. [PMID: 12622817 DOI: 10.1046/j.1365-2958.2003.03374.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The subtilin gene cluster (spa) of Bacillus subtilis ATCC 6633 is organized in transcriptional units spaBTC, spaS, spaIFEG and spaRK. Specific binding of the response regulator protein SpaR to spaB, spaS and spaI DNA promoter fragments was shown by means of electromobility shift assays. A repeated pentanucleotide sequence spaced by six nucleotides was identified as SpaR binding motif (spa-box). Saturating mutational analysis of the spa-box by single- and multiple-base-pair substitutions revealed the consensus motif (A/T)TGAT for optimal SpaR binding with the second, third and fifth position being absolutely conservative. Variations in the spacer size between the two pentanucleotide repeats revealed a strong conservation of their relative location. Only DNA with a proximal arrangement of two pentanucleotide repeats showed affinity to SpaR. A 2:1 stoichiometry between SpaR and DNA was obtained by optical biosensor analyses, which corresponds to the binding of two SpaR proteins per spa-box.
Collapse
Affiliation(s)
- Torsten Stein
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Marie-Curie-Str. 9, 60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
25
|
Stein T, Heinzmann S, Solovieva I, Entian KD. Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 2003; 278:89-94. [PMID: 12379654 DOI: 10.1074/jbc.m207237200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nisin-producing Lactococcus lactis strains show a high degree of resistance to the action of nisin, which is based upon expression of the self-protection (immunity) genes nisI, nisF, nisE, and nisG. Different combinations of nisin immunity genes were integrated into the chromosome of a nisin-sensitive Bacillus subtilis host strain under the control of an inducible promoter. For the recipient strain, the highest level of acquired nisin tolerance was achieved after coordinated expression of all four nisin immunity genes. But either the lipoprotein NisI or the ABC transporter-homologous system NisFEG, respectively, were also able to protect the Bacillus host cells. The acquired immunity was specific to nisin and provided no tolerance to subtilin, a closely related lantibiotic. Quantitative in vivo peptide release assays demonstrated that NisFEG diminished the quantity of cell-associated nisin, providing evidence that one role of NisFEG is to transport nisin from the membrane into the extracellular space. NisI solubilized from B. subtilis membrane vesicles and recombinant hexahistidine-tagged NisI from Escherichia coli interacted specifically with nisin and not with subtilin. This suggests a function of NisI as a nisin-intercepting protein.
Collapse
Affiliation(s)
- Torsten Stein
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, D-60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
26
|
Pinchuk IV, Bressollier P, Sorokulova IB, Verneuil B, Urdaci MC. Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 2002; 153:269-76. [PMID: 12160317 DOI: 10.1016/s0923-2508(02)01320-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One of the most interesting groups of phenolic compounds is comprised of the low molecular weight phenylpropanol derivative substances named isocoumarins, which possess important biological activities. In this study, the isocoumarin production and genetic diversity of 51 Bacillus strains isolated from different geographical and ecological niches were studied. Using molecular identification techniques, 47 strains were identified as B. subtilis, three as B. licheniformis and one as B. pumilus. When these strains were screened for isocumarin production, 11 belonging to the species B. subtilis produced amicoumacins, antibiotics of the isocoumarin group. RAPD analysis demonstrated that these strains fell into two groups which contained only these amicoumacin producers. No association was detected between RAPD profiles and the geographic origin or habitat of the strains tested. In conclusion, production of amicoumacin antibiotics by B. subtilis is a common characteristic of individual strains that presented genetic and physiological homogeneity.
Collapse
Affiliation(s)
- Irina V Pinchuk
- Laboratoire de Microbiologie et Biochimie Appliquée, ENITA de Bordeaux, 1, Gradignan, France
| | | | | | | | | |
Collapse
|
27
|
Allali N, Afif H, Couturier M, Van Melderen L. The highly conserved TldD and TldE proteins of Escherichia coli are involved in microcin B17 processing and in CcdA degradation. J Bacteriol 2002; 184:3224-31. [PMID: 12029038 PMCID: PMC135094 DOI: 10.1128/jb.184.12.3224-3231.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcin B17 (MccB17) is a peptide antibiotic produced by Escherichia coli strains carrying the pMccB17 plasmid. MccB17 is synthesized as a precursor containing an amino-terminal leader peptide that is cleaved during maturation. Maturation requires the product of the chromosomal tldE (pmbA) gene. Mature microcin is exported across the cytoplasmic membrane by a dedicated ABC transporter. In sensitive cells, MccB17 targets the essential topoisomerase II DNA gyrase. Independently, tldE as well as tldD mutants were isolated as being resistant to CcdB, another natural poison of gyrase encoded by the ccd poison-antidote system of plasmid F. This led to the idea that TldD and TldE could regulate gyrase function. We present in vivo evidence supporting the hypothesis that TldD and TldE have proteolytic activity. We show that in bacterial mutants devoid of either TldD or TldE activity, the MccB17 precursor accumulates and is not exported. Similarly, in the ccd system, we found that TldD and TldE are involved in CcdA and CcdA41 antidote degradation rather than being involved in the CcdB resistance mechanism. Interestingly, sequence database comparisons revealed that these two proteins have homologues in eubacteria and archaebacteria, suggesting a broader physiological role.
Collapse
Affiliation(s)
- Noureddine Allali
- Laboratoire de Génétique des Procaryotes, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | | | | | | |
Collapse
|
28
|
Abstract
Bacteriocins from lactic acid bacteria are ribosomally produced peptides (usually 30-60 amino acids) that display potent antimicrobial activity against certain other Gram-positive organisms. They function by disruption of the membrane of their targets, mediated in at least some cases by interaction of the peptide with a chiral receptor molecule (e.g., lipid II or sugar PTS proteins). Some bacteriocins are unmodified (except for disulfide bridges), whereas others (i.e. lantibiotics) possess extensive post-translational modifications which include multiple monosulfide (lanthionine) bridges and dehydro amino acids as well as possible keto amide residues at the N-terminus. Most known bacteriocins are biologically active as single peptides. However, there is a growing class of two peptide systems, both unmodified and lantibiotic, which are fully active only when both partners are present (usually 1:1). In some cases, neither peptide has activity by itself, whereas in others, the activity of one is enhanced by the other. This review discusses the classification, structure, production, regulation, biological activity, and potential applications of such two-peptide bacteriocins.
Collapse
Affiliation(s)
- Sylvie Garneau
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | | | | |
Collapse
|
29
|
Stein T, Borchert S, Kiesau P, Heinzmann S, Klöss S, Klein C, Helfrich M, Entian KD. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol 2002; 44:403-16. [PMID: 11972779 DOI: 10.1046/j.1365-2958.2002.02869.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The production of the peptide antibiotic (lantibiotic) subtilin in Bacillus subtilis ATCC 6633 is highly regulated. Transcriptional organization and regulation of the subtilin gene cluster encompassing 11 genes was characterized. Two polycistronic mRNAs encoding transcript spaBTC (6.8 kb) and encoding transcript spaIFEG (3.5 kb) as well as the monocistronic spaS (0.3 kb) mRNA were shown by Northern hybridization. Primer extension experiments and beta-galactosidase fusions confirmed three independent promoter sites preceding genes spaB, spaS and spaI. beta-Galactosidase expression of spaB, spaS and spaI promoter lacZ fusions initiated in mid-exponential growth. Maximal activities were reached at the transition to stationary growth and were collinear with subtilin production. The lacZ activity was dependent on co-expression with the two-component regulatory system spaRK. The presence of subtilin was needed for efficient expression of all three promoter lacZ fusions. This suggests a transcriptional autoregulation according to a quorum-sensing mechanism with subtilin as autoinducer and signal transduction via SpaRK. Additionally, spaR expression was found to be under positive control of the alternative sigma factor H. Deletion of sigma H strongly decreased subtilin production. Full subtilin production could be restored after in-trans complementation of spaR. Deletion of the major B. subtilis transition state regulator AbrB strongly increased subtilin production. These results show that the spaRK two-component regulatory system, and hence subtilin biosynthesis and immunity, is under dual control of two independent regulatory systems: autoinduction via subtilin and transcriptional regulation via sigma factor H.
Collapse
Affiliation(s)
- Torsten Stein
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Hofemeister J, Entian KD. Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 2002; 184:1703-11. [PMID: 11872722 PMCID: PMC134901 DOI: 10.1128/jb.184.6.1703-1711.2002] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A lantibiotic gene cluster was identified in Bacillus subtilis A1/3 showing a high degree of homology to the subtilin gene cluster and occupying the same genetic locus as the spa genes in B. subtilis ATCC 6633. The gene cluster exhibits diversity with respect to duplication of two subtilin-like genes which are separated by a sequence similar to a portion of a lanC gene. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analyses of B. subtilis A1/3 culture extracts confirmed the presence of two lantibiotic-like peptides, ericin S (3,442 Da) and ericin A (2,986 Da). Disruption of the lanB-homologous gene eriB resulted in loss of production of both peptides, demonstrating that they are processed in an eriB-dependent manner. Although precursors of ericins S and A show only 75% of identity, the matured lantibiotic-like peptides reveal highly similar physical properties; separation was only achieved after multistep, reversed-phase high-performance liquid chromatography. Based on Edman and peptidase degradation in combination with MALDI-TOF MS, for ericin S a subtilin-like, lanthionine-bridging pattern is supposed. For ericin A two C-terminal rings are different from the lanthionine pattern of subtilin. Due to only four amino acid exchanges, ericin S and subtilin revealed similar antibiotic activities as well as similar properties in response to heat and protease treatment. For ericin A only minor antibiotic activity was found.
Collapse
Affiliation(s)
- Torsten Stein
- Institut für Mikrobiologie, Johann-Wolfgang-Goethe-Universität, D-60439 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Skaugen M, Andersen EL, Christie VH, Nes IF. Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in Lactobacillus sakei L45. Appl Environ Microbiol 2002; 68:720-7. [PMID: 11823212 PMCID: PMC126710 DOI: 10.1128/aem.68.2.720-727.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through the analysis of spontaneous insertion mutants of Lactobacillus sakei L45, a second operon involved in lactocin S production was identified and characterized. The new, bicistronic unit, termed lasXY, is situated immediately upstream of the previously characterized nine-open reading frame (ORF) lactocin S operon (lasA-W) and is transcribed in the opposite direction. The proximal of the two newly identified genes, lasX, specifies a 285-residue protein that is similar to a group of proteins with reported gene regulation functions in gram-positive bacteria. It was demonstrated that the lasX mutants have a strongly reduced level of lasA and lasA-W mRNA, thus indicating the likely cause of the Bac(-) phenotype of these mutants. The second ORF in the operon, lasY, specifies a 300-residue ABC transporter homolog, the function of which is currently obscure. Transcription initiation mapping of the lasXY operon demonstrates that the two lactocin S promoters overlap such that both transcripts initiate within the -35 region of the oppositely oriented promoter. This organization of promoters is unique among this group of regulons and may constitute a modulatory site in the proposed LasX-dependent expression of lasA and downstream genes.
Collapse
Affiliation(s)
- Morten Skaugen
- Laboratory of Microbial Gene Technology, Agricultural University of Norway, P.O. Box 5051, N-1432 As-NLH, Norway.
| | | | | | | |
Collapse
|
32
|
Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 2001; 71:1-20. [PMID: 11764886 DOI: 10.1016/s0168-1605(01)00560-8] [Citation(s) in RCA: 1026] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacteriocins are antibacterial proteins produced by bacteria that kill or inhibit the growth of other bacteria. Many lactic acid bacteria (LAB) produce a high diversity of different bacteriocins. Though these bacteriocins are produced by LAB found in numerous fermented and non-fermented foods, nisin is currently the only bacteriocin widely used as a food preservative. Many bacteriocins have been characterized biochemically and genetically, and though there is a basic understanding of their structure-function, biosynthesis, and mode of action, many aspects of these compounds are still unknown. This article gives an overview of bacteriocin applications, and differentiates bacteriocins from antibiotics. A comparison of the synthesis. mode of action, resistance and safety of the two types of molecules is covered. Toxicity data exist for only a few bacteriocins, but research and their long-time intentional use strongly suggest that bacteriocins can be safely used.
Collapse
Affiliation(s)
- J Cleveland
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick 08901, USA
| | | | | | | |
Collapse
|
33
|
Zheng G, Yan LZ, Vederas JC, Zuber P. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J Bacteriol 1999; 181:7346-55. [PMID: 10572140 PMCID: PMC103699 DOI: 10.1128/jb.181.23.7346-7355.1999] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis JH642 and a wild strain of B. subtilis called 22a both produce an antilisterial peptide that can be purified by anion-exchange and gel filtration chromatography. Amino acid analysis confirmed that the substance was the cyclic bacteriocin subtilosin. A mutant defective in production of the substance was isolated from a plasmid gene disruption library. The plasmid insertion conferring the antilisterial-peptide-negative phenotype was located in a seven-gene operon (alb, for antilisterial bacteriocin) residing immediately downstream from the sbo gene, which encodes the precursor of subtilosin. An insertion mutation in the sbo gene also conferred loss of antilisterial activity. Comparison of the presubtilosin and mature subtilosin sequences suggested that certain residues undergo unusual posttranslational modifications unlike those occurring during the synthesis of class I (lantibiotic) or some class II bacteriocins. The putative products of the genes of the operon identified show similarities to peptidases and transport proteins that may function in processing and export. Two alb gene products resemble proteins that function in pyrroloquinoline quinone biosynthesis. The use of lacZ-alb and lacZ-sbo gene fusions, along with primer extension analysis, revealed that the sbo-alb genes are transcribed from a major promoter, residing upstream of sbo, that is very likely utilized by the sigma(A) form of RNA polymerase. The sbo and alb genes are negatively regulated by the global transition state regulator AbrB and are also under positive autoregulation that is not mediated by the subtilosin peptide but instead requires one or more of the alb gene products.
Collapse
Affiliation(s)
- G Zheng
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | | | |
Collapse
|
34
|
Karakas Sen A, Narbad A, Horn N, Dodd HM, Parr AJ, Colquhoun I, Gasson MJ. Post-translational modification of nisin. The involvement of NisB in the dehydration process. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:524-32. [PMID: 10215865 DOI: 10.1046/j.1432-1327.1999.00303.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The lantibiotic nisin is an antimicrobial peptide produced by Lactococcus lactis. As with all lantibiotics, nisin contains a number of dehydro-residues and thioether amino acids that introduce five lanthionine rings into the target peptide. These atypical amino acids are introduced by post-translational modification of a ribosomally synthesized precursor peptide. In certain cases, the serine residue, at position 33 of nisin, does not undergo dehydration to Dha33. With native nisin this partially processed form represents about 10% of the total peptide, whereas with the engineered variants, [Trp30]nisin A and [Lys27,Lys31]nisin A, the proportion of peptide that escapes full processing was found to be to approximately 50%. This feature of nisin biosynthesis was exploited in an investigation of the role of the NisB protein in pre-nisin maturation. Manipulation of the level of NisB was achieved by cloning and overexpressing the plasmid-encoded nisB gene in a range of different nisin-producing strains. The resulting fourfold increase in the level of NisB significantly increased the efficiency of the dehydration reaction at Ser33. The final secreted product of biosynthesis by these strains was the homogenous form of the fully processed nisin (or nisin variant) molecule. The results presented represent the first experimental evidence for the direct involvement of the NisB protein in the maturation process of nisin.
Collapse
Affiliation(s)
- A Karakas Sen
- Department of Genetics and Microbiology, Institute of Food Research, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
O'Keeffe T, Hill C, Ross RP. Characterization and heterologous expression of the genes encoding enterocin a production, immunity, and regulation in Enterococcus faecium DPC1146. Appl Environ Microbiol 1999; 65:1506-15. [PMID: 10103244 PMCID: PMC91214 DOI: 10.1128/aem.65.4.1506-1515.1999] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1998] [Accepted: 01/13/1999] [Indexed: 02/05/2023] Open
Abstract
Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10, 879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis.
Collapse
Affiliation(s)
- T O'Keeffe
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Fermoy, Ireland
| | | | | |
Collapse
|
36
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 935] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
37
|
Thomas LV, Davies EA, Delves-Broughton J, Wimpenny JW. Synergist effect of sucrose fatty acid esters on nisin inhibition of gram-positive bacteria. J Appl Microbiol 1998; 85:1013-22. [PMID: 9871322 DOI: 10.1111/j.1365-2672.1998.tb05266.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nisin in combination with the sucrose fatty acid esters, sucrose palmitate (P-1570 and P-1670) or sucrose stearate (S-1570 and S-1670) was tested against a range of Gram-negative and Gram-positive bacteria. Initial liquid culture investigation showed that the sugar ester P-1670 resulted in a synergist enhancement of the bacteriostatic activity of nisin against Gram-positive bacteria and not Gram-negative bacteria. Some enhancement of the bactericidal activity of nisin against Listeria monocytogenes was also observed. This increased nisin inhibitory effect was confirmed on solid media using plates with gradients of pH and NaCl. Synergism was observed with all four sucrose fatty acid esters, which enhanced the antimicrobial activity of nisin against several strains of L. monocytogenes, Bacillus cereus (both cells and spores), Lactobacillus plantarum and Staphylococcus aureus. The combination of nisin and the sucrose fatty acid esters showed no inhibition of Gram-negative bacteria (Salmonella enteritidis, Salm. typhimurium and Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- L V Thomas
- Cardiff School of Biosciences, Cardiff University, UK.
| | | | | | | |
Collapse
|
38
|
Metivier A, Pilet MF, Dousset X, Sorokine O, Anglade P, Zagorec M, Piard JC, Marlon D, Cenatiempo Y, Fremaux C. Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2837-2844. [PMID: 9802025 DOI: 10.1099/00221287-144-10-2837] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Divercin V41 is a new bacteriocin produced by Carnobacterium divergens V41, a lactic acid bacterium isolated from fish viscera. The amino acid sequence of divercin V41 showed high homologies with pediocin PA-1 and enterocin A. Two disulphide bonds were present in the hydrophilic N-terminal domain and in the highly variable hydrophobic C-terminal domain, respectively. A DNA probe designed from the N-terminal sequence of the purified peptide was used to locate the structural gene of divercin V41. A 6 kb chromosomal fragment containing the divercin V41 structural gene (dvnA) was cloned and sequenced. The results indicate that divercin V41 is synthesized as a pre-bacteriocin of 66 amino acids. The 23-residue N-terminal extension is cleaved off to yield the mature 43-amino-acid divercin V41. In addition, the fragment encodes putative proteins commonly found within bacteriocin operons, including an ATP-dependent transporter, two immunity-like proteins and the two components of a lantibiotic-type signal-transducing system. The genetic organization of the fragment suggested important gene rearrangements.
Collapse
Affiliation(s)
- Anita Metivier
- lnstitut de Biologie MolCculaire et d`lngCnierie GCnCtiqueCNRS-ESA 6031, Universite de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers CedexFrance
- ENITIAA, Laboratoire de Microbiologie44072 Nantes CedexFrance
| | | | - Xavier Dousset
- ENITIAA, Laboratoire de Microbiologie44072 Nantes CedexFrance
| | - Odile Sorokine
- CNRS, Laboratoire de SpectromCtrie de Masse BioorganiqueURA31 Universite Louis Pasteur, 67008 StrasbourgFrance
| | | | | | | | - Didier Marlon
- INRA, Unite de Biochimie et Technologie des ProtCines44316 Nantes cedexFrance
| | - Yves Cenatiempo
- lnstitut de Biologie MolCculaire et d`lngCnierie GCnCtiqueCNRS-ESA 6031, Universite de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers CedexFrance
| | - Christophe Fremaux
- T6exel, groupe RhBnePoulencZA de Buxieres BP 10,86220 DangC Saint-RomainFrance
- lnstitut de Biologie MolCculaire et d`lngCnierie GCnCtiqueCNRS-ESA 6031, Universite de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers CedexFrance
| |
Collapse
|
39
|
Kiesau P, Eikmanns U, Gutowski-Eckel Z, Weber S, Hammelmann M, Entian KD. Evidence for a multimeric subtilin synthetase complex. J Bacteriol 1997; 179:1475-81. [PMID: 9045802 PMCID: PMC178855 DOI: 10.1128/jb.179.5.1475-1481.1997] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Subtilin is a lanthionine-containing peptide antibiotic (lantibiotic) produced by Bacillus subtilis. It is ribosomally synthesized as a prepeptide and modified posttranslationally. Three proteins of the subtilin gene cluster (SpaB, SpaC, and SpaT) which are probably involved in prepeptide modification and transport have been identified genetically (C. Klein, C. Kaletta, N. Schnell, and K.-D. Entian, Appl. Environ. Microbiol. 58: 132-142, 1992). Immunoblot analysis revealed that production of SpaC is strongly regulated (Z. Gutowski-Eckel, C. Klein, K. Siegers, K. Bohm, M. Hammelmann, and K.-D. Entian, Appl. Environ. Microbiol. 60:1-11, 1994). Transcription of the SpaC protein started in the late logarithmic growth phase, reaching a maximum in the early stationary growth phase. No SpaC was detectable in the early logarithmic growth phase. Deletions within the spaR and spaK genes, which act as a two-component regulatory system, resulted in failure to express SpaB and SpaC, indicating that these two genes are the regulatory targets. Western blot analysis of vesicle preparations of B. subtilis revealed that the SpaB, SpaT, and SpaC proteins are membrane bound, although some of the protein was also detectable in cell extracts. By using the yeast two-hybrid analysis system for protein interactions, we showed that a complex of at least two each of SpaT, SpaB, and SpaC is most probably associated with the substrate SpaS. These results were also confirmed by coimmunoprecipitation experiments. In these cosedimentation experiments, SpaB and SpaC were coprecipitated by antisera against SpaC, SpaB, and SpaT, as well as by a monoclonal antibody against epitope-tagged SpaS, indicating that these four proteins are associated.
Collapse
Affiliation(s)
- P Kiesau
- Institute for Microbiology, Johann Wolfgang Goethe-Universität, Frankfurt/M., Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
40
|
Siegers K, Heinzmann S, Entian KD. Biosynthesis of lantibiotic nisin. Posttranslational modification of its prepeptide occurs at a multimeric membrane-associated lanthionine synthetase complex. J Biol Chem 1996; 271:12294-301. [PMID: 8647829 DOI: 10.1074/jbc.271.21.12294] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The lantibiotic nisin of Lactococcus lactis is matured from a ribosomally synthesized prepeptide by postranslational modification. Genetic and biochemical evidence suggests that genes nisB and nisC of the nisin gene cluster encode proteins necessary for prenisin modification. Inactivation of both genes resulted in complete loss of nisin production. The preparation of membrane vesicles revealed that NisB and NisC are attached to the cellular membrane, and co-immunoprecipitation experiments showed that they are associated with each other. By using the yeast two-hybrid system, which is a highly sensitive method to unravel protein-protein interactions, we could show that the nisin prepeptide physically interacts with the NisC protein, suggesting that NisC contains a binding site for prenisin. This was also confirmed by co-immunoprecipitation of the NisC protein and the NisA prepeptide by antibodies directed against the leader sequence of the nisin prepeptide. The two-hybrid analysis also confirmed the interaction between NisB and NisC as well as the interaction between NisB and NisC as well as the interaction between NisC and the NisT ABC transporter. A minor interaction was also indicated between prenisin and the NisB protein. Furthermore, the two-hybrid investigations also revealed that at least two molecules of NisC and two molecules of NisT are part of the modification and transport complex. Our results suggest that lantibiotic maturation and secretion occur at a membrane-associated multimeric lanthionine synthetase complex consisting of proteins NisB, NisC, and the ABC transporter molecules NisT.
Collapse
Affiliation(s)
- K Siegers
- Institute for Microbiology, Johann Wolfgang Goethe-Universät, Frankfurt am Main, Federal Republic of Germany
| | | | | |
Collapse
|