1
|
Hipkaeo W, Kondo H. Localization of phospholipid-related signal molecules in salivary glands of rodents: A review. J Oral Biosci 2023; 65:146-155. [PMID: 37061129 DOI: 10.1016/j.job.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND In the 1950s, Hokin conducted initial studies on phosphoinositide turnover/cycle in salivary glandular cells. From these studies, the idea emerged that receptor-mediated changes in intramembranous levels of phosphoinositides represent an early step in the stimulus-response pathway. Based on this idea and the general view that knowledge of the exact localization of a given endogenous molecule in cells in situ is important for understanding its functional significance, we have reviewed available information about the localization of several representative phosphoinositide-signaling molecules in the salivary glands in situ in mice. HIGHLIGHT We focused on phosphatidylinositol 4-kinase, phosphatidylinositol 4 phosphate 5-kinase α, β, γ, phospholipase Cβ, muscarinic cholinoceptors 1 and 3, diacylglycerol kinase ζ, phospholipase D1 and 2, ADP-ribosylation factor 6 and its exchange factors for Arf6, and cannabinoid receptors. These molecules individually exhibit differential localization in a spatiotemporal manner in the exocrine glands, making it possible to deduce their functional significance, such as their involvement in secretion and cell differentiation. CONCLUSION Although phosphoinositide-signaling molecules whose in situ localization in glandular cells has been clarified are still limited, the obtained information on their localization suggests that their functional significance is more valuable in glandular ducts than in acini. It thus suggests the necessity of greater attention to the ducts in their physio-pharmacological analyses. The purpose of this review is to encourage more in situ localization studies of phosphoinositide-signaling molecules with an aim to further understand their possible involvement in the pathogenesis of salivary gland diseases.
Collapse
Affiliation(s)
- Wiphawi Hipkaeo
- Electron Microscopy Laboratory, Division of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Hisatake Kondo
- Electron Microscopy Laboratory, Division of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, JAPAN
| |
Collapse
|
2
|
Khrongyut S, Polsan Y, Sakaew W, Sawatpanich T, Banno Y, Nozawa Y, Kondo H, Hipkaeo W. Expression of endogenous phospholipase D1, localized in mouse submandibular gland, is greater in females and is suppressed by testosterone. J Anat 2019; 235:1125-1136. [PMID: 31402458 DOI: 10.1111/joa.13073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 11/29/2022] Open
Abstract
To clarify the signal transduction mechanism in the differentiation and secretion of salivary glandular cells, the present study was attempted to examine in the submandibular gland (SMG) of mice, the expression and localization of phospholipase D1 (PLD1), one of the important effector molecules working in response to the activation of intramembranous receptors by first messengers. In immunoblotting analysis, the expression of PLD1 was high at postnatal 4 weeks (P4W) and decreased at P8W, and it was at negligible levels at newborn stage (P0W) and postnatal 2 weeks (P2W). The expression of PLD1 was greater in females, and it was suppressed by administration of testosterone to female mice. In immuno-light microscopy, immunoreactivity for PLD1 at P4W was moderate to intense, in the forms of dots and globules mainly in the apical domains of immature granular convoluted tubule (GCT)-cells localized largely in the proximal portion of the female GCT. By P8W, it decreased in intensity and remained weak to moderate along the apical plasmalemma of cells throughout the course of the female GCT, whereas it was faint throughout the GCT of the male SMG at P4W and negligible at P8W. In immuno-electron microscopy, immature GCT-cells characterized by electron-lucent granules were immunoreactive and the immunoreactive materials were deposited close to, but not within, those granules. Typical GCT cells, characterized by electron-dense granules, were immunonegative. No significant immunoreaction for PLD1 was seen in acini of SMGs of either sex at any time point examined. It is suggested that PLD1 is involved in the signaling for secretion of immature GCT cells and influences differentiation of these cells, probably through their own secretory substances.
Collapse
Affiliation(s)
- Suthankamon Khrongyut
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yada Polsan
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Waraporn Sakaew
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tarinee Sawatpanich
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yoshiko Banno
- Department of Biochemistry, School of Medicine, Gifu University, Gifu, Japan
| | - Yoshinori Nozawa
- Department of Biochemistry, School of Medicine, Gifu University, Gifu, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Busch L, Borda E. Signaling pathways involved in pilocarpine-induced mucin secretion in rat submandibular glands. Life Sci 2006; 80:842-51. [PMID: 17137604 DOI: 10.1016/j.lfs.2006.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/30/2006] [Accepted: 11/03/2006] [Indexed: 11/16/2022]
Abstract
We have studied the signaling pathways involved in pilocarpine-induced mucin release in rat submandibular slices. Pilocarpine produced a significant increment of PGE2 levels and a positive (r=0.8870) and significant (p=0.0077) correlation between PGE2 production and mucin released was determined. The participation of PGE2 was confirmed by the use of indomethacin (indo) and of acetyl salicylic acid (ASA), cyclooxygenase inhibitors, which inhibited pilocarpine-induced mucin release. The muscarinic receptors involved in the regulation of mucin release were identified as M1 and M4 by the use of the selective acetylcholine receptors (mAChR) antagonists, pirenzepine, AF-DX 116, 4-DAMP and tropicamide. The secretory process was dependent on both, intracellular and extracellular calcium pools since it was inhibited by thapsigargin and verapamil. Cyclic AMP, nitric oxide synthase and PKC also participated in pilocarpine-induced mucin release. It is concluded that pilocarpine, by activation the M1 and M4 mAChR subtypes induces an increase of intracellular Ca2+ concentration ([Ca2+]I) and elevates cAMP levels, which in turn stimulates COX, PKC and NOS and promotes mucin exocytosis. PGE2 released induces cAMP accumulation which, together with PKC are involved in the PGE2 increased Ca2+/cAMP-regulated exocytosis. Thus, cAMP accumulation induced by cholinergic stimulation is, in part, the result of PGE2 production.
Collapse
Affiliation(s)
- Lucila Busch
- Pharmacology Unit, School of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142 (C1122AAH), Buenos Aires, Argentina.
| | | |
Collapse
|
4
|
Pochet S, Métioui M, Grosfils K, Gómez-Muñoz A, Marino A, Dehaye JP. Regulation of phospholipase D by muscarinic receptors in rat submandibular ductal cells. Cell Signal 2003; 15:103-13. [PMID: 12401525 DOI: 10.1016/s0898-6568(02)00059-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The muscarinic agonist carbachol stimulated phospholipase D (PLD) in rat submandibular gland (RSMG) ductal cells in a time and concentration-dependent manner. This effect was inhibited by chelation of extracellular calcium with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). PLD could also be activated by epinephrine and AlF(4)(-), two polyphosphoinositide-specific phospholipase C (PPI-PLC) activators, and by the phorbol ester o-tetradecanoylphorbol 13-acetate (TPA) which activates protein kinase C (PKC). Ionomycin and thapsigargin only slightly increased PLD activity. Ortho-vanadate, a tyrosine phosphatase inhibitor, also stimulated PLD activity. Both carbachol and o-vanadate increased the formation of inositol phosphates and the tyrosine phosphorylation of at least two proteins (55-60 and 120 kDa). Calphostin C (a PKC inhibitor), U73122 (a PPI-PLC inhibitor) and genistein (a tyrosine kinase inhibitor) blocked the activation of PLD, of PLC and the phosphorylation of tyrosyl residues in response to carbachol and vanadate. Taken together, these results suggest that rat submandibular gland ductal cells express a calcium-dependent PLD activity. This enzyme is regulated by carbachol via a PLC-PKC-tyrosine kinase pathway.
Collapse
Affiliation(s)
- Stéphanie Pochet
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie CP 205/3, Campus Plaine, Université Libre de Bruxelles, Boulevard du Triomphe, B 1050 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
5
|
Oprins JC, van der Burg C, Meijer HP, Munnik T, Groot JA. PLD pathway involved in carbachol-induced Cl- secretion: possible role of TNF-alpha. Am J Physiol Cell Physiol 2001; 280:C789-95. [PMID: 11245595 DOI: 10.1152/ajpcell.2001.280.4.c789] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a previous study, it was found that exposure to tumor necrosis factor-alpha (TNF-alpha) potentiated the electrophysiological response to carbachol in a time-dependent and cycloheximide-sensitive manner. It was deduced that the potentiation could be due to protein kinase C activity because of increased 1,2-diacylglycerol. It was also observed that propranolol could decrease the electrophysiological response to carbachol (Oprins JC, Meijer HP, and Groot JA. Am J Physiol Cell Physiol 278: C463-C472, 2000). The aim of the present study was to investigate whether the phospholipase D (PLD) pathway plays a role in the carbachol response and the potentiating effect of TNF-alpha. The transphosphatidylation reaction in the presence of the primary alcohol 1-butanol [leading to stable phosphatidylbutanol (Pbut) formation] was used to measure activity of PLD. The phosphatidic acid (PA) levels were also measured. Muscarinic stimulation resulted in an increased formation of Pbut and PA. TNF-alpha decreased levels of PA.
Collapse
Affiliation(s)
- J C Oprins
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94084, 1090 GB Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Li L, Fleming N. Aluminum fluoride inhibits phospholipase D activation by a GTP-binding protein-independent mechanism. FEBS Lett 1999; 458:419-23. [PMID: 10570952 DOI: 10.1016/s0014-5793(99)01196-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aluminum fluoride (AlF4-) inhibited guanine nucleotide-activated phospholipase D (PLD) in rat submandibular gland cell-free lysates in a concentration-dependent response. This effect was consistent in permeabilized cells with endogenous phospholipid PLD substrates. Inhibition was not caused by either fluoride or aluminum alone and was reversed by aluminum chelation. Inhibition of PLD by aluminum fluoride was not mediated by cAMP, phosphatases 1, 2A or 2B, or phosphatidate phosphohydrolase. AlF4- had a similar inhibitory effect on rArf-stimulated PLD, but did not block the translocation of Arf from cytosol to membranes, indicating a post-GTP-binding-protein site of action. Oleate-sensitive PLD, which is not guanine nucleotide-dependent, was also inhibited by AlF4-, supporting a G protein-independent mechanism of action. A submandibular Golgi-enriched membrane preparation had high PLD activity which was also potently inhibited by AlF4-, leading to speculation that the known fluoride inhibition of Golgi vesicle transport may be PLD-mediated. It is proposed that aluminum fluoride inhibits different forms of PLD by a mechanism that is independent of GTP-binding proteins and that acts via a membrane-associated target which may be the enzyme itself.
Collapse
Affiliation(s)
- L Li
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
7
|
González A, Schmid A, Sternfeld L, Krause E, Salido GM, Schulz I. Cholecystokinin-evoked Ca(2+) waves in isolated mouse pancreatic acinar cells are modulated by activation of cytosolic phospholipase A(2), phospholipase D, and protein kinase C. Biochem Biophys Res Commun 1999; 261:726-33. [PMID: 10441493 DOI: 10.1006/bbrc.1999.1106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We employed confocal laser-scanning microscopy to monitor cholecystokinin (CCK)-evoked Ca(2+) signals in fluo-3-loaded mouse pancreatic acinar cells. CCK-8-induced Ca(2+) signals start at the luminal cell pole and subsequently spread toward the basolateral membrane. Ca(2+) waves elicited by stimulation of high-affinity CCK receptors (h.a.CCK-R) with 20 pM CCK-8 spread with a slower rate than those induced by activation of low-affinity CCK receptors (l.a. CCK-R) with 10 nM CCK-8. However, the magnitude of the initial Ca(2+) release was the same at both CCK-8 concentrations, suggesting that the secondary Ca(2+) release from intracellular stores is modulated by activation of different intracellular pathways in response to low and high CCK-8 concentrations. Our experiments suggest that the propagation of Ca(2+) waves is modulated by protein kinase C (PKC) and arachidonic acid (AA). The data indicate that h.a. CCK-R are linked to phospholipase C (PLC) and phospholipase A(2) (PLA(2)) cascades, whereas l.a.CCK-R are coupled to PLC and phospholipase D (PLD) cascades. The products of PLA(2) and PLD activation, AA and diacylglycerol (DAG), cause inhibition of Ca(2+) wave propagation by yet unknown mechanisms.
Collapse
Affiliation(s)
- A González
- Faculty of Medicine, University of Saarland, Homburg/Saar, D-66421, Germany
| | | | | | | | | | | |
Collapse
|
8
|
May LG, Johnson S, Krebs S, Newman A, Aronstam RS. Involvement of protein kinase C and protein kinase A in the muscarinic receptor signalling pathways mediating phospholipase C activation, arachidonic acid release and calcium mobilisation. Cell Signal 1999; 11:179-87. [PMID: 10353692 DOI: 10.1016/s0898-6568(98)00053-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The involvement of protein kinase C (PKC) and protein kinase A (PKA) in cholinergic signalling in CHO cells expressing the M3 subtype of the muscarinic acetylcholine receptor was examined. Muscarinic signalling was assessed by measuring carbachol-induced activation of phospholipase C (PLC), arachidonic acid release, and calcium mobilisation. Carbachol activation of PLC was not altered by inhibition of PKC with chelerythrine chloride, bisindolylmaleimide or chronic treatment with phorbol myristate acetate (PMA). Activation of PKC by acute treatment with PMA was similarly without effect. In contrast, inhibition of PKC blocked carbachol stimulation of arachidonic acid release. Likewise, PKC inhibition resulted in a decreased ability of carbachol to mobilise calcium, whereas PKC activation potentiated calcium mobilisation. Inhibition of PKA with H89 or Rp-cAMP did not alter the ability of carbachol to activate PLC. Similarly, PKA activation with Sp-cAMP or forskolin had no effect on PLC stimulation by carbachol. Carbachol-mediated release of arachidonic acid was decreased by H89 but only slightly increased by forskolin. Forskolin also increased calcium mobilisation by carbachol. These results suggest a function for PKC and PKA in M3 stimulation of arachidonic acid release and calcium mobilisation but not in PLC activation.
Collapse
Affiliation(s)
- L G May
- Guthrie Research Institute, Sayre, PA 18840, USA.
| | | | | | | | | |
Collapse
|
9
|
Kabré E, Chaïb N, Boussard P, Mérino G, Devleeschouwer M, Dehaye JP. Study on the activation of phospholipases A2 by purinergic agonists in rat submandibular ductal cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1436:616-27. [PMID: 9989292 DOI: 10.1016/s0005-2760(98)00158-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Extracellular ATP and benzoyl-ATP (Bz-ATP) increased the release of [3H]arachidonic acid ([3H]AA) from prelabeled rat submandibular gland (RSMG) ductal cells respectively two- and threefold. Both agonists also increased the release of [3H]AA from acini but at a lower level (+50% and +100% respectively). Carbachol had no significant effect on either cellular population. In ductal cells phorbol myristate acetate, an activator of protein kinase C, slightly increased the basal release of [3H]AA but did not affect the release of [3H]AA in response to ATP. Staurosporine, an inhibitor of protein kinases, inhibited the response to the purines. The removal of calcium from the extracellular medium decreased the response to ATP and Bz-ATP. Only barium could partly substitute for calcium to restore the purinergic response. Zinc inhibited the release of [3H]AA. Permeabilization of the cells with streptolysin O (SLO) activated the calcium-independent phospholipase A2 activity (iPLA2). The iPLA2, not the calcium-dependent PLA2 (cPLA2), released [3H]oleic acid ([3H]OA) from RSMG ductal cells. It is concluded that RSMG ducts have a higher PLA2 activity when compared to acini. This activity is accounted for by iPLA2 and cPLA2. Both enzymes are activated by P2X agonists by a staurosporine-sensitive mechanism. Cells permeabilized with SLO or membranes from Escherichia coli as a substrate are not good models to study the regulation of these enzymes. In intact RSMG ductal cells the two activities can be distinguished by rather specific inhibitors, by different ionic conditions and also by the fatty acid used to label the cells.
Collapse
Affiliation(s)
- E Kabré
- Laboratoire de Biochimie Générale et Humaine, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
10
|
Alzola E, Pérez-Etxebarria A, Kabré E, Fogarty DJ, Métioui M, Chaïb N, Macarulla JM, Matute C, Dehaye JP, Marino A. Activation by P2X7 agonists of two phospholipases A2 (PLA2) in ductal cells of rat submandibular gland. Coupling of the calcium-independent PLA2 with kallikrein secretion. J Biol Chem 1998; 273:30208-17. [PMID: 9804778 DOI: 10.1074/jbc.273.46.30208] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isolated ductal cells of rat submandibular gland phospholipid pools were labeled with [3H]arachidonic acid (AA). The tracer was incorporated preferentially to phosphatidylcholine (46% of the lipidic fraction). Extracellular ATP induced the release of [3H]AA to the extracellular medium in a time- and dose-dependent manner (EC50 = 220 microM). Among other agents tested, only 2', 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (Bz-ATP) was able to mimic the effect of ATP (EC50 = 15 microM), without activation of phospholipase C. The purinergic antagonists oxidized ATP, suramin, and Coomassie Blue partly inhibited the response to 1 mM ATP and 100 microM Bz-ATP; the response was also blocked by the addition of Mg2+ or Ni2+. Expression of P2X7 receptor mRNA in these cells was confirmed by reverse transcription-polymerase chain reaction. In the presence of extracellular calcium, the phospholipase A2 inhibitor 2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid (a nonspecific inhibitor), arachidonyl trifluoromethylketone (AACOCF3, an inhibitor of the calcium-dependent cytosolic PLA2 (cPLA2)), and bromoenol lactone (an inhibitor of the calcium-independent PLA2 (iPLA2)) inhibited the release of [3H]AA induced by ATP and Bz-ATP. In the absence of extracellular calcium, the release of [3H]AA in response to the purinergic agonists was still observed; this response was not affected by AACOCF3 and completely blocked by bromoenol lactone. ATP and Bz-ATP stimulated a calcium-independent secretion of kallikrein, which could be blocked by BEL but which was enhanced by AACOCF3. It is concluded that the P2X7 receptor in ductal cells is coupled to kallikrein secretion through a calcium-dependent cPLA2 and a calcium-independent iPLA2.
Collapse
Affiliation(s)
- E Alzola
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of the Basque Country, 48940 Leioa, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
We have used radioligand binding studies to determine the affinities of seven bisindolylmaleimide analogues, six of which are selective inhibitors of protein kinase C, at human muscarinic M1-M4 receptors. The compounds were most potent at M1 receptors, and Ro-31-8220 was the most potent analogue, with a Kd of 0.6 microM at M1 receptors. The weakest compounds, bisindolylmaleimide IV and bisindolylmaleimide V, had Kd values of 100 microM. If it is necessary to use protein kinase C inhibitors at concentrations of 10 microM or more in studies involving muscarinic receptors then bisindolylmaleimide IV may be the most appropriate inhibitor to use.
Collapse
|
12
|
Groot J. Correlation between electrophysiological phenomena and transport of macromolecules in intestinal epithelium. Vet Q 1998. [DOI: 10.1080/01652176.1998.9694968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
13
|
Li L, Mellow L, Bhullar RP, Fleming N. Activation of phospholipase D by ADP-ribosylation factor in rat submandibular acinar cells. Arch Oral Biol 1998; 43:211-9. [PMID: 9631174 DOI: 10.1016/s0003-9969(98)00007-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hydrolysis of membrane phosphatidylcholine by the enzyme phospholipase D is a key initial step in the intracellular release of the signalling molecules phosphatidic acid, diacylglycerol and arachidonic acid. Guanine nucleotide-dependent pathway leading to PLD activation were investigated in enzymatically dispersed rat submandibular acinar cells. Guanosine 5'-O-[gamma-thio]triphosphate (GTP gamma S) caused the time- and concentration-dependent stimulation of PLD in permeabilized cells. This effect was lost in prepermeabilized cells, from which cytosolic components had been allowed to leak, but was restored when endogenous cytosol, or cytosol from platelets, was added back to such cells. PLD was also activated in cytosol-depleted cells by GTP gamma S in combination with purified ARF (ADP-ribosylation factor), a low M(r) guanine nucleotide-binding protein of the ras superfamily. Additional evidence for the involvement of ARF in PLD activation was the inhibition of carbachol- or GTP gamma S-induced stimulation of the enzyme by brefeldin A, a blocker of ARF activation; and the observed translocation of ARF from cytosol to membrane on GTP gamma S treatment in permeabilized cells. The heterotrimeric G-protein stimulator, AlFn, also activated PLD, and this response, too, was inhibited by brefeldin A, suggesting the downstream involvement of ARF in coupling AlFn action to phospholipase D elevation. PLD activation caused by both GTP gamma S and AlFn was only partially reduced after treatment of cells with U73122, a demonstrated inhibitor of phospholipase C in the Gq-coupled phosphoinositide signal-transduction pathway. It is therefore proposed that in rat submandibular mucous acinar cells, a guanine nucleotide-regulated PLD activation pathway exists that involves the sequential actions of a G heterotrimeric protein and ARF. It is further suggested that this pathway is independent of the Gq/PLC/phosphatidylinositol signal transduction system.
Collapse
Affiliation(s)
- L Li
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|