1
|
Rajova J, Zeman M, Seidlerova Z, Vlasatikova L, Matiasovicova J, Sebkova A, Faldynova M, Prikrylova H, Karasova D, Crhanova M, Kulich P, Babak V, Volf J, Rychlik I. In Vivo Expression of Chicken Gut Anaerobes Identifies Carbohydrate- or Amino Acid-Utilising, Motile or Type VI Secretion System-Expressing Bacteria. Int J Mol Sci 2024; 25:6505. [PMID: 38928209 PMCID: PMC11204068 DOI: 10.3390/ijms25126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Complex gut microbiota increases chickens' resistance to enteric pathogens. However, the principles of this phenomenon are not understood in detail. One of the possibilities for how to decipher the role of gut microbiota in chickens' resistance to enteric pathogens is to systematically characterise the gene expression of individual gut microbiota members colonising the chicken caecum. To reach this aim, newly hatched chicks were inoculated with bacterial species whose whole genomic sequence was known. Total protein purified from the chicken caecum was analysed by mass spectrometry, and the obtained spectra were searched against strain-specific protein databases generated from known genomic sequences. Campylobacter jejuni, Phascolarctobacterium sp. and Sutterella massiliensis did not utilise carbohydrates when colonising the chicken caecum. On the other hand, Bacteroides, Mediterranea, Marseilla, Megamonas, Megasphaera, Bifidobacterium, Blautia, Escherichia coli and Succinatimonas fermented carbohydrates. C. jejuni was the only motile bacterium, and Bacteroides mediterraneensis expressed the type VI secretion system. Classification of in vivo expression is key for understanding the role of individual species in complex microbial populations colonising the intestinal tract. Knowledge of the expression of motility, the type VI secretion system, and preference for carbohydrate or amino acid fermentation is important for the selection of bacteria for defined competitive exclusion products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ivan Rychlik
- Veterinary Research Institute, CZ6210 Brno, Czech Republic; (J.R.); (M.Z.); (Z.S.); (L.V.); (J.M.); (A.S.); (M.F.); (H.P.); (D.K.); (M.C.); (P.K.); (V.B.); (J.V.)
| |
Collapse
|
2
|
Chen Q, Lyu W, Pan C, Ma L, Sun Y, Yang H, Wang W, Xiao Y. Tracking investigation of archaeal composition and methanogenesis function from parental to offspring pigs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172078. [PMID: 38582109 DOI: 10.1016/j.scitotenv.2024.172078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Archaea play a crucial role in microbial systems, including driving biochemical reactions and affecting host health by producing methane through hydrogen. The study of swine gut archaea has a positive significance in reducing methane emissions and improving feed utilization efficiency. However, the development and functional changes of archaea in the pig intestines have been overlooked for a long time. In this study, 54 fecal samples were collected from 36 parental pigs (18 boars and 18 pregnant/lactating sows), and 108 fecal samples from 18 offspring pigs during lactation, nursery, growing, and finishing stages were tracked and collected for metagenomic sequencing. We obtained 14 archaeal non-redundant metagenome-assembled genomes (MAGs). These archaea were classified as Methanobacteriota and Thermoplasmatota at the phylum level, and Methanobrevibacter, Methanosphaera, MX-02, and UBA71 at the genus level, involving hydrogenotrophic, methylotrophic, and acetoclastic pathways. The hydrogenotrophic pathway dominated the methanogenesis function, and the vast majority of archaea participated in it. Dietary changes profoundly affected the archaeal composition and methanogenesis function in pigs. The abundance of hydrogen-producing bacteria in parental pigs fed high-fiber diets was higher than that in offspring pigs fed low-fiber diets. The methanogenesis function was positively correlated with fiber decomposition functions and negatively correlated with the starch decomposition function. Increased abundance of sulfate reductase and fumarate reductase, as well as decreased acetate/propionate ratio, indicated that the upregulation of alternative hydrogen uptake pathways competing with methanogens may be the reason for the reduced methanogenesis function. These findings contribute to providing information and direction in the pig industry for the development of strategies to reduce methane emissions, improve feed efficiency, and maintain intestinal health.
Collapse
Affiliation(s)
- Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chenglin Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
3
|
van der Stel AX, Wösten MMSM. Regulation of Respiratory Pathways in Campylobacterota: A Review. Front Microbiol 2019; 10:1719. [PMID: 31417516 PMCID: PMC6682613 DOI: 10.3389/fmicb.2019.01719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
The Campylobacterota, previously known as Epsilonproteobacteria, are a large group of Gram-negative mainly, spiral-shaped motile bacteria. Some members like the Sulfurospirillum spp. are free-living, while others such as Helicobacter spp. can only persist in strict association with a host organism as commensal or as pathogen. Species of this phylum colonize diverse habitats ranging from deep-sea thermal vents to the human stomach wall. Despite their divergent environments, they share common energy conservation mechanisms. The Campylobacterota have a large and remarkable repertoire of electron transport chain enzymes, given their small genomes. Although members of recognized families of transcriptional regulators are found in these genomes, sofar no orthologs known to be important for energy or redox metabolism such as ArcA, FNR or NarP are encoded in the genomes of the Campylobacterota. In this review, we discuss the strategies that members of Campylobacterota utilize to conserve energy and the corresponding regulatory mechanisms that regulate the branched electron transport chains in these bacteria.
Collapse
Affiliation(s)
| | - Marc M. S. M. Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
van der Stel AX, Boogerd FC, Huynh S, Parker CT, van Dijk L, van Putten JPM, Wösten MMSM. Generation of the membrane potential and its impact on the motility, ATP production and growth in Campylobacter jejuni. Mol Microbiol 2017; 105:637-651. [PMID: 28586527 DOI: 10.1111/mmi.13723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 02/06/2023]
Abstract
The generation of a membrane potential (Δψ), the major constituent of the proton motive force (pmf), is crucial for ATP synthesis, transport of nutrients and flagellar rotation. Campylobacter jejuni harbors a branched electron transport chain, enabling respiration with different electron donors and acceptors. Here, we demonstrate that a relatively high Δψ is only generated in the presence of either formate as electron donor or oxygen as electron acceptor, in combination with an acceptor/donor respectively. We show the necessity of the pmf for motility and growth of C. jejuni. ATP generation is not only accomplished by oxidative phosphorylation via the pmf, but also by substrate-level phosphorylation via the enzyme AckA. In response to a low oxygen tension, C. jejuni increases the transcription and activity of the donor complexes formate dehydrogenase (FdhABC) and hydrogenase (HydABCD) as well as the transcription of the alternative respiratory acceptor complexes. Our findings suggest that in the gut of warm-blooded animals, C. jejuni depends on at least formate or hydrogen as donor (in the anaerobic lumen) or oxygen as acceptor (near the epithelial cells) to generate a pmf that sustains efficient motility and growth for colonization and pathogenesis.
Collapse
Affiliation(s)
| | - Fred C Boogerd
- Department of Molecular Cell Biology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Craig T Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Linda van Dijk
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Kruse S, Goris T, Wolf M, Wei X, Diekert G. The NiFe Hydrogenases of the Tetrachloroethene-Respiring Epsilonproteobacterium Sulfurospirillum multivorans: Biochemical Studies and Transcription Analysis. Front Microbiol 2017; 8:444. [PMID: 28373866 PMCID: PMC5357620 DOI: 10.3389/fmicb.2017.00444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
The organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans is able to grow with hydrogen as electron donor and with tetrachloroethene (PCE) as electron acceptor; PCE is reductively dechlorinated to cis-1,2-dichloroethene. Recently, a genomic survey revealed the presence of four gene clusters encoding NiFe hydrogenases in its genome, one of which is presumably periplasmic and membrane-bound (MBH), whereas the remaining three are cytoplasmic. To explore the role and regulation of the four hydrogenases, quantitative real-time PCR and biochemical studies were performed with S. multivorans cells grown under different growth conditions. The large subunit genes of the MBH and of a cytoplasmic group 4 hydrogenase, which is assumed to be membrane-associated, show high transcript levels under nearly all growth conditions tested, pointing toward a constitutive expression in S. multivorans. The gene transcripts encoding the large subunits of the other two hydrogenases were either not detected at all or only present at very low amounts. The presence of MBH under all growth conditions tested, even with oxygen as electron acceptor under microoxic conditions, indicates that MBH gene transcription is not regulated in contrast to other facultative hydrogen-oxidizing bacteria. The MBH showed quinone-reactivity and a characteristic UV/VIS spectrum implying a cytochrome b as membrane-integral subunit. Cell extracts of S. multivorans were subjected to native polyacrylamide gel electrophoresis (PAGE) and hydrogen oxidizing activity was tested by native staining. Only one band was detected at about 270 kDa in the particulate fraction of the extracts, indicating that there is only one hydrogen-oxidizing enzyme present in S. multivorans. An enrichment of this enzyme and SDS PAGE revealed a subunit composition corresponding to that of the MBH. From these findings we conclude that the MBH is the electron-donating enzyme system in the PCE respiratory chain. The roles for the other three hydrogenases remain unproven. The group 4 hydrogenase might be involved in hydrogen production upon fermentative growth.
Collapse
Affiliation(s)
- Stefan Kruse
- Department of Applied and Ecological Microbiology, Institute of Microbiology Friedrich Schiller University, Germany
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology Friedrich Schiller University, Germany
| | - Maria Wolf
- Department of Applied and Ecological Microbiology, Institute of Microbiology Friedrich Schiller University, Germany; Dianovis GmbHGreiz, Germany
| | - Xi Wei
- Department of Applied and Ecological Microbiology, Institute of Microbiology Friedrich Schiller University, Germany; Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZLeipzig, Germany; YMC Europe GmbHDinslaken, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology Friedrich Schiller University, Germany
| |
Collapse
|
6
|
Epps SVR, Harvey RB, Hume ME, Phillips TD, Anderson RC, Nisbet DJ. Foodborne Campylobacter: infections, metabolism, pathogenesis and reservoirs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6292-304. [PMID: 24287853 PMCID: PMC3881114 DOI: 10.3390/ijerph10126292] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/08/2013] [Accepted: 11/09/2013] [Indexed: 11/17/2022]
Abstract
Campylobacter species are a leading cause of bacterial-derived foodborne illnesses worldwide. The emergence of this bacterial group as a significant causative agent of human disease and their propensity to carry antibiotic resistance elements that allows them to resist antibacterial therapy make them a serious public health threat. Campylobacter jejuni and Campylobacter coli are considered to be the most important enteropathogens of this genus and their ability to colonize and survive in a wide variety of animal species and habitats make them extremely difficult to control. This article reviews the historical and emerging importance of this bacterial group and addresses aspects of the human infections they cause, their metabolism and pathogenesis, and their natural reservoirs in order to address the need for appropriate food safety regulations and interventions.
Collapse
Affiliation(s)
- Sharon V. R. Epps
- Food & Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; E-Mails: (R.B.H.); (M.E.H.); (D.J.N)
- Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77845, USA; E-Mails: (S.V.R.E.); (T.D.P.)
| | - Roger B. Harvey
- Food & Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; E-Mails: (R.B.H.); (M.E.H.); (D.J.N)
| | - Michael E. Hume
- Food & Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; E-Mails: (R.B.H.); (M.E.H.); (D.J.N)
| | - Timothy D. Phillips
- Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77845, USA; E-Mails: (S.V.R.E.); (T.D.P.)
| | - Robin C. Anderson
- Food & Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; E-Mails: (R.B.H.); (M.E.H.); (D.J.N)
| | - David J. Nisbet
- Food & Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; E-Mails: (R.B.H.); (M.E.H.); (D.J.N)
| |
Collapse
|
7
|
Lynch Ó, Cagney C, McDowell D, Duffy G. A method for the growth and recovery of 17 species of Campylobacter and its subsequent application to inoculated beef. J Microbiol Methods 2010; 83:1-7. [DOI: 10.1016/j.mimet.2010.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/28/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022]
|
8
|
Anderson RC, Flythe MD, Krueger NA, Callaway TR, Edrington TS, Harvey RB, Nisbet DJ. Decreased competiveness of the foodborne pathogen Campylobacter jejuni during Co-culture with the hyper-ammonia producing anaerobe Clostridium aminophilum. Folia Microbiol (Praha) 2010; 55:309-11. [PMID: 20680559 DOI: 10.1007/s12223-010-0046-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/14/2010] [Indexed: 11/25/2022]
Abstract
Campylobacter spp. are a leading bacterial cause of human foodborne illness. When cocultured in anaerobic Bolton broth with the hyper-ammonia producing bacterium, Clostridium aminophilum, ammonia accumulation was greater and final growth of Campylobacter jejuni was reduced (CFU>or=1.4 log10/mL) compared to that obtained by pure culture controls. Co-culture with the less active ammonia-producing saccharolytic Prevotella albensis had no effect on final C. jejuni concentrations. When co-cultured similarly except with the addition of 10 micromol/L monensin, monensin-susceptible Cl. aminophilum was reduced by 2 to 4 log10 CFU/mL and concentrations of C. jejuni, which is insensitive to monensin, did not differ from its pure culture control. These results suggest that in the absence of added monensin, the hyper ammonia-producing Cl. aminophilum may be able to outcompete asaccharolytic C. jejuni for amino acid substrates and that this competitive ability was eliminated by addition on monensin.
Collapse
Affiliation(s)
- R C Anderson
- Food & Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Belkin S, Wirsen CO, Jannasch HW. Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 2010; 49:1057-61. [PMID: 16346781 PMCID: PMC238504 DOI: 10.1128/aem.49.5.1057-1061.1985] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reduction of elemental sulfur was studied in the presence and absencè of thermophilic sulfur-reducing bacteria, at temperatures ranging from 65 to 110 degrees C, in anoxic artificial seawater media. Above 80 degrees C, significant amounts of sulfide were produced abiologically at linear rates, presumably by the disproportionation of sulfur. These rates increased with increasing temperature and pH and were enhanced by yeast extract. In the same medium, the sulfur respiration of two recent thermophilic isolates, a eubacterium and an archaebacterium, resulted in sulfide production at exponential rates. Although not essential for growth, sulfur increased the cell yield in both strains up to fourfold. It is suggested that sulfur respiration is favored at high temperatures and that this process is not limited to archaebacteria, but is shared by other extreme thermophiles.
Collapse
Affiliation(s)
- S Belkin
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | | | | |
Collapse
|
10
|
Finster K, Bak F. Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, gram-negative, sulfur-reducing eubacteria. Appl Environ Microbiol 2010; 59:1452-60. [PMID: 16348934 PMCID: PMC182103 DOI: 10.1128/aem.59.5.1452-1460.1993] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic enrichment cultures with either propionate, succinate, lactate, or valerate and elemental sulfur and inocula from shallow marine or deep-sea sediments were dominated by rod-shaped motile bacteria after three transfers. By application of deep-agar dilutions, five eubacterial strains were obtained in pure culture and designated Kyprop, Gyprop, Kysw2, Gylac, and Kyval. All strains were gram negative and grew by complete oxidation of the electron donors and concomitant stoichiometric reduction of elemental sulfur to hydrogen sulfide. The isolates used acetate, propionate, succinate, lactate, pyruvate, oxaloacetate, maleate, glutamate, alanine, aspartate, and yeast extract. All isolates, except strain Gylac, used citrate as an electron donor but valerate was oxidized only by strain Kyval. Fumarate and malate were degraded by all strains without an additional electron donor or acceptor. Kyprop, Gyprop, and Gylac utilized elemental sulfur as the sole inorganic electron acceptor, while Kysw2 and Kyval also utilized nitrate, dimethyl sulfoxide, or Fe(III)-citrate as an electron acceptor.
Collapse
Affiliation(s)
- K Finster
- Institute of Biological Sciences, Department of Microbial Ecology, University of Arhus, Ny Munkegade, DK-8000 Arhus C, Denmark, and Max-Planck-Institut für Terrestrische Mikrobiologie, D-3550 Marburg, Germany
| | | |
Collapse
|
11
|
Iasur-Kruh L, Ronen Z, Arbeli Z, Nejidat A. Characterization of an enrichment culture debrominating tetrabromobisphenol A and optimization of its activity under anaerobic conditions. J Appl Microbiol 2010; 109:707-715. [PMID: 20202021 DOI: 10.1111/j.1365-2672.2010.04699.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM To study the effects of incubation conditions on the microbial community structure and activity of a TBBPA-debrominating enrichment culture composed of bacterial and archaeal species. METHODS AND RESULTS The effects of the methanogen inhibitor 2-bromoethanesulfonate (BES), of the antibiotic ampicillin, of substrate (tetrabromobisphenol A, TBBPA) omission and availability of different electron donors on microbial community structure and activity were examined under anaerobic conditions. Debromination of TBBPA was blocked in the presence of ampicillin, while long-term incubation with BES resulted in delayed debromination activity. The results suggest that the bacterial species responsible for the debromination of TBBPA, while archaeal species involved in electron donor metabolism. The enrichment culture lost its debromination activity after cultivation for 9 months without TBBPA, concomitantly with the disappearance of two DNA bands in a denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments corresponding to Pelobacter carbinolicus and Sphaerochaeta sp. TQ1 that were present in the original culture. When butyrate was used as an electron donor, TBBPA debromination activity was attenuated. When acetate was used as the electron donor, no debromination was observed and in addition, there was a decrease in the abundance of the mcrA gene. CONCLUSIONS The results indicate that to maintain a high rate of TBBPA debromination activity, it is essential to preserve the microbial community structure (bacterial and archaeal members) of this culture and supply an electron donor that produces high amounts of hydrogen when fermented. SIGNIFICANCE AND IMPACT OF THE STUDY The study provides important information for the management of cultures to be used in bioremediation of TBBPA contaminated sites.
Collapse
Affiliation(s)
- L Iasur-Kruh
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Negev, Israel
| | - Z Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Negev, Israel
| | - Z Arbeli
- Laboratorio Ambiental, Instituto de Biotecnología - Edificio Manuel Ancizar, Universidad Nacional de Colombia, Bogotá, Colombia
| | - A Nejidat
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Negev, Israel
| |
Collapse
|
12
|
Anderson R, Krueger N, Byrd J, Harvey R, Callaway T, Edrington T, Nisbet D. Effects of thymol and diphenyliodonium chloride against Campylobacter spp. during pure and mixed culture in vitro. J Appl Microbiol 2009; 107:1258-68. [DOI: 10.1111/j.1365-2672.2009.04308.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Horrocks SM, Anderson RC, Nisbet DJ, Ricke SC. Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 2008; 15:18-25. [PMID: 18849005 DOI: 10.1016/j.anaerobe.2008.09.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
Abstract
Since its initial emergence in the 1970s, Campylobacter has become one of the most common causative agents of bacterial foodborne illness. Campylobacter species readily colonize the gastrointestinal tracts of domestic, feral and wild animals and while they rarely cause clinical disease in food animals, they can produce severe acute gastroenteritis in humans. Prevalence of Campylobacter in food animals can exceed 80% thus challenging processors to employ post-harvest pathogen reduction strategies. Reduction of pathogens before arrival to the abattoir is also of interest because the implementation of pre-harvest interventions may compliment existing post-harvest control techniques to further diminish possible retail sources of infection. Such multiple hurdle approaches that simultaneously utilize pre- and post-harvest control techniques are expected to be the most effective approach for decreasing human illness associated with foodborne pathogens.
Collapse
Affiliation(s)
- S M Horrocks
- United States Department of Agriculture, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Epidemiological studies indicate that Campylobacter species may be responsible for the majority of cases of sporadic gastroenteritis in humans. These studies also suggest that poultry may be one of the most common sources of the bacteria for humans. Campylobacter and related genera in the family Campylobacteraceae are oral and intestinal commensals of vertebrates and some nonvertebrates, a characteristic that complicates rational approaches to controlling Campylobacter contamination of poultry. This review will discuss the phylogeny, genomics, and physiology of campylobacters with the intention of revealing how these organisms have evolved to fill their intestinal ecological niche in poultry and how their physiology must be understood in order to enact effective control strategies.
Collapse
Affiliation(s)
- Margie D Lee
- Department of Population Health, Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
15
|
Skånseng B, Kaldhusdal M, Rudi K. Comparison of chicken gut colonisation by the pathogens Campylobacter jejuni and Clostridium perfringens by real-time quantitative PCR. Mol Cell Probes 2006; 20:269-79. [PMID: 16644183 DOI: 10.1016/j.mcp.2006.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 02/14/2006] [Indexed: 11/22/2022]
Abstract
We compared the colonisation of the chicken gut by the two important pathogens Campylobacter jejuni (frequent food-borne pathogen) and alpha-toxin gene containing Clostridium perfringens (causative agent of necrotic enteritis in chickens) using a new high-throughput automated DNA purification method for microbial biodiversity analyses. The method gave high reproducibility (standard deviation of 1.1 C(T)-values for a universal 16S rDNA real-time PCR), and inhibition was observed in only 0.9% of the individual DNA purifications (n = 753). We analysed 253 randomly collected chicken caecal samples (sampled in 2001 and 2003) from Norwegian chicken flocks by real-time quantitative PCR. Our results showed positive correlation (P = 0.009) in chicken caecal colonisation between C. jejuni and Cl. perfringens. We also found that there was a significant underrepresentation (P = 0.008) of chickens containing high levels of Cl. perfringens and low levels of C. jejuni. This indicates a possible interaction between these bacteria. Potential interaction between pathogens and other bacteria in the gut will certainly be important research fields in the future. As demonstrated here, the development of new tools for high-throughput analyses will be of key importance for these studies.
Collapse
Affiliation(s)
- Beate Skånseng
- MATFORSK, Norwegian Food Research Institute, Osloveien 1, N-1430 As, Norway
| | | | | |
Collapse
|
16
|
Mendz GL, Ball GE, Meek DJ. Pyruvate metabolism in Campylobacter spp. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1334:291-302. [PMID: 9101725 DOI: 10.1016/s0304-4165(96)00107-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The metabolism of pyruvate by Campylobacter spp. was investigated employing one- and two-dimensional 1H, 13C and 31P nuclear magnetic resonance spectroscopy. Metabolically competent cells incubated aerobically with pyruvate yielded acetate, acetolactate, alanine, formate, lactate, and succinate. The production of acetolactate, alanine and lactate indicated the presence of acetohydroxy acid synthase, alanine transaminase and lactate dehydrogenase activities, respectively. Accumulation of acetate and formate as metabolic products provided evidence for the existence of a mixed acid fermentation pathway in the microorganism. Formation of succinate suggested the incorporation of the pyruvate carbon skeleton to the Kreb's cycle, and the observation of pyruvate dehydrogenase activities in bacterial lysates supported this interpretation. Generation of pyruvate from L-serine in incubations with intact cells and lysates indicated the presence of serine dehydratase activity in the bacterium. Pyruvate was also formed in cell suspensions and lysates from phosphoenol pyruvate. The existence of anaplerotic sequences involving phosphoenol pyruvate carboxykinase and a malic enzyme were established in bacterial lysates. The activities of enzymes involved in the biosynthesis of isoleucine and valine were measured. Addition of pyruvate to different solid culture media inhibited bacterial growth, and the inhibition was attributed to the accumulation of acetate and formate. The variety of products formed using pyruvate as the sole substrate and the existence of anaplerotic sequences and anabolic pathways which employ pyruvate, showed the important role of this metabolite in the energy and biosynthesis metabolism of Campylobacter spp.
Collapse
Affiliation(s)
- G L Mendz
- School of Biochemistry and Molecular Genetics, The University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
17
|
Moser DP, Brozowski JR, Nealson KH. Elemental analysis for biomass determination in the presence of insoluble substrates. J Microbiol Methods 1996. [DOI: 10.1016/0167-7012(96)00924-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Moser DP, Nealson KH. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol 1996; 62:2100-5. [PMID: 11536738 PMCID: PMC167988 DOI: 10.1128/aem.62.6.2100-2105.1996] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino Acids added as a growth stimulant) containing 30 mM lactate and limiting concentrations of elemental sulfur. When mechanisms were provided for the removal of the metabolic end product, H2S, measurable growth was obtained at sulfur concentrations of from 2 to 30 mM. Initial doubling times were ca. 1.5 h and substrate independent over the range of sulfur concentrations tested. In the cultures with the highest sulfur concentrations, cell numbers increased by greater than 400-fold after 48 h, reaching a maximum density of 6.8 x 10(8) cells ml-1. Yields were determined as total cell carbon and ranged from 1.7 to 5.9 g of C mol of S(0) consumed-1 in the presence of the amino acid supplement and from 0.9 to 3.4 g of C mol of S(0-1) in its absence. Several lines of evidence indicate that cell-to-sulfur contact is not required for growth. Approaches for the culture of sulfur-metabolizing bacteria and potential ecological implications of sulfur reduction in Shewanella-like heterotrophs are discussed.
Collapse
Affiliation(s)
- D P Moser
- Center for Great Lakes Studies, University of Wisconsin-Milwaukee 53204, USA
| | | |
Collapse
|
19
|
Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 1996; 62:1623-9. [PMID: 8633860 PMCID: PMC167936 DOI: 10.1128/aem.62.5.1623-1629.1996] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira, Arcobacter, Campylobacter, and Oceanospirillum spp.) were also detected. The first two were prominently amplified from uncultured production water DNA and represented 28 and 47% of all clones, respectively. Growth on media containing sulfide as the electron donor and nitrate as the electron acceptor and designed for the isolation of Thiomicrospira spp. gave only significant enrichment of the Campylobacter sp., which was shown to be present in different western Canadian oil fields. This newly discovered sulfide oxidizer may provide a vital link in the oil field sulfur cycle by reoxidizing sulfide formed by microbial sulfate or sulfur reduction.
Collapse
Affiliation(s)
- G Voordouw
- Department of Biological Sciences, University of Calgary, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Utilization of aminoacids during growth by laboratory adapted and wild type Helicobacter pylori strains was investigated employing nuclear magnetic resonance spectroscopy and aminoacid analysis. All H. pylori strains tested showed growth rates with doubling times of approx. 11.5 hr in liquid cultures with semi-defined media or with defined aminoacid broth without carbohydrates. Fast utilization of several aminoacids at rates between 80 and 250 microM/hr was observed in culture broths inoculated with approx. 10(7) cells/ml; and acetate, formate and succinate accumulated as catabolic products in the growth media. Suspensions of bacterial cells and lysates in isotonic solutions converted arginine, asparagine, aspartate, glutamine, and serine used as sole substrates at significant rates; and under these conditions the principal metabolic products observed were acetate, formate, succinate and lactate. The findings of the study indicated that H. pylori can survive employing aminoacids as the basic nutrients, and suggested some of these metabolites were utilized via fermentative pathways with common characteristics to those found in anaerobes.
Collapse
Affiliation(s)
- G L Mendz
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
21
|
|
22
|
Finster K, Bak F, Pfennig N. Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch Microbiol 1994. [DOI: 10.1007/bf00303588] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Fauque GD, Klimmek O, Kroger A. [25] Sulfur reductases from spirilloid mesophilic sulfur-reducing eubacteria. Methods Enzymol 1994. [DOI: 10.1016/0076-6879(94)43027-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Miroshnichenko ML, Gongadze GA, Lysenko AM, Bonch-Osmolovskaya EA. Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago, New Zealand). Arch Microbiol 1994. [DOI: 10.1007/bf00248898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Schicho RN, Ma K, Adams MW, Kelly RM. Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 1993; 175:1823-30. [PMID: 8449888 PMCID: PMC203983 DOI: 10.1128/jb.175.6.1823-1830.1993] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The bioenergetic role of the reduction of elemental sulfur (S0) in the hyperthermophilic archaeon (formerly archaebacterium) Pyrococcus furiosus was investigated with chemostat cultures with maltose as the limiting carbon source. The maximal yield coefficient was 99.8 g (dry weight) of cells (cdw) per mol of maltose in the presence of S0 but only 51.3 g (cdw) per mol of maltose if S0 was omitted. However, the corresponding maintenance coefficients were not found to be significantly different. The primary fermentation products detected were H2, CO2, and acetate, together with H2S, when S0 was also added to the growth medium. If H2S was summed with H2 to represent total reducing equivalents released during fermentation, the presence of S0 had no significant effect on the pattern of fermentation products. In addition, the presence of S0 did not significantly affect the specific activities in cell extracts of hydrogenase, sulfur reductase, alpha-glucosidase, or protease. These results suggest either that S0 reduction is an energy-conserving reaction, i.e., S0 respiration, or that S0 has a stimulatory effect on or helps overcome a process that is yield limiting. A modification of the Entner-Doudoroff glycolytic pathway has been proposed as the primary route of glucose catabolism in P. furiosus (S. Mukund and M. W. W. Adams, J. Biol. Chem. 266:14208-14216, 1991). Operation of this pathway should yield 4 mol of ATP per mol of maltose oxidized, from which one can calculate a value of 12.9 g (cdw) per mol of ATP for non-S0 growth. Comparison of this value to the yield data for growth in the presence of S0 reduction is equivalent to an ATP yield of 0.5 mol of ATP per mol of S0 reduced. Possible mechanism to account for this apparent energy conservation are discussed.
Collapse
Affiliation(s)
- R N Schicho
- Department of Chemical Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | |
Collapse
|
26
|
Comparative systematic study on ?Spirillum? 5175, Campylobacter and Wolinella species. Arch Microbiol 1992. [DOI: 10.1007/bf00245247] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
|
28
|
Le Faou A, Rajagopal BS, Daniels L, Fauque G. Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world. FEMS Microbiol Rev 1990; 6:351-81. [PMID: 2123394 DOI: 10.1111/j.1574-6968.1990.tb04107.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among sulfur compounds, thiosulfate and polythionates are present at least transiently in many environments. These compounds have a similar chemical structure and their metabolism appears closely related. They are commonly used as energy sources for photoautotrophic or chemolithotrophic microorganisms, but their assimilation has been seldom studied and their importance in bacterial physiology is not well understood. Almost all bacterial strains are able to cleave these compounds since they possess thiosulfate sulfur transferase, thiosulfate reductase or S-sulfocysteine synthase activities. However, the role of these enzymes in the assimilation of thiosulfate or polythionates has not always been clearly established. Elemental sulfur is, on the contrary, very common in the environment. It is an energy source for sulfur-reducing eubacteria and archaebacteria and many sulfur-oxidizing archaebacteria. A phenomenon still not well understood is the 'excessive assimilatory sulfur metabolism' as observed in methanogens which perform a sulfur reduction which exceeds their anabolic needs without any apparent benefit. In heterotrophs, assimilation of elemental sulfur is seldom described and it is uncertain whether this process actually has a physiological significance. Thus, reduction of thiosulfate and elemental sulfur is a common but incompletely understood feature among bacteria. These activities could give bacteria a selective advantage, but further investigations are needed to clarify this possibility. Presence of thiosulfate, polythionates and sulfur reductase activities does not imply obligatorily that these activities play a role in thiosulfate, polythionates or sulfur assimilation as these compounds could be merely intermediates in bacterial metabolism. The possibility also exists that the assimilation of these sulfur compounds is just a side effect of an enzymatic activity with a completely different function. As long as these questions remain unanswered, our understanding of sulfur and thiosulfate metabolism will remain incomplete.
Collapse
Affiliation(s)
- A Le Faou
- Laboratoire de Bactériologie de la Faculté de Médecine, Strasbourg, France
| | | | | | | |
Collapse
|
29
|
Barrett EL, Clark MA. Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 1987; 51:192-205. [PMID: 3299028 PMCID: PMC373103 DOI: 10.1128/mr.51.2.192-205.1987] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Collins MD, Weddel F. Respiratory Quinones of Sulphate-Reducing and Sulphur-Reducing Bacteria: A Systematic Investigation. Syst Appl Microbiol 1986. [DOI: 10.1016/s0723-2020(86)80141-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Macy JM, Schr�der I, Thauer RK, Kr�ger A. Growth the Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 1986. [DOI: 10.1007/bf00414725] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Nanninga HJ, Gottschal JC. Amino acid fermentation and hydrogen transfer in mixed cultures. FEMS Microbiol Lett 1985. [DOI: 10.1111/j.1574-6968.1985.tb01158.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Microorganisms and the Sulfur Cycle. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/b978-0-444-42355-9.50022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
de Vries W, van Berchum H, Stouthamer AH. Localization of hydrogenase and nitrate reductase in Campylobacter sputorum subsp. bubulus. Antonie Van Leeuwenhoek 1984; 50:63-73. [PMID: 6372687 DOI: 10.1007/bf00404908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Campylobacter sputorum subsp. bubulus contained hydrogenase activity after growth with lactate and nitrate and after growth with hydrogen and nitrate. After growth with hydrogen and nitrate a molar growth yield (g dry cells/mol hydrogen) of 5.6 was measured. Hydrogenase and nitrate reductase were membrane-bound enzymes. In cells with high hydrogenase activity the----H+/O,----H+/NO2- and----H+/NO3- values with hydrogen as the electron donor were 3.74, 2.61 and 4.36 respectively. In cells with low hydrogenase activity these values were 2.33, -0.86 and 1.31 respectively. These values and the stoichiometry of respiration-driven proton translocation (----H+/2e = 2) led to the conclusion that hydrogenase is located at the periplasmic side of the cytoplasmic membrane. In cells with low lactate dehydrogenase activity or low hydrogenase activity the reduction of nitrate to nitrite could be separated from the reduction of nitrite to ammonia. Positive----H+/NO3- values (between 0.9 and 1.7) with lactate or hydrogen as the electron donor were measured in these cells whereas----H+/ NO2- values were negative. From this result it was concluded that nitrate reductase is located at the cytoplasmic face of the cytoplasmic membrane. The results explain the previous observation that molar growth yields with nitrate were somewhat higher than those with nitrite.
Collapse
|
35
|
Fischer F, Zillig W, Stetter KO, Schreiber G. Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 1983; 301:511-3. [PMID: 6401847 DOI: 10.1038/301511a0] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Several types of extremely thermophilic archaebacteria have recently been isolated from solfataric water holes, hot springs and hot sea floors. It has been shown that some of them can live using sulphur respiration of reduced carbon substrates as a source of energy, a type of metabolism previously described for the eubacterium Desulfuromonas. We report here that several extremely thermophilic archaebacteria can live with carbon dioxide as their sole carbon source, obtaining energy from the oxidation of hydrogen by sulphur, producing hydrogen sulphide. They are thus capable of a new type of anaerobic, purely chemolithoautotrophic metabolism, a possible primaeval mode of life.
Collapse
|
36
|
Abstract
This paper concentrates on the bacteria involved in the reductions and oxidations of inorganic sulphur compounds under anaerobic conditions. The genera of the dissimilatory sulphate-reducing bacteria known today are discussed with respect to their different capacities to decompose and oxidize various products of fermentative degradations of organic matter. The utilization of molecular hydrogen and formate by sulphate reducers shifts fermentations towards the energetically more favourable formation of acetate. Since acetate amounts to about two-thirds of the degradation products of organic matter, the complete anaerobic oxidation of acetate by several genera of the sulphate-reducing bacteria is an important function for terminal oxidation in sulphate-sufficient environments. The results of pure culture studies agree well with ecological investigations of several authors who showed the significance of sulphate reduction for the complete oxidation of organic matter in anaerobic marine habitats. In the dissimilatory sulphur-reducing bacteria of the genus Desulfuromonas the oxidation of acetate is linked to the reduction of elemental sulphur. Major characteristics of the anaerobic, sulphide-oxidizing phototrophic green and purple sulphur bacteria as well as of some facultative anoxygenic cyanobacteria, are given. By the formation of elemental sulphur and sulphate, these bacteria establish sulphur cycles with the sulphide-forming bacteria. In view of the morphological diversity of the sulphate-reducing bacteria and question of possible evolutionary relations to phototrophic sulphur bacteria is raised.
Collapse
|
37
|
Ecology and Physiology of Some Anaerobic Bacteria from the Microbial Sulfur Cycle. PROCEEDINGS IN LIFE SCIENCES 1981. [DOI: 10.1007/978-3-642-67919-3_12] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
de Vries W, Niekus HG, Boellaard M, Stouthamer AH. Growth yields and energy generation by Campylobacter sputorum subspecies bubulus during growth in continuous culture with different hydrogen acceptors. Arch Microbiol 1980; 124:221-7. [PMID: 7369827 DOI: 10.1007/bf00427730] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Laanbroek HJ, Smit AJ, Nulend GK, Veldkamp H. Competition for L-glutamate between specialised and versatile Clostridium species. Arch Microbiol 1979; 120:61-6. [PMID: 426599 DOI: 10.1007/bf00413275] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clostridium cochlearium could be reproducibly enriched in an L-aspartate- and L-glutamate-limited, anaerobic chemostat inoculated with anaerobic sludge. L-glutamate, L-glutamine and L-histidine were the only fermentable substrates. Less specialised clostridia of the C. tetanomorphum type could only be isolated from batch enrichments with L-glutamate and L-aspartate as energy sources. Competition experiments with C. cochlearium and C. tetanomorphum in a L-glutamate-limited chemostat resulted in the selective elimination of the latter species. Addition of glucose to the medium resulted in coexistence of both species. The molar growth yields for L-glutamate at different dilution rates at 30 degrees C were determined for both species. The maximum specific growth rates on L-glutamate were 0.55 h-1 for C. cochlearium and 0.35 h-1 for C. tetanomorphum.
Collapse
|