1
|
Liu M, Yin F, Zhao W, Tian P, Zhou Y, Jia Z, Huang K, Ding Y, Xiao J, Niu W, Wang X. Diversity of Culturable Bacteria from the Coral Reef Areas in the South China Sea and Their Agar-Degrading Abilities. Microorganisms 2024; 12:187. [PMID: 38258013 PMCID: PMC10818321 DOI: 10.3390/microorganisms12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The South China Sea (SCS) is abundant in marine microbial resources with high primary productivity, which is crucial for sustaining the coral reef ecosystem and the carbon cycle. Currently, research on the diversity of culturable bacteria in the SCS is relatively extensive, yet the culturable bacteria in coral reefs has been poorly understood. In this study, we analyzed the bacterial community structure of seawater samples among Daya Bay (Fujian Province), Qionghai (Hainan Province), Xisha Islands, and the southern South China Sea based on culturable methods and detected their abilities for agar degradation. There were 441 bacterial strains, belonging to three phyla, five classes, 43 genera, and 101 species, which were isolated by marine agar 2216E (MA; Becton Dickinson). Strains within Gammaproteobacteria were the dominant group, accounting for 89.6% of the total bacterial isolates. To investigate vibrios, which usually correlated with coral health, 348 isolates were obtained from TCBS agar, and all isolates were identified into three phylum, three classes, 14 orders, 25 families, and 48 genera. Strains belonging to the genus Vibrio had the greatest number (294 strains), indicating the high selectivity of TCBS agar for vibrios. Furthermore, nineteen strains were identified as potentially novel species according to the low 16S rRNA gene similarity (<98.65%), and 28 strains (15 species) had agar-degrading ability. These results indicate a high diversity of culturable bacteria in the SCS and a huge possibility to find novel and agar-degrading species. Our study provides valuable microbial resources to maintain the stability of coral ecosystems and investigate their roles in the marine carbon cycle.
Collapse
Affiliation(s)
- Mei Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Fu Yin
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Wenbin Zhao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Peng Tian
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Yi Zhou
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Zhiyu Jia
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Keyi Huang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Yunqi Ding
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Jiaguang Xiao
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Wentao Niu
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Xiaolei Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
2
|
Jin Y, Yu S, Kim DH, Yun EJ, Kim KH. Characterization of Neoagarooligosaccharide Hydrolase BpGH117 from a Human Gut Bacterium Bacteroides plebeius. Mar Drugs 2021; 19:md19050271. [PMID: 34068166 PMCID: PMC8152962 DOI: 10.3390/md19050271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis of Bacteroides plebeius, a human gut bacterium, revealed the presence of genes encoding enzymes involved in agarose degradation, including α-NAB/NAO hydrolase. Among the agarolytic enzymes, BpGH117 has been partially characterized. Here, we characterized the exo-acting α-NAB/NAO hydrolase BpGH117, originating from B. plebeius. The optimal temperature and pH for His-tagged BpGH117 activity were 35 °C and 9.0, respectively, indicative of its unique origin. His-tagged BpGH117 was thermostable up to 35 °C, and the enzyme activity was maintained at 80% of the initial activity at a pre-incubation temperature of 40 °C for 120 min. Km and Vmax values for NAB were 30.22 mM and 54.84 U/mg, respectively, and kcat/Km was 2.65 s−1 mM−1. These results suggest that His-tagged BpGH117 can be used for producing bioactive products such as AHG and agarotriose from agarose efficiently.
Collapse
|
3
|
Park SH, Lee CR, Hong SK. Implications of agar and agarase in industrial applications of sustainable marine biomass. Appl Microbiol Biotechnol 2020; 104:2815-2832. [PMID: 32036436 DOI: 10.1007/s00253-020-10412-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
Agar, a major component of the cell wall of red algae, is an interesting heteropolysaccharide containing an unusual sugar, 3,6-anhydro-L-galactose. It is widely used as a valuable material in various industrial and experimental applications due to its characteristic gelling and stabilizing properties. Agar-derived oligosaccharides or mono-sugars produced by various agarases have become a promising subject for research owing to their unique biological activities, including anti-obesity, anti-diabetic, immunomodulatory, anti-tumor, antioxidant, skin-whitening, skin-moisturizing, anti-fatigue, and anti-cariogenic activities. Agar is also considered as an alternative sustainable source of biomass for chemical feedstock and biofuel production to substitute for the fossil resource. In this review, we summarize various biochemically characterized agarases, which are useful for industrial applications, such as neoagarooligosaccharide or agarooligosaccharide production and saccharification of agar. Additionally, we succinctly discuss various recent studies that have been conducted to investigate the versatile biological activities of agar-derived saccharides and biofuel production from agar biomass. This review provides a basic framework for understanding the importance of agarases and agar-derived saccharides with broad applications in pharmaceutical, cosmetic, food, and bioenergy industries.
Collapse
Affiliation(s)
- Si Hyoung Park
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea.
| |
Collapse
|
4
|
Jiang C, Liu Z, Sun J, Mao X. Characterization of a Novel α-Neoagarobiose Hydrolase Capable of Preparation of Medium- and Long-Chain Agarooligosaccharides. Front Bioeng Biotechnol 2020; 7:470. [PMID: 32064255 PMCID: PMC7000632 DOI: 10.3389/fbioe.2019.00470] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/04/2022] Open
Abstract
α-Neoagarobiose hydrolase plays an important role in saccharification processes of marine biomass. In this study, an α-neoagarobiose hydrolase from Streptomyces coelicolor A3(2), designated as ScJC117, was identified, purified, and characterized. It has a sequence of 370 amino acids and belongs to the GH117 family. ScJC117 exhibited good activity under optimal hydrolysis conditions of pH 6.0 and 30°C, where it showed the Km and kcat for neoagarobiose of 11.57 mM and 0.48 s–1, respectively. ScJC117 showed the ability to hydrolyze neoagarooligosaccharides with the polymerization degrees of 2–14. A basis of catalytic activity toward the first α-1,3-glycosidic bond of the neoagarooligosaccharides from the non-reducing end, ScJC117 can be classified as an exo-type α-neoagarobiose hydrolase. These results suggested that ScJC117 could be used in the preparation of odd agarooligosaccharides (especially agaroheptaose-agaroundecaose) and 3,6-anhydro-L-galactose, which has a functional food additive potential. Moreover, ScJC117 can be used for comprehensive utilization of red algae.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Molecular Cloning and Characterization of a Novel Cold-Adapted Alkaline 1,3-α-3,6-Anhydro-l-galactosidase, Ahg558, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 2019; 188:1077-1095. [DOI: 10.1007/s12010-019-02963-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/30/2019] [Indexed: 01/25/2023]
|
6
|
Asghar S, Lee CR, Park JS, Chi WJ, Kang DK, Hong SK. Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-L-galactosidase, Ahg786, from Gayadomonas joobiniege G7. Appl Microbiol Biotechnol 2018; 102:8855-8866. [PMID: 30128580 DOI: 10.1007/s00253-018-9277-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Agar is a major polysaccharide of red algal cells and is mainly decomposed into neoagarobiose by the co-operative effort of β-agarases. Neoagarobiose is hydrolyzed into monomers, D-galactose and 3,6-anhydro-L-galactose, via a microbial oxidative process. Therefore, the enzyme, 1,3-α-3,6-anhydro-L-galactosidase (α-neoagarobiose/neoagarooligosaccharide hydrolase) involved in the final step of the agarolytic pathway is crucial for bioindustrial application of agar. A novel cold-adapted α-neoagarooligosaccharide hydrolase, Ahg786, was identified and characterized from an agarolytic marine bacterium Gayadomonas joobiniege G7. Ahg786 comprises 400 amino acid residues (45.3 kDa), including a 25 amino acid signal peptide. Although it was annotated as a hypothetical protein from the genomic sequencing analysis, NCBI BLAST search showed 57, 58, and 59% identities with the characterized α-neoagarooligosaccharide hydrolases from Saccharophagus degradans 2-40, Zobellia galactanivorans, and Bacteroides plebeius, respectively. The signal peptide-deleted recombinant Ahg786 expressed and purified from Escherichia coli showed dimeric forms and hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose into 3,6-anhydro-L-galactose and other compounds by cleaving α-1,3-glycosidic bonds from the non-reducing ends of neoagarooligosaccharides, as confirmed by thin-layer chromatography and mass spectrometry. The optimum pH and temperature for Ahg786 activity were 7.0 and 15 °C, respectively, indicative of its unique cold-adapted features. The enzymatic activity severely inhibited with 0.5 mM ethylenediaminetetraacetic acid was completely restored or remarkably enhanced by Mn2+ in a concentration-dependent manner, suggestive of the dependence of the enzyme on Mn2+ ions. Km and Vmax values for neoagarobiose were 4.5 mM and 1.33 U/mg, respectively.
Collapse
Affiliation(s)
- Sajida Asghar
- Department of Bioscience and Bioinformatics, Myongji-Ro 116, Yongin, Gyeonggi-do, 17058, South Korea.,Department of Biological Sciences, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myongji-Ro 116, Yongin, Gyeonggi-do, 17058, South Korea
| | - Jae-Seon Park
- Department of Bioscience and Bioinformatics, Myongji-Ro 116, Yongin, Gyeonggi-do, 17058, South Korea
| | - Won-Jae Chi
- Biological and Genetic Resource Assessment Division, National Institute of Biological Resource, Incheon, 17058, South Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Dandae-ro 119, Cheonan, 31116, South Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji-Ro 116, Yongin, Gyeonggi-do, 17058, South Korea.
| |
Collapse
|
7
|
Ramos KRM, Valdehuesa KNG, Maza PAMM, Nisola GM, Lee WK, Chung WJ. Overexpression and characterization of a novel α-neoagarobiose hydrolase and its application in the production of D-galactonate from Gelidium amansii. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Watanabe T, Kashimura K, Kirimura K. Purification, characterization and gene identification of a α-Neoagarooligosaccharide hydrolase from an alkaliphilic bacterium Cellvibrio sp. WU-0601. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Hou Y, Chen X, Chan Z, Zeng R. Expression and characterization of a thermostable and pH-stable β-agarase encoded by a new gene from Flammeovirga pacifica WPAGA1. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl Microbiol Biotechnol 2012; 97:2961-70. [PMID: 22678025 DOI: 10.1007/s00253-012-4184-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/19/2012] [Accepted: 05/15/2012] [Indexed: 11/27/2022]
Abstract
3,6-Anhydro-L-galactose (L-AHG) constitutes 50% of agarose, which is the main component of red macroalgae. No information is currently available on the mass production, metabolic fate, or physiological effects of L-AHG. Here, agarose was converted to L-AHG in the following three steps: pre-hydrolysis of agarose into agaro-oligosaccharides by using acetic acid, hydrolysis of the agaro-oligosaccharides into neoagarobiose by an exo-agarase, and hydrolysis of neoagarobiose into L-AHG and galactose by a neoagarobiose hydrolase. After these three steps, L-AHG was purified by adsorption and gel permeation chromatographies. The final product obtained was 95.6% pure L-AHG at a final yield of 4.0% based on the initial agarose. In a cell proliferation assay, L-AHG at a concentration of 100 or 200 μg/ mL did not exhibit any significant cytotoxicity. In a skin whitening assay, 100 μg/ mL of L-AHG showed significantly lower melanin production compared to arbutin. L-AHG at 100 and 200 μg/ mL showed strong anti-inflammatory activity, indicating the significant suppression of nitrite production. This is the first report on the production of high-purity L-AHG and its physiological activities.
Collapse
|
11
|
Chi WJ, Chang YK, Hong SK. Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol 2012; 94:917-30. [PMID: 22526785 DOI: 10.1007/s00253-012-4023-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
Abstract
Agar is a mixture of heterogeneous galactans, mainly composed of 3,6-anhydro-L-galactoses (or L-galactose-6-sulfates) D-galactoses and L-galactoses (routinely in the forms of 3,6-anhydro-L-galactoses or L-galactose-6-sulfates) alternately linked by β-(1,4) and α-(1,3) linkages. It is a major component of the cell walls of red algae and has been used in a variety of laboratory and industrial applications, owing to its jellifying properties. Many microorganisms that can hydrolyze and metabolize agar as a carbon and energy source have been identified in seawater and marine sediments. Agarolytic microorganisms commonly produce agarases, which catalyze the hydrolysis of agar. Numerous agarases have been identified in microorganisms of various genera. They are classified according to their cleavage pattern into three types-α-agarase, β-agarase, and β-porphyranase. Although, in a broad sense, many other agarases are involved in complete hydrolysis of agar, most of those identified are β-agarases. In this article we review agarolytic microorganisms and their agar-hydrolyzing systems, covering β-agarases as well as α-agarases, α-neoagarobiose hydrolases, and β-porphyranases, with emphasis on the recent discoveries. We also present an overview of the biochemical and structural characteristics of the various types of agarases. Further, we summarize and compare the agar-hydrolyzing systems of two specific microorganisms: Gram-negative Saccharophagus degradans 2-40 and Gram-positive Streptomyces coelicolor A3(2). We conclude with a brief discussion of the importance of agarases and their possible future application in producing oligosaccharides with various nutraceutical activities and in sustainably generating stock chemicals for biorefinement and bioenergy.
Collapse
Affiliation(s)
- Won-Jae Chi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, Korea
| | | | | |
Collapse
|
12
|
Jonnadula R, Ghadi SC. Purification and characterization of β-agarase from seaweed decomposing bacterium Microbulbifer sp. Strain CMC-5. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0399-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo- and endo-type β-agarase-producing neoagarobiose. J Bacteriol 2011; 194:142-9. [PMID: 22020647 DOI: 10.1128/jb.05978-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor can degrade agar, the main cell wall component of red macroalgae, for growth. To constitute a crucial carbon source for bacterial growth, the alternating α-(1,3) and β-(1,4) linkages between the 3,6-anhydro-L-galactoses and D-galactoses of agar must be hydrolyzed by α/β-agarases. In S. coelicolor, DagA was confirmed to be an endo-type β-agarase that degrades agar into neoagarotetraose and neoagarohexaose. Genomic sequencing data of S. coelicolor revealed that Sco3487, annotated as a putative hydrolase, has high similarity to the glycoside hydrolase (GH) GH50 β-agarases. Sco3487 encodes a primary translation product (88.5 kDa) of 798 amino acids, including a 45-amino-acid signal peptide. The sco3487 gene was cloned and expressed under the control of the ermE promoter in Streptomyces lividans TK24. β-Agarase activity was detected in transformant culture broth using the artificial chromogenic substrate p-nitrophenyl-β-D-galactopyranoside. Mature Sco3487 (83.9 kDa) was purified 52-fold with a yield of 66% from the culture broth. The optimum pH and temperature for Sco3487 activity were 7.0 and 40°C, respectively. The K(m) and V(max) for agarose were 4.87 mg/ml (4 × 10(-5) M) and 10.75 U/mg, respectively. Sco3487 did not require metal ions for its activity, but severe inhibition by Mn(2+) and Cu(2+) was observed. Thin-layer chromatography analysis, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and Fourier transform-nuclear magnetic resonance spectrometry of the Sco3487 hydrolysis products revealed that Sco3487 is both an exo- and endo-type β-agarase that degrades agarose, neoagarotetraose, and neoagarohexaose into neoagarobiose.
Collapse
|
14
|
Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochem Biophys Res Commun 2011; 412:238-44. [PMID: 21810409 DOI: 10.1016/j.bbrc.2011.07.073] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 11/21/2022]
Abstract
In agarolytic microorganisms, α-neoagarobiose hydrolase (NABH) is an essential enzyme to metabolize agar because it converts α-neoagarobiose (O-3,6-anhydro-alpha-l-galactopyranosyl-(1,3)-d-galactose) into fermentable monosaccharides (d-galactose and 3,6-anhydro-l-galactose) in the agarolytic pathway. NABH can be divided into two biological classes by its cellular location. Here, we describe a structure and function of cytosolic NABH from Saccharophagus degradans 2-40 in a native protein and d-galactose complex determined at 2.0 and 1.55 Å, respectively. The overall fold is organized in an N-terminal helical extension and a C-terminal five-bladed β-propeller catalytic domain. The structure of the enzyme-ligand (d-galactose) complex predicts a +1 subsite in the substrate binding pocket. The structural features may provide insights for the evolution and classification of NABH in agarolytic pathways.
Collapse
|
15
|
Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl Microbiol Biotechnol 2011; 92:749-59. [DOI: 10.1007/s00253-011-3347-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 12/01/2022]
|
16
|
Rebuffet E, Groisillier A, Thompson A, Jeudy A, Barbeyron T, Czjzek M, Michel G. Discovery and structural characterization of a novel glycosidase family of marine origin. Environ Microbiol 2011; 13:1253-70. [PMID: 21332624 DOI: 10.1111/j.1462-2920.2011.02426.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The genomic data on heterotrophic marine bacteria suggest the crucial role that microbes play in the global carbon cycle. However, the massive presence of hypothetical proteins hampers our understanding of the mechanisms by which this carbon cycle is carried out. Moreover, genomic data from marine microorganisms are essentially annotated in the light of the biochemical knowledge accumulated on bacteria and fungi which decompose terrestrial plants. However marine algal polysaccharides clearly differ from their terrestrial counterparts, and their associated enzymes usually constitute novel protein families. In this study, we have applied a combination of bioinformatics, targeted activity screening and structural biology to characterize a hypothetical protein from the marine bacterium Zobellia galactanivorans, which is distantly related to GH43 family. This protein is in fact a 1,3-α-3,6-anhydro-l-galactosidase (AhgA) which catalyses the last step in the degradation pathway of agars, a family of polysaccharides unique to red macroalgae. AhgA adopts a β-propeller fold and displays a zinc-dependent catalytic machinery. This enzyme is the first representative of a new family of glycoside hydrolases, especially abundant in coastal waters. Such genes of marine origin have been transferred to symbiotic microbes associated with marine fishes, but also with some specific human populations.
Collapse
Affiliation(s)
- Etienne Rebuffet
- UPMC University Paris 6 CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique de Roscoff, Roscoff, Bretagne, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Suzuki H, Sawai Y, Suzuki T, Kawai K. Purification and characterization of an extracellular alpha-neoagarooligosaccharide hydrolase from Bacillus sp. MK03. J Biosci Bioeng 2005; 93:456-63. [PMID: 16233232 DOI: 10.1016/s1389-1723(02)80092-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2001] [Accepted: 01/25/2002] [Indexed: 10/27/2022]
Abstract
An agarolytic bacterium was isolated from soil in Gifu prefecture, Japan, and identified as Bacillus sp. strain MK03. The strain secreted neoagarooligosaccharide hydroluse into the culture medium. The enzyme was purified 49.7-fold from the culture fluid by ammonium sulfate precipitation and anion-exchange and gel-filtration column chromatographic methods. The purified enzyme appeared as a single band on polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. Estimations of the molecular mass by gel filtration and SDS-PAGE gave values of 320 kDa and 42 kDa, respectively, indicating that the enzyme is octametric. The enzyme cleaved the alpha-1,3 linkage in neoagarobiose to produce 3,6-anhydro-L-galactose and D-galactose. It also selectively cleaved the alpha-1,3 linkage at the nonreducing end in neoagarotetraose or neoagarohexaose to give 3,6-anhydro-L-galactose and agarotriose or agaropentaose. The optimum temperature and pH for the enzyme were 30 degrees C and 6.1, respectively. The N-terminal amino acid sequence showed no homology to sequences of other known neoagarooligosaccharide hydrolases and agarases.
Collapse
Affiliation(s)
- Hisashi Suzuki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | | | | | | |
Collapse
|
18
|
Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, Czjzek M, Helbert W, Michel G, Barbeyron T. The endo-beta-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem J 2005; 385:703-13. [PMID: 15456406 PMCID: PMC1134745 DOI: 10.1042/bj20041044] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two beta-agarase genes, agaA and agaB, were functionally cloned from the marine bacterium Zobellia galactanivorans. The agaA and agaB genes encode proteins of 539 and 353 amino acids respectively, with theoretical masses of 60 and 40 kDa. These two beta-agarases feature homologous catalytic domains belonging to family GH-16. However, AgaA displays a modular architecture, consisting of the catalytic domain (AgaAc) and two C-terminal domains of unknown function which are processed during secretion of the enzyme. In contrast, AgaB is composed of the catalytic module and a signal peptide similar to the N-terminal signature of prokaryotic lipoproteins, suggesting that this protein is anchored in the cytoplasmic membrane. Gel filtration and electrospray MS experiments demonstrate that AgaB is a dimer in solution, while AgaAc is a monomeric protein. AgaAc and AgaB were overexpressed in Escherichia coli and purified to homogeneity. Both enzymes cleave the beta-(1-->4) linkages of agarose in a random manner and with retention of the anomeric configuration. Although they behave similarly towards liquid agarose, AgaAc is more efficient than AgaB in the degradation of agarose gels. Given these organizational and catalytic differences, we propose that, reminiscent of the agarolytic system of Pseudoalteromonas atlantica, AgaA is specialized in the initial attack on solid-phase agarose, while AgaB is involved with the degradation of agarose fragments.
Collapse
Affiliation(s)
- Murielle Jam
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Didier Flament
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Julie Allouch
- †Architecture et Fonction des Macromolécules Biologiques, UMR 6098, (CNRS/UAM I & II), 31 chemin Joseph Aiguier, F-13402 Marseille cedex 20, Provence, France
| | - Philippe Potin
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Laurent Thion
- ‡Plate-forme de Génotypage de la Ouest-Génopôle, Station Biologique, CNRS FR 2424, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne France
| | - Bernard Kloareg
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Mirjam Czjzek
- †Architecture et Fonction des Macromolécules Biologiques, UMR 6098, (CNRS/UAM I & II), 31 chemin Joseph Aiguier, F-13402 Marseille cedex 20, Provence, France
| | - William Helbert
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Gurvan Michel
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
| | - Tristan Barbeyron
- *Végétaux Marins et Biomolécules, UMR 7139 (CNRS/UPMC/Goëmar), Station Biologique, Place Georges Teissier, BP 74, 29682 Roscoff Cedex, Bretagne, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Vera, Alvarez, Murano, Slebe, Leon. Identification of a marine agarolytic pseudoalteromonas isolate and characterization of its extracellular agarase. Appl Environ Microbiol 1998; 64:4378-83. [PMID: 9797294 PMCID: PMC106656 DOI: 10.1128/aem.64.11.4378-4383.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/1998] [Accepted: 07/23/1998] [Indexed: 11/20/2022] Open
Abstract
The phenotypic and agarolytic features of an unidentified marine bacteria that was isolated from the southern Pacific coast was investigated. The strain was gram negative, obligately aerobic, and polarly flagellated. On the basis of several phenotypic characters and a phylogenetic analysis of the genes coding for the 16S rRNA, this strain was identified as Pseudoalteromonas antarctica strain N-1. In solid agar, this isolate produced a diffusible agarase that caused agar softening around the colonies. An extracellular agarase was purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography on DEAE-cellulose. The purified protein was determined to be homogeneous on the basis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it had a molecular mass of 33 kDa. The enzyme hydrolyzed the beta-1,4-glycosydic linkages of agar, yielding neoagarotetraose and neoagarohexaose as the main products, and exhibited maximal activity at pH 7. The enzyme was stable at temperatures up to 30 degreesC, and its activity was not affected by salt concentrations up to 0.5 M NaCl.
Collapse
Affiliation(s)
- Vera
- Instituto de Bioquimica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | |
Collapse
|
20
|
Morita T, Lim HJ, Karube I. Enzymatic hydrolysis of polysaccharides in water-immiscible organic solvent, biphasic systems. J Biotechnol 1995. [DOI: 10.1016/0168-1656(94)00131-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Sugano Y, Kodama H, Terada I, Yamazaki Y, Noma M. Purification and characterization of a novel enzyme, alpha-neoagarooligosaccharide hydrolase (alpha-NAOS hydrolase), from a marine bacterium, Vibrio sp. strain JT0107. J Bacteriol 1994; 176:6812-8. [PMID: 7961439 PMCID: PMC197048 DOI: 10.1128/jb.176.22.6812-6818.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A novel enzyme, alpha-neoagarooligosaccharide hydrolase (EC 3.2.1.-), which hydrolyzes the alpha-1,3 linkage of neoagarooligosaccharides to yield agaropentaose (O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro-alpha-L-galactopyranosyl (1-->3)-D-galactose], agarotriose [O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro- alpha-L-galactopyranosyl (1-->3)-D-galactose], agarobiose [O-beta-D-galactopyranosyl(1-->4)-3,6-anhydro-L-galactose], 3,6-anhydro-L-galactose, and D-galactose was isolated from the marine bacterium Vibrio sp. strain JT0107 and characterized. This enzyme was purified 383-fold from cultured cells by using a combination of ammonium sulfate precipitation, successive anion-exchange column chromatography, gel filtration, and hydroxyapatite chromatography, gel filtration, and hydroxyapatite chromatography. The purified protein gave a single band (M(r), 42,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Estimation of the M(r) by the gel filtration method gave a value of 84,000, indicating that the enzyme is dimeric. Amino acid sequence analysis revealed it to have a single N-terminal sequence that has no sequence homology to any other known agarases. The optimum temperature and pH were 30 degrees C and 7.7, respectively. The Km and maximum rate of metabolism for neoagarobiose were 5.37 mM and 92 U/mg of protein, respectively.
Collapse
Affiliation(s)
- Y Sugano
- Seawater Science Research Laboratory, Japan Tobacco Inc., Kanagawa
| | | | | | | | | |
Collapse
|
22
|
Morrice LM, McLean MW, Williamson FB, Long WF. beta-agarases I and II from Pseudomonas atlantica. Purifications and some properties. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 135:553-8. [PMID: 6617649 DOI: 10.1111/j.1432-1033.1983.tb07688.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The agarose-degrading system of Pseudomonas atlantica has been re-examined. In addition to the previously reported extracellular endo-beta-agarase [Yaphe, W. (1966) in Proceedings 5th International Seaweed Symposium, pp. 333-335] a second, membrane-bound endo-enzyme activity, beta-agarase II has been discovered. These two enzymes act in concert to degrade agarose to neoagarobiose [3,6-anhydro-alpha-L-galactopyranosyl-(1 leads to 3)-D-galactose] and also to degrade partially 6-O-methylated agarose to neoagarobiose and 6(1)-O-methyl-neoagarbiose. Novel assays were devised for beta-agarase II and the associated disaccharidase, neoagarobiose hydrolase. These allowed the critical purification of beta-agarase I and II. beta-Agarase I was purified 670-fold from the bacterial medium by a new method using ammonium sulphate precipitation and gel filtration on Sephadex G-100. The enzyme was resolved from the small amount of extracellular beta-agarase II. Dodecylsulphate/polyacrylamide gel electrophoresis indicated a homogeneous protein and a molecular weight of 32000. Activity was observed against agar over the pH range 3.0-9.0 and optimally at pH 7.0. The enzyme could be used indefinitely at 30 degrees C but only for up to 2 h at 40 degrees C. beta-Agarase II was partially purified (5-fold) from the soluble fraction of disrupted cells by chromatography on Sephadex G-100, hydroxyapatite and DEAE-Sepharose CL-6B. This preparation was free of beta-agarase I and disaccharidase. beta-Agarase II was stimulated by NaCl, optimally in the range 0.10-0.20 mol dm-3 (2.4-fold the activity at 0.010 mol dm-3 NaCl). Alkali earth metal (0.002 mol dm-3 CaCl2 or 0.005 mol dm-3 MgCl2) gave 1.2-fold the normal activity. Optimum activity was over pH 6.5-7.5.
Collapse
|
23
|
McLean MW, Williamson FB. Neocarratetraose 4-O-monosulphate beta-hydrolase from Pseudomonas carrageenovora. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 113:447-56. [PMID: 7215336 DOI: 10.1111/j.1432-1033.1981.tb05084.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Wiersma M, Harder W. A continuous culture study of the regulation of extracellular protease production in Vibrio SA1. Antonie Van Leeuwenhoek 1978; 44:141-55. [PMID: 582093 DOI: 10.1007/bf00643217] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During growth of Vibrio SA1 in a lactate-limited chemostate in the presence of 2mM phenylalanine as an inducer, the rate of production of two proteolytic enzymes, namely an endopeptidase and an aminopeptidase, was dependent upon the dilution rate. An optimum in the rate of synthesis of both proteases was observed at a dilution rate of 0.23 h-1 and enzyme production only occurred between dilution rates of 0.06 and 0.45 h-1. Without inducer a low rate of aminopeptidase production was found with an optimum at 0.19 h-1, but only trace amounts of endopeptidase were detectable in the culture. In the presence of inducer the rate of enzyme production increased with increasing dilution rates over the range 0.06 to 0.23 h-1 which was explained by an increase in saturation of inducer sites. The progressive decrease in the rate of protease production at higher dilution rates was ascribed to an increasing effect of catabolite repression by the increasing concentration of the growth substrate. It was shown that 5 mM cyclic AMP could not relieve catabolite repression caused by glucose or lactate. Repression of protease production also occurred in the presence of higher concentrations (5 mM) phenylalanine and other amino acids and by ammonium ions. It is suggested that the energy-status of the cell may play an important role in the regulation of protease synthesis in Vibrio SA1.
Collapse
|
25
|
Meulen HJ, Harder W. The regulation of agarase production by resting cells of Cytophaga flevenis. Antonie Van Leeuwenhoek 1976; 42:277-86. [PMID: 10834 DOI: 10.1007/bf00394124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The regulation of the synthesis of extracellular agarase by Cytophaga flevensis was studied in resting-cell suspensions. Enzyme synthesis was strictly dependent on the presence of a suitable inducer. Enzyme production was maximal at 20 C in phosphate buffer pH 6.9 in the presence of 1.3 mM calcium chloride, 0.03% casamino acids and inducer. Enzyme production was virtually the same at 15 and 20 C, reduced to 50% at 25 C and was not detectable at 30 C. It was highly stimulated by the presence of 0.03% of casamino acids in the incubation mixture and was also favoured by the presence of 1.3 mM calcium ions. Of a variety of compounds tested, only melibiose or neoagaro-oligosaccharides were effective inducers. Among the neoagaro-oligosaccharides, neoagarotetraose was the best inducer. At higher concentrations of inducer compounds catabolite repression of enzyme synthesis was apparent. This was also found when glucose was added to the incubation mixture. This repression was not relieved by the addition of cyclic AMP. Indications were found that the excretion process was limiting the rate of production of extracellular enzyme
Collapse
|