1
|
Du J, Yin Q, Zhou X, Guo Q, Wu G. Distribution of extracellular amino acids and their potential functions in microbial cross-feeding in anaerobic digestion systems. BIORESOURCE TECHNOLOGY 2022; 360:127535. [PMID: 35779747 DOI: 10.1016/j.biortech.2022.127535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion is a prevalent bioenergy production process relying on a complex network of symbiotic interactions, where the nutrient based cross-feeding is an essential microbial mechanism. Here, the cross-feeding function was assessed by analyzing extracellular polymeric substances-associated amino acids in microbial aggregates collected from 14 lab-scale anaerobic digesters, as well as deciphering their genetically biosynthetic potential by syntrophic bacteria and methanogens. The total concentration of essential amino acids ranged from 1.2 mg/g VSS to 174.0 mg/g VSS. The percentages of glutamic acid (8.5 ∼ 37.6%), lysine (2.7 ∼ 22.6%), alanine (5.6 ∼ 13.2%), and valine (3.0 ∼ 10.4%) to the total amount of detected amino acids were the highest in most samples. Through metagenomics analysis, several investigated syntrophs (i.e., Smithella, Syntrophobacter, Syntrophomonas, and Mesotoga) and methanogens (i.e., Methanothrix and Methanosarcina) were auxotrophies, but the genetic ability of syntrophs and methanogens to synthesize some essential amino acids could be complementary, implying potential cross-feeding partnership.
Collapse
Affiliation(s)
- Jin Du
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Xingzhao Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qiannan Guo
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
2
|
Cheng Z, Yao S, Yuan H. Linking population dynamics to microbial kinetics for hybrid modeling of bioelectrochemical systems. WATER RESEARCH 2021; 202:117418. [PMID: 34273778 DOI: 10.1016/j.watres.2021.117418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Mechanistic and data-driven models have been developed to provide predictive insights into the design and optimization of engineered bioprocesses. These two modeling strategies can be combined to form hybrid models to address the issues of parameter identifiability and prediction interpretability. Herein, we developed a novel and robust hybrid modeling strategy by incorporating microbial population dynamics into model construction. The hybrid model was constructed using bioelectrochemical systems (BES) as a platform system. We collected 77 samples from 13 publications, in which the BES were operated under diverse conditions, and performed holistic processing of the 16S rRNA amplicon sequencing data. Community analysis revealed core populations composed of putative electroactive taxa Geobacter, Desulfovibrio, Pseudomonas, and Acinetobacter. Primary Bayesian networks were trained with the core populations and environmental parameters, and directed Bayesian networks were trained by defining the operating parameters to improve the prediction interpretability. Both networks were validated with Bray-Curtis similarly, relative root-mean-square error (RMSE), and a null model. A hybrid model was developed by first building a three-population mechanistic component and subsequently feeding the estimated microbial kinetic parameters into network training. The hybrid model generated a simulated community that shared a Bray-Curtis similarity of 72% with the actual microbial community at the genus level and an average relative RMSE of 7% for individual taxa. When examined with additional samples that were not included in network training, the hybrid model achieved accurate prediction of current production with a relative error-based RMSE of 0.8 and outperformed the data-driven models. The genomics-enabled hybrid modeling strategy represents a significant step toward robust simulation of a variety of engineered bioprocesses.
Collapse
Affiliation(s)
- Zhang Cheng
- Department of Civil & Environmental Engineering, Temple University, 1947N. 12th Street, Philadelphia, PA 19122, USA
| | - Shiyun Yao
- Department of Civil & Environmental Engineering, Temple University, 1947N. 12th Street, Philadelphia, PA 19122, USA
| | - Heyang Yuan
- Department of Civil & Environmental Engineering, Temple University, 1947N. 12th Street, Philadelphia, PA 19122, USA.
| |
Collapse
|
3
|
Li H, Cheng J, Dong H, Fang Z, Zhou J, Lin R. Zeolitic imidazolate framework-derived porous carbon enhances methanogenesis by facilitating interspecies electron transfer: Understanding fluorimetric and electrochemical responses of multi-layered extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146447. [PMID: 33798894 DOI: 10.1016/j.scitotenv.2021.146447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Modulating microbial electron transfer during anaerobic digestion can significantly improve syntrophic interactions for enhanced biogas production. As a carbonaceous conductive material, zeolite imidazolate framework-67 (ZIF-67)-derived porous carbon (PC) was hypothesized to act as a microbial electron transfer highway and assessed with respect to understanding the fluorimetric and electrochemical responses of multilayered extracellular polymeric substances (EPS). The highest biomethane yield (614.0 mL/g) from ethanol was achieved in the presence of 100 mg/L PC prepared at a carbonization temperature of 800 °C (PC-800), which was 28.2% higher than that without PC addition. Electrochemical analysis revealed that both the redox peak currents and conductivity of the methanogenic sludge increased, while the free charge transfer resistance decreased with PC-800 addition. The conductive PC-800 potentially functioned as an abiotic electron conduit to promote direct interspecies electron transfer, thereby resulting in decreased expression of functional genes associated with electrically conductive pili (e-pili) and hemeproteins. Additionally, PC-800 stimulated the secretion of redox-active humic substances (HSs), and excitation emission matrix spectra analysis indicated that the largest increase in percent fluorescence response of HSs occurred in the tightly bound EPS (TB-EPS) with addition of PC-800. This was attributed to the strong complexation ability of PC-800 particles to hydroxyl/carboxylic/phenolic moieties of HSs contained in the TB-EPS. Microbial analysis revealed that syntrophic/exoelectrogenic bacteria such as Pelotomaculum and Syntrophomonas, as well as hydrogenotrophic/electrotrophic methanogens such as Methanoculleus and Methanobacterium, were enriched in methanogenic sludge with adding PC-800. This study provided comprehensive insights for understanding the interactions among ZIF-derived PC, methanogenic microorganisms and their multilayered EPS.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Haiquan Dong
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Zhe Fang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Du J, Gu M, Yin Q, Wu G. Temporary addition of carbon fibers facilitates methanogenic degradation of ethanol during anaerobic treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142724. [PMID: 33082040 DOI: 10.1016/j.scitotenv.2020.142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Syntrophic methanogenesis can be improved by the addition of conductive materials. In this study, conductive carbon fibers (CFs) were applied to efficiently enrich syntrophic microorganisms with potential direct interspecies electron transfer (DIET) ability and promote methanogenic activity. With ethanol as the substrate, CFs shortened the acclimation time remarkably. The maximum methane production rate and the ethanol degradation rate of suspended biomass were increased by 40% and 68%, respectively, even when CFs were subsequently removed. However, with acetate and propionate as the mixed substrate, CFs decreased the methanogenic activity. In the reactor fed with ethanol, CFs increased the relative abundance of Geobacter, Desulfovibrio, and methanogens by 57%, 39%, and 63%, respectively. Methanosaeta possessed most methane production genes and might involve in DIET. Furthermore, CFs increased the relative abundance of ethanol-degradation genes assigned to Geobacter, Desulfovibrio and Pelobacter, suggesting the promoted ethanol-degradation. The triggered electron transport system activity and acetoclastic methanogenesis also explained the accelerated effects on ethanol-degradation by long-term acclimation with CFs. Notably, the dominance of Geobacter and Methanosaeta combined with the increased electron transfer constant in the CFs-amended ethanol reactor indicated the potential role of DIET after the removal of CFs, which deserved further clarification.
Collapse
Affiliation(s)
- Jin Du
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Mengqi Gu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qidong Yin
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guangxue Wu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Liu C, Ren L, Yan B, Luo L, Zhang J, Awasthi MK. Electron transfer and mechanism of energy production among syntrophic bacteria during acidogenic fermentation: A review. BIORESOURCE TECHNOLOGY 2021; 323:124637. [PMID: 33421831 DOI: 10.1016/j.biortech.2020.124637] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Volatile fatty acids (VFAs) production plays an important role in the process of anaerobic digestion (AD), which is often the critical factor determining the metabolic pathways and energy recovery efficiency. Fermenting bacteria and acetogenic bacteria are in syntrophic relations during AD. Thus, clear elucidation of the interspecies electron transfer and energetic mechanisms among syntrophic bacteria is essential for optimization of acidogenic. This review aims to discuss the electron transfer and energetic mechanism in syntrophic processes between fermenting bacteria and acetogenic bacteria during VFAs production. Homoacetogenesis also plays a role in the syntrophic system by converting H2 and CO2 to acetate. Potential applications of these syntrophic activities in bioelectrochemical system and value-added product recovery from AD of organic wastes are also discussed. The study of acidogenic syntrophic relations is in its early stages, and additional investigation is required to better understand the mechanism of syntrophic relations.
Collapse
Affiliation(s)
- Chao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| |
Collapse
|
6
|
Sim MS, Skennerton CT, Orphan VJ. Physiological, genomic, and sulfur isotopic characterization of methanol metabolism by Desulfovibrio carbinolicus. PLoS One 2021; 16:e0245069. [PMID: 33444327 PMCID: PMC7808614 DOI: 10.1371/journal.pone.0245069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022] Open
Abstract
Methanol is often considered as a non-competitive substrate for methanogenic archaea, but an increasing number of sulfate-reducing microorganisms (SRMs) have been reported to be capable of respiring with methanol as an electron donor. A better understanding of the fate of methanol in natural or artificial anaerobic systems thus requires knowledge of the methanol dissimilation by SRMs. In this study, we describe the growth kinetics and sulfur isotope effects of Desulfovibrio carbinolicus, a methanol-oxidizing sulfate-reducing deltaproteobacterium, together with its genome sequence and annotation. D. carbinolicus can grow with a series of alcohols from methanol to butanol. Compared to longer-chain alcohols, however, specific growth and respiration rates decrease by several fold with methanol as an electron donor. Larger sulfur isotope fractionation accompanies slowed growth kinetics, indicating low chemical potential at terminal reductive steps of respiration. In a medium containing both ethanol and methanol, D. carbinolicus does not consume methanol even after the cessation of growth on ethanol. Among the two known methanol dissimilatory systems, the genome of D. carbinolicus contains the genes coding for alcohol dehydrogenase but lacks enzymes analogous to methanol methyltransferase. We analyzed the genomes of 52 additional species of sulfate-reducing bacteria that have been tested for methanol oxidation. There is no apparent relationship between phylogeny and methanol metabolizing capacity, but most gram-negative methanol oxidizers grow poorly, and none carry homologs for methyltransferase (mtaB). Although the amount of available data is limited, it is notable that more than half of the known gram-positive methanol oxidizers have both enzymatic systems, showing enhanced growth relative to the SRMs containing only alcohol dehydrogenase genes. Thus, physiological, genomic, and sulfur isotopic results suggest that D. carbinolicus and close relatives have the ability to metabolize methanol but likely play a limited role in methanol degradation in most natural environments.
Collapse
Affiliation(s)
- Min Sub Sim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
7
|
Bertran E, Leavitt WD, Pellerin A, Zane GM, Wall JD, Halevy I, Wing BA, Johnston DT. Deconstructing the Dissimilatory Sulfate Reduction Pathway: Isotope Fractionation of a Mutant Unable of Growth on Sulfate. Front Microbiol 2018; 9:3110. [PMID: 30619187 PMCID: PMC6302107 DOI: 10.3389/fmicb.2018.03110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
The sulfur isotope record provides key insight into the history of Earth's redox conditions. A detailed understanding of the metabolisms driving this cycle, and specifically microbial sulfate reduction (MSR), is crucial for accurate paleoenvironmental reconstructions. This includes a precise knowledge of the step-specific sulfur isotope effects during MSR. In this study, we aim at resolving the cellular-level fractionation factor during dissimilatory sulfite reduction to sulfide within MSR, and use this measured isotope effect as a calibration to enhance our understanding of the biochemistry of sulfite reduction. For this, we merge measured isotope effects associated with dissimilatory sulfite reduction with a quantitative model that explicitly links net fractionation, reaction reversibility, and intracellular metabolite levels. The highly targeted experimental aspect of this study was possible by virtue of the availability of a deletion mutant strain of the model sulfate reducer Desulfovibrio vulgaris (strain Hildenborough), in which the sulfite reduction step is isolated from the rest of the metabolic pathway owing to the absence of its QmoABC complex (ΔQmo). This deletion disrupts electron flux and prevents the reduction of adenosine phosphosulfate (APS) to sulfite. When grown in open-system steady-state conditions at 10% maximum growth rate in the presence of sulfite and lactate as electron donor, sulfur isotope fractionation factors averaged -15.9‰ (1 σ = 0.4), which appeared to be statistically indistinguishable from a pure enzyme study with dissimilatory sulfite reductase. We coupled these measurements with an understanding of step-specific equilibrium and kinetic isotope effects, and furthered our mechanistic understanding of the biochemistry of sulfite uptake and ensuing reduction. Our metabolically informed isotope model identifies flavodoxin as the most likely electron carrier performing the transfer of electrons to dissimilatory sulfite reductase. This is in line with previous work on metabolic strategies adopted by sulfate reducers under different energy regimes, and has implications for our understanding of the plasticity of this metabolic pathway at the center of our interpretation of modern and palaeo-environmental records.
Collapse
Affiliation(s)
- Emma Bertran
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MD, United States
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Cambridge, MD, United States.,Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Andre Pellerin
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Grant M Zane
- Department of Biochemistry, University of Missouri, Columbia, SC, United States
| | - Judy D Wall
- Department of Biochemistry, University of Missouri, Columbia, SC, United States
| | - Itay Halevy
- Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - David T Johnston
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MD, United States
| |
Collapse
|
8
|
Wenk CB, Wing BA, Halevy I. Electron carriers in microbial sulfate reduction inferred from experimental and environmental sulfur isotope fractionations. THE ISME JOURNAL 2018; 12:495-507. [PMID: 29087380 PMCID: PMC5776465 DOI: 10.1038/ismej.2017.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/26/2017] [Accepted: 09/24/2017] [Indexed: 01/29/2023]
Abstract
Dissimilatory sulfate reduction (DSR) has been a key process influencing the global carbon cycle, atmospheric composition and climate for much of Earth's history, yet the energy metabolism of sulfate-reducing microbes remains poorly understood. Many organisms, particularly sulfate reducers, live in low-energy environments and metabolize at very low rates, requiring specific physiological adaptations. We identify one such potential adaptation-the electron carriers selected for survival under energy-limited conditions. Employing a quantitative biochemical-isotopic model, we find that the large S isotope fractionations (>55‰) observed in a wide range of natural environments and culture experiments at low respiration rates are only possible when the standard-state Gibbs free energy (ΔG'°) of all steps during DSR is more positive than -10 kJ mol-1. This implies that at low respiration rates, only electron carriers with modestly negative reduction potentials are involved, such as menaquinone, rubredoxin, rubrerythrin or some flavodoxins. Furthermore, the constraints from S isotope fractionation imply that ferredoxins with a strongly negative reduction potential cannot be the direct electron donor to S intermediates at low respiration rates. Although most sulfate reducers have the genetic potential to express a variety of electron carriers, our results suggest that a key physiological adaptation of sulfate reducers to low-energy environments is to use electron carriers with modestly negative reduction potentials.
Collapse
Affiliation(s)
- Christine B Wenk
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Müller N, Timmers P, Plugge CM, Stams AJM, Schink B. Syntrophy in Methanogenic Degradation. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2018. [DOI: 10.1007/978-3-319-98836-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Koch S, Benndorf D, Fronk K, Reichl U, Klamt S. Predicting compositions of microbial communities from stoichiometric models with applications for the biogas process. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:17. [PMID: 26807149 PMCID: PMC4724120 DOI: 10.1186/s13068-016-0429-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Microbial communities are ubiquitous in nature and play a major role in ecology, medicine, and various industrial processes. In this study, we used stoichiometric metabolic modeling to investigate a community of three species, Desulfovibrio vulgaris, Methanococcus maripaludis, and Methanosarcina barkeri, which are involved in acetogenesis and methanogenesis in anaerobic digestion for biogas production. RESULTS We first constructed and validated stoichiometric models of the core metabolism of the three species which were then assembled to community models. The community was simulated by applying the previously described concept of balanced growth demanding that all organisms of the community grow with equal specific growth rate. For predicting community compositions, we propose a novel hierarchical optimization approach: first, similar to other studies, a maximization of the specific community growth rate is performed which, however, often leads to a wide range of optimal community compositions. In a secondary optimization, we therefore also demand that all organisms must grow with maximum biomass yield (optimal substrate usage) reducing the range of predicted optimal community compositions. Simulating two-species as well as three-species communities of the three representative organisms, we gained several important insights. First, using our new optimization approach we obtained predictions on optimal community compositions for different substrates which agree well with measured data. Second, we found that the ATP maintenance coefficient influences significantly the predicted community composition, especially for small growth rates. Third, we observed that maximum methane production rates are reached under high-specific community growth rates and if at least one of the organisms converts its substrate(s) with suboptimal biomass yield. On the other hand, the maximum methane yield is obtained at low community growth rates and, again, when one of the organisms converts its substrates suboptimally and thus wastes energy. Finally, simulations in the three-species community clarify exchangeability and essentiality of the methanogens in case of alternative substrate usage and competition scenarios. CONCLUSIONS In summary, our study presents new methods for stoichiometric modeling of microbial communities in general and provides valuable insights in interdependencies of bacterial species involved in the biogas process.
Collapse
Affiliation(s)
- Sabine Koch
- />Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Dirk Benndorf
- />Otto-von-Guericke-University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Karen Fronk
- />Harz University of Applied Sciences, Friedrichstrasse 57-59, 38855 Wernigerode, Germany
| | - Udo Reichl
- />Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
- />Otto-von-Guericke-University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Steffen Klamt
- />Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
| |
Collapse
|
11
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
12
|
Kovacik WP, Scholten JCM, Culley D, Hickey R, Zhang W, Brockman FJ. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed. Microbiology (Reading) 2010; 156:2418-2427. [DOI: 10.1099/mic.0.036715-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The upflow anaerobic sludge blanket (UASB) reactor is a microcosm for the methanogenic degradation of organic matter in anaerobic environments, and depends on the auto-formation of dense 3D biofilms of 1–3 mm in diameter, referred to as granular sludge (biogranules). Past research has shown that UASB and other methanogenic reactors are extremely stable functionally, but the underlying basis of the functional stability is not well understood. In this study, microbial dynamics in the communities residing in UASB biogranules were analysed to determine responses to short-term perturbations (change in reactor feed). The reactor was fed with simulated brewery wastewater (SBWW) for 1.5 months (phase 1), acetate/sulfate for 2 months (phase 2), acetate alone for 3 months (phase 3) and then a return to SBWW for 2 months (phase 4). Analysis of 16S rRNA, methanogen-associated mcrA and sulfate reducer-associated dsrAB gene-based-clone libraries showed a relatively simple community composed mainly of the methanogenic archaea (Methanobacterium and Methanosaeta), members of the green non-sulfur (Chloroflexi) group of bacteria and Syntrophobacter, Spirochaeta, Acidobacteria and Cytophaga-related bacterial sequences. The mcrA clone libraries were dominated throughout by Methanobacterium- and Methanospirillum-related sequences. Although the reactor performance remained relatively stable throughout the experiment, community diversity levels generally decreased for all libraries in response to a change from SBWW to acetate alone feed. There was a large transitory increase noted in 16S diversity at the 2 month sampling on acetate alone, entirely related to an increase in bacterial diversity. Upon return to SBWW conditions in phase 4, all diversity measures returned to near phase 1 levels. Our results demonstrated that microbial communities, even highly structured ones such as in UASB biogranules, are very capable of responding to rapid and major changes in their environment.
Collapse
Affiliation(s)
- William P. Kovacik
- Microbiology Department, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - David Culley
- Microbiology Department, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Weiwen Zhang
- Microbiology Department, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Fred J. Brockman
- Microbiology Department, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
13
|
|
14
|
Vladár P, Rusznyák A, Márialigeti K, Borsodi AK. Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velencei (Hungary) revealed by a combined cultivation-based and molecular approach. MICROBIAL ECOLOGY 2008; 56:64-75. [PMID: 18066486 DOI: 10.1007/s00248-007-9324-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 09/14/2007] [Indexed: 05/25/2023]
Abstract
The community structure of sulfate-reducing bacteria (SRB) associated with reed (Phragmites australis) rhizosphere in Lake Velencei (Hungary) was investigated by using cultivation-based and molecular methods. The cultivation methods were restricted to recover lactate-utilizing species with the exclusion of Desulfobacter and some Desulfobacterium species presumably not being dominant members of the examined community. The most-probable-number (MPN) estimations of lactate-utilizing SRB showed that the cell counts in reed rhizosphere were at least one order of magnitude higher than that in the bulk sediment. The number of endospores was low compared to the total SRB counts. From the highest positive dilution of MPN series, 47 strains were isolated and grouped by restriction fragment length polymorphism (RFLP) analysis of the amplified 16S ribosomal RNA (rRNA) and dsrAB (dissimilatory sulfite reductase) genes. Contrary to the physiological diversity of the isolates, the combined results of RFLP analysis revealed higher diversity at species as well as at subspecies level. Based on the partial 16S rRNA sequences, the representative strains were closely affiliated with the genera Desulfovibrio and Desulfotomaculum. The partial dsrAB sequences of the clones, recovered after isolation and PCR amplification of the community DNA, were related to hitherto uncultured species of the genera Desulfovibrio and Desulfobulbus. Nevertheless, the representative of the second largest clone group was shown to be closely affiliated with the sequenced dsrAB gene of a strain isolated from the same environment and identified as Desulfovibrio alcoholivorans. Another clone sequence was closely related to a possible novel species also isolated within the scope of this work.
Collapse
Affiliation(s)
- Péter Vladár
- Department of Microbiology, Eötvös Loránd University, Pázmány P sétány 1/C, Budapest, Hungary
| | | | | | | |
Collapse
|
15
|
Metje M, Frenzel P. Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland. Appl Environ Microbiol 2006; 71:8191-200. [PMID: 16332802 PMCID: PMC1317349 DOI: 10.1128/aem.71.12.8191-8200.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of temperature on rates and pathways of CH4 production and on the abundance and structure of the archaeal community were investigated in acidic peat from a mire in northern Scandinavia (68 degrees N). We monitored the production of CH4 and CO2 over time and measured the turnover of Fe(II), ethanol, and organic acids. All experiments were performed with and without specific inhibitors (2-bromoethanesulfonate [BES] for methanogenesis and CH3F for acetoclastic methanogenesis). The optimum temperature for methanogenesis was 25 degrees C (2.3 micromol CH4.g [dry weight](-1) . day(-1)), but the activity was relatively high even at 4 degrees C (0.25 micromol CH4. g [dry weight](-1) . day(-1)). The theoretical lower limit for methanogenesis was calculated to be at -5 degrees C. The optimum temperature for growth as revealed by real-time PCR was 25 degrees C for both archaea and bacteria. The population structure of archaea was studied by terminal restriction fragment length polymorphism analysis and remained constant over a wide temperature range. Hydrogenotrophic methanogenesis accounted for about 80% of the total methanogenesis. Most 16S rRNA gene sequences that were affiliated with methanogens and all McrA sequences clustered with the exclusively hydrogenotrophic order Methanobacteriales, correlating with the prevalence of hydrogenotrophic methanogenesis. Fe reduction occurred parallel to methanogenesis and was inhibited by BES, suggesting that methanogens were involved in Fe reduction. Based upon the observed balance of substrates and thermodynamic calculations, we concluded that the ethanol pool was oxidized to acetate by the following two processes: syntrophic oxidation with methanogenesis (i) as an H2 sink and (ii) as a reductant for Fe(III). Acetate accumulated, but a considerable fraction was converted to butyrate, making volatile fatty acids important end products of anaerobic metabolism.
Collapse
Affiliation(s)
- Martina Metje
- Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str., D-35043 Marburg, Germany
| | | |
Collapse
|
16
|
Knoblauch C, Jørgensen BB. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environ Microbiol 1999; 1:457-67. [PMID: 11207766 DOI: 10.1046/j.1462-2920.1999.00061.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Five psychrophilic sulphate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and LSv514) isolated from Arctic sediments were examined for their adaptation to permanently low temperatures. All strains grew at -1.8 degrees C, the freezing point of sea water, but their optimum temperature for growth (T(opt)) were 7 degrees C (PSv29), 10 degrees C (ASv26, LSv54) and 18 degrees C (LSv21, LSv514). Although T(opt) was considerably above the in situ temperatures of their habitats (-1.7 degrees C and 2.6 degrees C), relative growth rates were still high at 0 degrees C, accounting for 25-41% of those at T(opt). Short-term incubations of exponentially growing cultures showed that the highest sulphate reduction rates occurred 2-9 degrees C above T(opt). In contrast to growth and sulphate reduction rates, growth yields of strains ASv26, LSv54 and PSv29 were almost constant between -1.8 degrees C and T(opt). For strains LSv21 and LSv514, however, growth yields were highest at the lowest temperatures, around 0 degrees C. The results indicate that psychrophilic sulphate-reducing bacteria are specially adapted to permanently low temperatures by high relative growth rates and high growth yields at in situ conditions.
Collapse
Affiliation(s)
- C Knoblauch
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | |
Collapse
|
17
|
Fareleira P, Legall J, Xavier AV, Santos H. Pathways for utilization of carbon reserves in Desulfovibrio gigas under fermentative and respiratory conditions. J Bacteriol 1997; 179:3972-80. [PMID: 9190814 PMCID: PMC179207 DOI: 10.1128/jb.179.12.3972-3980.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The sulfate-reducing bacterium Desulfovibrio gigas accumulates large amounts of polyglucose as an endogenous carbon and energy reserve. In the absence of exogenous substrates, the intracellular polysaccharide was utilized, and energy was conserved in the process (H. Santos, P. Fareleira, A. V. Xavier, L. Chen, M.-Y. Liu, and J. LeGall, Biochem. Biophys. Res. Commun. 195:551-557, 1993). When an external electron acceptor was not provided, degradation of polyglucose by cell suspensions of D. gigas yielded acetate, glycerol, hydrogen, and ethanol. A detailed investigation of the metabolic pathways involved in the formation of these end products was carried out, based on measurements of the activities of glycolytic enzymes in cell extracts, by either spectrophotometric or nuclear magnetic resonance (NMR) assays. All of the enzyme activities associated with the glycogen cleavage and the Embden-Meyerhof pathway were determined as well as those involved in the formation of glycerol from dihydroxyacetone phosphate (glycerol-3-phosphate dehydrogenase and glycerol phosphatase) and the enzymes that catalyze the reactions leading to the production of ethanol (pyruvate decarboxylase and ethanol dehydrogenase). The key enzymes of the Entner-Doudoroff pathway were not detected. The methylglyoxal bypass was identified as a second glycolytic branch operating simultaneously with the Embden-Meyerhof pathway. The relative contribution of these two pathways for polyglucose degradation was 2:3. 13C-labeling experiments with cell extracts using isotopically enriched glucose and 13C-NMR analysis supported the proposed pathways. The information on the metabolic pathways involved in polyglucose catabolism combined with analyses of the end products formed from polyglucose under fermentative conditions provided some insight into the role of NADH in D. gigas. In the presence of electron acceptors, NADH resulting from polyglucose degradation was utilized for the reduction of sulfate, thiosulfate, or nitrite, leading to the formation of acetate as the only carbon end product besides CO2. Evidence supporting the role of NADH as a source of reducing equivalents for the production of hydrogen is also presented.
Collapse
Affiliation(s)
- P Fareleira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | |
Collapse
|
18
|
Hensgens CM, Hagen WR, Hansen TA. Purification and characterization of a benzylviologen-linked, tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas. J Bacteriol 1995; 177:6195-200. [PMID: 7592385 PMCID: PMC177460 DOI: 10.1128/jb.177.21.6195-6200.1995] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Desulfovibrio gigas NCIMB 9332 cells grown in ethanol-containing medium with 0.1 microM tungstate contained a benzylviologen-linked aldehyde oxidoreductase. The enzyme was purified to electrophoretic homogeneity and found to be a homodimer with a subunit M(r) of 62,000. It contained 0.68 +/- 0.08 W, 4.8 Fe, and 3.2 +/- 0.2 labile S per subunit. After acid iodine oxidation of the purified enzyme, a fluorescence spectrum typical for form A of molybdopterin was obtained. Acetaldehyde, propionaldehyde, and benzaldehyde were excellent substrates, with apparent Km values of 12.5, 10.8, and 20 microM, respectively. The natural electron acceptor is not yet known; benzylviologen was used as an artificial electron acceptor (apparent Km, 0.55 mM). The enzyme was activated by potassium ions and strongly inhibited by cyanide, arsenite, and iodoacetate. In the as-isolated enzyme, electron paramagnetic resonance studies readily detected W(V) as a complex signal with g values in the range of 1.84 to 1.97. The dithionite-reduced enzyme exhibited a broad signal at low temperature with g = 2.04 and 1.92; this is indicative of a [4Fe-4S]1+ cluster interacting with a second paramagnet, possibly the S = 1 system of W(IV). Until now W-containing aldehyde oxidoreductases had only been found in two Clostridium strains and two hyperthermophilic archaea. The D. gigas enzyme is the first example of such an enzyme in a gram-negative bacterium.
Collapse
Affiliation(s)
- C M Hensgens
- Department of Microbiology, University of Groningen, The Netherlands
| | | | | |
Collapse
|
19
|
Purification and characterization of an alcohol dehydrogenase from 1,2-propanediol-grownDesulfovibrio strain HDv. Arch Microbiol 1995. [DOI: 10.1007/bf02529960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Hatchikian EC, Forget N, Bernadac A, Alazard D, Ollivier B. Involvement of a single periplasmic hydrogenase for both hydrogen uptake and production in some Desulfovibrio species. Res Microbiol 1995; 146:129-41. [PMID: 7652207 DOI: 10.1016/0923-2508(96)80891-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Various sulphate-reducing bacteria differing in the number of genes encoding hydrogenase were shown to ferment lactate in coculture with Methanospirillum hungatei, in the absence of sulphate. The efficiency of interspecies H2 transfer carried out by these species of sulphate-reducing bacteria does not appear to correlate with the distribution of genes coding for hydrogenase. Desulfovibrio vulgaris Groningen, which possesses only the gene for [NiFe] hydrogenase, oxidizes hydrogen in the presence of sulphate and produces some hydrogen during fermentation of pyruvate without electron acceptor. The hydrogenase of D. vulgaris was purified and characterized. It exhibits a molecular mass of 87 kDa and is composed of two different subunits (60 and 28 kDa). D. vulgaris hydrogenase contains 10.6 iron atoms, 0.9 nickel atom and 12 acid-labile sulphur atoms/molecule, and the absorption spectrum of the enzyme is characteristic of an iron-sulphur protein. Maximal H2 uptake and H2 evolution activities were 332 and 230 units/mg protein, respectively. D. vulgaris cells contain exclusively the [NiFe] hydrogenase, whatever the growth conditions, as shown by biochemical and immunological studies. Immunocytolocalization in ultrathin frozen sections of cells grown on lactate and sulphate, on H2 and sulphate and on pyruvate showed that the [NiFe] hydrogenase was located in the periplasmic space. Labelling was enhanced in cells grown on H2 and sulphate and on pyruvate. The results enable us to conclude that D. vulgaris Groningen contains a single hydrogenase of the [NiFe] type, located in the periplasmic space like that described for D. gigas. This enzyme appears to be involved in both H2 uptake and H2 production, depending on the growth conditions.
Collapse
Affiliation(s)
- E C Hatchikian
- Unité de Bioénergétique et Ingéniérie des Protéines, CNRS, Marseille, France
| | | | | | | | | |
Collapse
|
21
|
Hansen TA, Hensgens CM. [2] NAD-dependent alcohol dehydrogenase from Desulfovibrio gigas. Methods Enzymol 1994. [DOI: 10.1016/0076-6879(94)43004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Abstract
Dissimilatory sulfate reduction is carried out by a heterogeneous group of bacteria and archaea that occur in environments with temperatures up to 105 degrees C. As a group together they have the capacity to metabolize a wide variety of compounds ranging from hydrogen via typical organic fermentation products to hexadecane, toluene, and several types of substituted aromatics. Without exception all sulfate reducers activate sulfate to APS; the natural electron donor(s) for the ensuing APS reductase reaction is not known. The same is true for the reduction of the product bisulfite; in addition there is still some uncertainty as to whether the pathway to sulfide is a direct six-electron reduction of bisulfite or whether it involves trithionate and thiosulfate as intermediates. The study of the degradation pathways of organic substrates by sulfate-reducing prokaryotes has led to the discovery of novel non-cyclic pathways for the oxidation of the acetyl moiety of acetyl-CoA to CO2. The most detailed knowledge is available on the metabolism of Desulfovibrio strains, both on the pathways and enzymes involved in substrate degradation and on electron transfer components and terminal reductases. Problems encountered in elucidating the flow of reducing equivalents and energy transduction are the cytoplasmic localization of the terminal reductases and uncertainties about the electron donors for the reactions catalyzed by these enzymes. New developments in the study of the metabolism of sulfate-reducing bacteria and archaea are reviewed.
Collapse
Affiliation(s)
- T A Hansen
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| |
Collapse
|
23
|
Stams AJ. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 1994; 66:271-94. [PMID: 7747937 DOI: 10.1007/bf00871644] [Citation(s) in RCA: 290] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and formate efficiently. These types of metabolic interaction between anaerobic bacteria is due to the fact that the oxidation of NADH and FADH2 coupled to proton or bicarbonate reduction in thermodynamically only feasible at low hydrogen and formate concentrations. Syntrophic relationships which depend on interspecies hydrogen or formate transfer were described for the degradation of e.g. fatty acids, amino acids and aromatic compounds.
Collapse
Affiliation(s)
- A J Stams
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| |
Collapse
|
24
|
Barata BA, LeGall J, Moura JJ. Aldehyde oxidoreductase activity in Desulfovibrio gigas: in vitro reconstitution of an electron-transfer chain from aldehydes to the production of molecular hydrogen. Biochemistry 1993; 32:11559-68. [PMID: 8218223 DOI: 10.1021/bi00094a012] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molybdenum [iron-sulfur] protein, first isolated from Desulfovibrio gigas by Moura et al. [Moura, J. J. G., Xavier, A. V., Bruschi, M., Le Gall, J., Hall, D. O., & Cammack, R. (1976) Biochem. Biophys. Res. Commun. 72, 782-789], was later shown to mediate the electronic flow from salicylaldehyde to a suitable electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) [Turner, N., Barata, B., Bray, R. C., Deistung, J., LeGall, J., & Moura, J. J. G. (1987) Biochem. J. 243, 755-761]. The DCPIP-dependent aldehyde oxidoreductase activity was studied in detail using a wide range of aldehydes and analogues. Steady-state kinetic analysis (KM and Vmax) was performed for acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde in excess DCPIP concentration, and a simple Michaelis-Menten model was shown to be applicable as a first kinetic approach. Xanthine, purine, allopurinol, and N1-methylnicotinamide (NMN) could not be utilized as enzyme substrates. DCPIP and ferricyanide were shown to be capable of cycling the electronic flow, whereas other cation and anion dyes [O2 and NAD(P)+] were not active in this process. The enzyme showed an optimal pH activity profile around 7.8. This molybdenum hydroxylase was shown to be part of an electron-transfer chain comprising four different soluble proteins from D. gigas, with a total of 11 discrete redox centers, which is capable of linking the oxidation of aldehydes to the reduction of protons.
Collapse
Affiliation(s)
- B A Barata
- Departamento de Química, Faculdade de Ciências da Universidade de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
25
|
Hensgens CM, Vonck J, Van Beeumen J, van Bruggen EF, Hansen TA. Purification and characterization of an oxygen-labile, NAD-dependent alcohol dehydrogenase from Desulfovibrio gigas. J Bacteriol 1993; 175:2859-63. [PMID: 8491707 PMCID: PMC204602 DOI: 10.1128/jb.175.10.2859-2863.1993] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (Km, 0.15 mM) and 1-propanol (Km, 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the same family of alcohol dehydrogenases as Zymomonas mobilis ADH2 and Bacillus methanolicus MDH.
Collapse
Affiliation(s)
- C M Hensgens
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Ouattara AS, Cuzin N, Traore AS, Garcia JL. Anaerobic degradation of 1,2-propanediol by a new Desulfovibrio strain and D. alcoholovorans. Arch Microbiol 1992; 158:218-25. [PMID: 1332638 DOI: 10.1007/bf00290818] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A sulfate-reducing bacterium, strain HDv, was isolated from the anoxic soil of a ricefield using lactate as electron donor. Cells were gram-negative, motile, nonsporulating curved rods, with single polar flagella. Substrates were incompletely oxidized to acetate and included glycerol, 1,2- and 1,3-propanediol. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, maleate, and malate were utilized as electron acceptors. Pyruvate, fumarate, maleate, malate and dihydroxyacetone were fermented. Desulfoviridin and c-type cytochromes were present. The DNA base composition was 66.6 +/- 0.3 mol% G+C. The isolate was identified as a Desulfovibrio sp.; its metabolic properties were somewhat different from those of previously described Desulfovibrio species. Comparative biochemical study of 1,2-propanediol dissimilation by the new isolate and Desulfovibrio alcoholovorans showed that NAD-dependent dehydrogenases play a key role in the catabolism of this substrate. The hypothetical pathways of 1,2-propanediol degradation by Desulfovibrio spp. are presented.
Collapse
Affiliation(s)
- A S Ouattara
- ORSTOM, Laboratoire de Microbiologie, Université de Provence, Marseille, France
| | | | | | | |
Collapse
|
27
|
Qatibi AI, Nivière V, Garcia JL. Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2- and 1,3-propanediol. Arch Microbiol 1991. [DOI: 10.1007/bf00248608] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Gibson GR. Physiology and ecology of the sulphate-reducing bacteria. THE JOURNAL OF APPLIED BACTERIOLOGY 1990; 69:769-97. [PMID: 2286579 DOI: 10.1111/j.1365-2672.1990.tb01575.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- G R Gibson
- Medical Research Council, Dunn Clinical Nutrition Centre, Cambridge, UK
| |
Collapse
|
29
|
|
30
|
Widdel F, Wolfe RS. Expression of secondary alcohol dehydrogenase in methanogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Arch Microbiol 1989. [DOI: 10.1007/bf00425168] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|