1
|
Molecular mechanisms of transcription factor mediated cell reprogramming: conversion of liver to pancreas. Biochem Soc Trans 2021; 49:579-590. [PMID: 33666218 PMCID: PMC8106502 DOI: 10.1042/bst20200219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Transdifferentiation is a type of cellular reprogramming involving the conversion of one differentiated cell type to another. This remarkable phenomenon holds enormous promise for the field of regenerative medicine. Over the last 20 years techniques used to reprogram cells to alternative identities have advanced dramatically. Cellular identity is determined by the transcriptional profile which comprises the subset of mRNAs, and therefore proteins, being expressed by a cell at a given point in time. A better understanding of the levers governing transcription factor activity benefits our ability to generate therapeutic cell types at will. One well-established example of transdifferentiation is the conversion of hepatocytes to pancreatic β-cells. This cell type conversion potentially represents a novel therapy in T1D treatment. The identification of key master regulator transcription factors (which distinguish one body part from another) during embryonic development has been central in developing transdifferentiation protocols. Pdx1 is one such example of a master regulator. Ectopic expression of vector-delivered transcription factors (particularly the triumvirate of Pdx1, Ngn3 and MafA) induces reprogramming through broad transcriptional remodelling. Increasingly, complimentary cell culture techniques, which recapitulate the developmental microenvironment, are employed to coax cells to adopt new identities by indirectly regulating transcription factor activity via intracellular signalling pathways. Both transcription factor-based reprogramming and directed differentiation approaches ultimately exploit transcription factors to influence cellular identity. Here, we explore the evolution of reprogramming and directed differentiation approaches within the context of hepatocyte to β-cell transdifferentiation focussing on how the introduction of new techniques has improved our ability to generate β-cells.
Collapse
|
2
|
Hunt SM, Pak SC, Bridges MW, Gray PP, Sleigh MJ. Chinese hamster ovary cells produce sufficient recombinant insulin-like growth factor I to support growth in serum-free medium. Serum-free growth of IGF-I-producing CHO cells. Cytotechnology 2012; 24:55-64. [PMID: 22358597 DOI: 10.1023/a:1007969502256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insulin-like growth factor I has similar mitogenic effects to insulin, a growth factor required by most cells in culture, and it can replace insulin in serum-free formulations for some cells. Chinese Hamster Ovary cells grow well in serum-free medium with insulin and transferrin as the only exogenous growth factors. An alternative approach to addition of exogenous growth factors to serum-free medium is transfection of host cells with growth factor-encoding genes, permitting autocrine growth. Taking this approach, we constructed an IGF-I heterologous gene driven by the cytomegalovirus promoter, introduced it into Chinese Hamster Ovary cells and examined the growth characteristics of Insulin-like growth factor I-expressing clonal cells in the absence of the exogenous factor. The transfected cells secreted up to 500 ng/10(6) cells/day of mature Insulin-like growth factor I into the conditioned medium and as a result they grew autonomously in serum-free medium containing transferrin as the only added growth factor. This growth-stimulating effect, observed under both small and large scale culture conditions, was maximal since no further improvement was observed in the presence of exogenous insulin.
Collapse
Affiliation(s)
- S M Hunt
- Department of Biotechnology, University of New South Wales, Kensington, NSW, Australia
| | | | | | | | | |
Collapse
|
3
|
Bottino R, Lemarchand P, Trucco M, Giannoukakis N. Gene- and cell-based therapeutics for type I diabetes mellitus. Gene Ther 2003; 10:875-89. [PMID: 12732873 DOI: 10.1038/sj.gt.3302015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type 1 diabetes mellitus, an autoimmune disorder is an attractive candidate for gene and cell-based therapy. From the use of gene-engineered immune cells to induce hyporesponsiveness to autoantigens to islet and beta cell surrogate transplants expressing immunoregulatory genes to provide a local pocket of immune privilege, these strategies have demonstrated proof of concept to the point where translational studies can be initiated. Nonetheless, along with the proof of concept, a number of important issues have been raised by the choice of vector and expression system as well as the point of intervention; prophylactic or therapeutic. An assessment of the current state of the science and potential leads to the conclusion that some strategies are ready for safety trials while others require varying degrees of technical and conceptual refinement.
Collapse
Affiliation(s)
- R Bottino
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
4
|
Giannoukakis N, Robbins PD. Gene and cell therapies for diabetes mellitus: strategies and clinical potential. BioDrugs 2003; 16:149-73. [PMID: 12102644 DOI: 10.2165/00063030-200216030-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The last 5 years have witnessed an explosion in the use of genes and cells as biomedicines. While primarily aimed at cancer, gene engineering and cell therapy strategies have additionally been used for Mendelian, neurodegenerative and metabolic disorders. The main focus of gene and cell therapy strategies in metabolism has been diabetes mellitus. This disease is a disorder of glucose homeostasis, either due to the immune-mediated eradication of pancreatic beta cells in the islets of Langerhans (type 1 diabetes) or resulting from insulin resistance and obesity syndromes where the insulin-producing capability of the beta cell is ultimately exhausted in the face of insensitivity to the effects of insulin in the peripheral glucose-utilising tissues (type 2 diabetes). A significant number of animal studies have demonstrated the potential in restoring normoglycaemia by islet transplantation in the context of immunoregulation achieved by gene transfer of immunoregulatory genes to allo- and xenogeneic islets ex vivo. Additionally, gene and cell therapy has also been used to induce tolerance to auto- and alloantigens and to generate the tolerant state in autoimmune rodent animal models of type 1 diabetes or rodent recipients of allogeneic/xenogeneic islet transplants. The achievements of gene and cell therapy in type 2 diabetes are less evident, but seminal studies promise that this modality can be relevant to treat and perhaps prevent the underlying causes of the disease. Here we present an overview of the current status of gene and cell therapy for type 1 and 2 diabetes and we propose potential therapeutic options that could be clinically useful. For type 1 diabetes, transplantation of islets engineered to evade or suppress the recipient immune response is the most readily-available technology today. A number of gene delivery vectors encoding proteins that impair a variety of immune cells have already been examined and proven versatile. More challenging but, nonetheless, just over the horizon are attempts to promote tolerance to islet allografts. Type 2 diabetes will likely require a better understanding of the processes that determine insulin sensitivity in the periphery. Targeting tissues such as muscle and fat with vectors encoding genes whose products promote insulin sensitivity and glucose uptake is an approach that does not carry with it the side-effects often associated with pharmacologic agents currently in use. In the end, progress in vector design, elucidation of antigen-specific immunity and insulin sensitivity will provide the framework for gene drug use in the treatment of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
5
|
Bottino R, Balamurugan AN, Giannoukakis N, Trucco M. Islet/pancreas transplantation: challenges for pediatrics. Pediatr Diabetes 2002; 3:210-23. [PMID: 15016150 DOI: 10.1034/j.1399-5448.2002.30408.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beta cell replacement is a valid alternative to exogenous insulin injections to treat type 1 diabetic patients. The rate of success obtained after whole-pancreas transplantation, performed alone or in combination with kidney, and, as shown recently, by islet transplantation, justifies optimism and sets the stage for a larger clinical application of these approaches. Lifetime immunosuppression, however, required to protect the graft against recurrent autoimmune destruction and allorejection, raises serious doubts about the safety of its employment in children. While it is evident that children may be helped even more than adults by the possibility to correct diabetic metabolic disorders without exogenous insulin, and to lower in a more effective way the chance to develop secondary complications, the drawbacks of the currently used immunosuppressive drugs largely overcome the potential benefits. A great step forward for immediate applicability of transplantation to children involves the optimization of tolerogenic protocols and a better understanding of the concept of immune ignorance. Functional tolerance should be sufficient to entail the absence of immune reactivity against self- and graft antigens, while maintaining immune reactivity against other non-self, non-donor antigens. In addition, novel strategies aimed at utilizing surrogate beta cells obtained from non-islet cells, or by genetic manipulation of beta-cell precursors merit consideration as the use of xenogeneic donors. However, much work is still needed for their safe clinical implementation.
Collapse
Affiliation(s)
- Rita Bottino
- Diabetes Institute, Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
6
|
Short DK, Okada S, Yamauchi K, Pessin JE. Adenovirus-mediated transfer of a modified human proinsulin gene reverses hyperglycemia in diabetic mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E748-56. [PMID: 9814992 DOI: 10.1152/ajpendo.1998.275.5.e748] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human proinsulin cDNA was introduced into a replication-defective adenovirus and was found to confer proinsulin expression to a hepatocyte (H4-II-E) cell line upon infection. A second virus was constructed in which the dibasic prohormone convertase recognition sequence was mutated to a tetrabasic furin cleavage site. Cells infected with this virus synthesized both proinsulin and mature insulin. Gel filtration chromatography, competition of insulin binding, and activation of the insulin receptor kinase activity demonstrated that this mature insulin was functionally identical to that of authentic processed insulin. Injection of these viral constructs into the external jugular vein of mice resulted in insulin gene expression in the liver. Expression from the mutated proinsulin virus dramatically improved the glycemic state of diabetic mice. However, the effects of the viral infection were transient, being maximal at approximately 5-7 days and returning to steady-state levels by 14-21 days. These data demonstrate that somatic cell insulin gene delivery by the use of recombinant adenovirus can be used to transiently reverse the diabetic state in mice.
Collapse
Affiliation(s)
- D K Short
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
7
|
Zambre Y, Ling Z, Hou X, Foriers A, Van Den Bogaert B, Van Schravendijk C, Pipeleers D. Effect of glucose on production and release of proinsulin conversion products by cultured human islets. J Clin Endocrinol Metab 1998; 83:1234-8. [PMID: 9543147 DOI: 10.1210/jcem.83.4.4715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Isolated human islets were examined for the rates of conversion and release of newly formed (pro)insulin-like peptides. The rate of proinsulin (PI) conversion was 2-fold slower in human beta-cells (t(1/2) = 50 min) than in rat beta-cells (t(1/2) = 25 min). During the first hour following labeling of newly synthesized proteins, PI represented the main newly formed hormonal peptide in the medium; its release was stimulated 2-fold over the basal level by 20 mmol/L glucose. During the second hour, newly synthesized hormone was mainly released as insulin, with 10- to 20-fold higher rates at 20 mmol/L glucose. Prolonged preculture of the islets at 20 mmol/L glucose did not delay PI conversion, but markedly increased the release of newly formed PI, des(31,32)-PI, and insulin at both low and high glucose levels. Our data demonstrate that 1) the release of PI provides an extracellular index for the hormone biosynthetic activity of human beta-cells; 2) an acute rise in glucose exerts a stronger amplification of the release of converted hormone than in that of nonconverted hormone; and 3) prolonged exposure to high glucose levels results in an elevated basal release of converted and nonconverted PI; this elevation is not associated with a delay in PI conversion, but is attributed to the hyperactivated state of the human beta-cell population, which was recently found to be responsible for an elevation in basal rates of hormone synthesis. These in vitro observations on human beta-cells provide a possible explanation for the altered circulating (pro)insulin levels measured in nondiabetic and noninsulin-dependent diabetic subjects.
Collapse
Affiliation(s)
- Y Zambre
- Diabetes Research Center and the Department of Pharmaceutical and Biochemical Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Hunt SM, Tait AS, Gray PP, Sleigh MJ. Processing of mutated human proinsulin to mature insulin in the non-endocrine cell line, CHO. Cytotechnology 1996; 21:279-88. [PMID: 9004539 DOI: 10.1007/bf00365350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heterologous genes encoding proproteins, including proinsulin, generally produce mature protein when expressed in endocrine cells while unprocessed or partially processed protein is produced in non-endocrine cells. Proproteins, which are normally processed in the regulated pathway restricted to endocrine cells, do not always contain the recognition sequence for cleavage by furin, the endoprotease specific to the constitutive pathway, the principal protein processing pathway in non-endocrine cells. Human proinsulin consists of B-Chain-C-peptide-A-Chain and cleavage at the B/C and C/A junctions is required for processing. The B/C, but not the C/A junction, is recognised and cleaved in the constitute pathway. We expressed a human proinsulin and a mutated proinsulin gene with an engineered furin recognition sequence at the C/A junction and compared the processing efficiency of the mutant and native proinsulin in Chinese Hamster Ovary cells. The processing efficiency of the mutant proinsulin was 56% relative to 0.7% for native proinsulin. However, despite similar levels of mRNA being expressed in both cell lines, the absolute levels of immunoreactive insulin, normalized against mRNA levels, were 18-fold lower in the mutant proinsulin-expressing cells. As a result, there was only a marginal increase in absolute levels of insulin produced by these cells. This unexpected finding may result from preferential degradation of insulin in non-endocrine cells which lack the protection offered by the secretory granules found in endocrine cells.
Collapse
Affiliation(s)
- S M Hunt
- Department of Biotechnology, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
9
|
Abstract
Proinsulin is converted to insulin in beta-cell granules. Conversion involves endoproteolytic cleavage at the two pairs of basic residues linking the insulin A- and B-chains to C-peptide. The sequence of events leading to complete conversion differs from one proinsulin species to the next. In man, the structure of the proinsulin molecule is such as to favour cleavage at the B-chain/C-peptide junction leading to the generation of des-31,32 split proinsulin as the predominant, naturally occurring conversion intermediate. Under normal circumstances, proinsulin conversion is largely completed before secretion, and neither the intact prohormone nor conversion intermediates are thus encountered in large quantities in the circulation. In some pathological situations, including non-insulin-dependent diabetes, insulinoma and familial hyperproinsulinaemia, unusually high ratios of des-31,32 split proinsulin and/or proinsulin to insulin have been reported. As we understand the biochemistry of proinsulin conversion in increasingly fine molecular detail, it should become possible to make use of such unusual ratios to provide insight into lesions underlying altered beta-cell function in disease states.
Collapse
Affiliation(s)
- P A Halban
- Laboratoires de Recherche Louis Jeantet, Centre Médical Universitaire, Geneva, Switzerland
| |
Collapse
|