1
|
Lee WH, Yoon CK, Park H, Park GH, Jeong JH, Cha GD, Lee BH, Lee J, Lee CW, Bootharaju MS, Sunwoo SH, Ryu J, Lee C, Cho YJ, Nam TW, Ahn KH, Hyeon T, Seok YJ, Kim DH. Highly Efficient Nitrogen-Fixing Microbial Hydrogel Device for Sustainable Solar Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306092. [PMID: 37739451 DOI: 10.1002/adma.202306092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Conversion of sunlight and organic carbon substrates to sustainable energy sources through microbial metabolism has great potential for the renewable energy industry. Despite recent progress in microbial photosynthesis, the development of microbial platforms that warrant efficient and scalable fuel production remains in its infancy. Efficient transfer and retrieval of gaseous reactants and products to and from microbes are particular hurdles. Here, inspired by water lily leaves floating on water, a microbial device designed to operate at the air-water interface and facilitate concomitant supply of gaseous reactants, smooth capture of gaseous products, and efficient sunlight delivery is presented. The floatable device carrying Rhodopseudomonas parapalustris, of which nitrogen fixation activity is first determined through this study, exhibits a hydrogen production rate of 104 mmol h-1 m-2 , which is 53 times higher than that of a conventional device placed at a depth of 2 cm in the medium. Furthermore, a scaled-up device with an area of 144 cm2 generates hydrogen at a high rate of 1.52 L h-1 m-2 . Efficient nitrogen fixation and hydrogen generation, low fabrication cost, and mechanical durability corroborate the potential of the floatable microbial device toward practical and sustainable solar energy conversion.
Collapse
Affiliation(s)
- Wang Hee Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunseo Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hee Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hwan Jeong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byoung-Hoon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Juri Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaeyune Ryu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Tae-Wook Nam
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
- MightyBugs, Inc., Busan, 46918, Republic of Korea
| | - Kyung Hyun Ahn
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Maeda I. Potential of Phototrophic Purple Nonsulfur Bacteria to Fix Nitrogen in Rice Fields. Microorganisms 2021; 10:microorganisms10010028. [PMID: 35056477 PMCID: PMC8777916 DOI: 10.3390/microorganisms10010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Biological nitrogen fixation catalyzed by Mo-nitrogenase of symbiotic diazotrophs has attracted interest because its potential to supply plant-available nitrogen offers an alternative way of using chemical fertilizers for sustainable agriculture. Phototrophic purple nonsulfur bacteria (PNSB) diazotrophically grow under light anaerobic conditions and can be isolated from photic and microaerobic zones of rice fields. Therefore, PNSB as asymbiotic diazotrophs contribute to nitrogen fixation in rice fields. An attempt to measure nitrogen in the oxidized surface layer of paddy soil estimates that approximately 6–8 kg N/ha/year might be accumulated by phototrophic microorganisms. Species of PNSB possess one of or both alternative nitrogenases, V-nitrogenase and Fe-nitrogenase, which are found in asymbiotic diazotrophs, in addition to Mo-nitrogenase. The regulatory networks control nitrogenase activity in response to ammonium, molecular oxygen, and light irradiation. Laboratory and field studies have revealed effectiveness of PNSB inoculation to rice cultures on increases of nitrogen gain, plant growth, and/or grain yield. In this review, properties of the nitrogenase isozymes and regulation of nitrogenase activities in PNSB are described, and research challenges and potential of PNSB inoculation to rice cultures are discussed from a viewpoint of their applications as nitrogen biofertilizer.
Collapse
Affiliation(s)
- Isamu Maeda
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Japan
| |
Collapse
|
3
|
How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Appl Environ Microbiol 2011; 78:1023-32. [PMID: 22179236 DOI: 10.1128/aem.07254-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase catalyzes the conversion of dinitrogen gas (N(2)) and protons to ammonia and hydrogen gas (H(2)). This is a catalytically difficult reaction that requires large amounts of ATP and reducing power. Thus, nitrogenase is not normally expressed or active in bacteria grown with a readily utilized nitrogen source like ammonium. nifA* mutants of the purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris have been described that express nitrogenase genes constitutively and produce H(2) when grown with ammonium as a nitrogen source. This raised the regulatory paradox of why these mutants are apparently resistant to a known posttranslational modification system that should switch off the activity of nitrogenase. Microarray, mutation analysis, and gene expression studies showed that posttranslational regulation of nitrogenase activity in R. palustris depends on two proteins: DraT2, an ADP-ribosyltransferase, and GlnK2, an NtrC-regulated P(II) protein. GlnK2 was not well expressed in ammonium-grown NifA* cells and thus not available to activate the DraT2 nitrogenase modification enzyme. In addition, the NifA* strain had elevated nitrogenase activity due to overexpression of the nif genes, and this increased amount of expression overwhelmed a basal level of activity of DraT2 in ammonium-grown cells. Thus, insufficient levels of both GlnK2 and DraT2 allow H(2) production by an nifA* mutant grown with ammonium. Inactivation of the nitrogenase posttranslational modification system by mutation of draT2 resulted in increased H(2) production by ammonium-grown NifA* cells.
Collapse
|
4
|
Changes in guanosine tetraphosphate (ppGpp) level during nitrogenase expression in the phototrophic bacterium Rhodopseudomonas palustris. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)80887-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Yakunin AF, Laurinavichene TV, Tsygankov AA, Hallenbeck PC. The presence of ADP-ribosylated Fe protein of nitrogenase in Rhodobacter capsulatus is correlated with cellular nitrogen status. J Bacteriol 1999; 181:1994-2000. [PMID: 10094674 PMCID: PMC93609 DOI: 10.1128/jb.181.7.1994-2000.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The photosynthetic bacterium Rhodobacter capsulatus has been shown to regulate its nitrogenase by covalent modification via the reversible ADP-ribosylation of Fe protein in response to darkness or the addition of external NH4+. Here we demonstrate the presence of ADP-ribosylated Fe protein under a variety of steady-state growth conditions. We examined the modification of Fe protein and nitrogenase activity under three different growth conditions that establish different levels of cellular nitrogen: batch growth with limiting NH4+, where the nitrogen status is externally controlled; batch growth on relatively poor nitrogen sources, where the nitrogen status is internally controlled by assimilatory processes; and continuous culture. When cultures were grown to stationary phase with different limiting concentrations of NH4+, the ADP-ribosylation state of Fe protein was found to correlate with cellular nitrogen status. Additionally, actively growing cultures (grown with N2 or glutamate), which had an intermediate cellular nitrogen status, contained a portion of their Fe protein in the modified state. The correlation between cellular nitrogen status and ADP-ribosylation state was corroborated with continuous cultures grown under various degrees of nitrogen limitation. These results show that in R. capsulatus the modification system that ADP-ribosylates nitrogenase in the short term in response to abrupt changes in the environment is also capable of modifying nitrogenase in accordance with long-term cellular conditions.
Collapse
Affiliation(s)
- A F Yakunin
- Département de Microbiologie et Immunologie, Université de Montréal, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
6
|
Yakunin AF, Hallenbeck PC. Short-term regulation of nitrogenase activity by NH4+ in Rhodobacter capsulatus: multiple in vivo nitrogenase responses to NH4+ addition. J Bacteriol 1998; 180:6392-5. [PMID: 9829952 PMCID: PMC107729 DOI: 10.1128/jb.180.23.6392-6395.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1998] [Accepted: 09/28/1998] [Indexed: 11/20/2022] Open
Abstract
The photosynthetic bacterium Rhodobacter capsulatus has been shown to carry out nitrogenase "switch-off," a rapid, reversible inhibition of in vivo activity. Here, we demonstrate that highly nitrogen-limited cultures of both the wild-type strain and a draT draG mutant are capable of nitrogenase switch-off while moderately nitrogen-limited cultures show instead a "magnitude" response, with a decrease in in vivo nitrogenase activity that is proportional to the amount of added NH4+.
Collapse
Affiliation(s)
- A F Yakunin
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
7
|
Anoxygenic Phototrophic Bacteria: Physiology and Advances in Hydrogen Production Technology. ADVANCES IN APPLIED MICROBIOLOGY 1993. [DOI: 10.1016/s0065-2164(08)70217-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ernst A, Reich S, Böger P. Modification of dinitrogenase reductase in the cyanobacterium Anabaena variabilis due to C starvation and ammonia. J Bacteriol 1990; 172:748-55. [PMID: 2105302 PMCID: PMC208502 DOI: 10.1128/jb.172.2.748-755.1990] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the heterocystous cyanobacterium Anabaena variabilis, a change in nitrogenase activity and concomitant modification of dinitrogenase reductase (the Fe protein of nitrogenase) was induced either by NH4Cl at pH 10 (S. Reich and P. Böger, FEMS Microbiol. Lett. 58:81-86, 1989) or by cessation of C supply resulting from darkness, CO2 limitation, or inhibition of photosystem II activity. Modification induced by both C limitation and NH4Cl was efficiently prevented by anaerobic conditions. Under air, endogenously stored glycogen and added fructose protected against modification triggered by C limitation but not by NH4Cl. With stored glycogen present, dark modification took place after inhibition of respiration by KCN. Reactivation of inactivated nitrogenase and concomitant demodification of dinitrogenase reductase occurred after restoration of diazotrophic growth conditions. In previously C-limited cultures, reactivation was also observed in the dark after addition of fructose (heterotrophic growth) and under anaerobiosis upon reillumination in the presence of a photosynthesis inhibitor. The results indicate that modification of dinitrogenase reductase develops as a result of decreased carbohydrate-supported reductant supply of the heterocysts caused by C limitation or by increased diversion of carbohydrates towards ammonia assimilation. Apparently, a product of N assimilation such as glutamine is not necessary for modification. The increase of oxygen concentration in the heterocysts is a plausible consequence of all treatments causing Fe protein modification.
Collapse
Affiliation(s)
- A Ernst
- Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, Federal Republic of Germany
| | | | | |
Collapse
|
9
|
|
10
|
Moreno-Vivián C, Caballero FJ, Cárdenas J, Castillo F. Effect of the C/N balance on the regulation of nitrogen fixation in Rhodobacter capsulatus E1F1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80083-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Murrel JC. The rapid switch-off of nitrogenase activity in obligate methane-oxidizing bacteria. Arch Microbiol 1988. [DOI: 10.1007/bf00422292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Effect of nitrogen starvation on ammonium-inhibition of nitrogenase activity in Azotobacter chroococcum. Arch Microbiol 1988. [DOI: 10.1007/bf00446748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Hartmann A, Burris RH. Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum. J Bacteriol 1987; 169:944-8. [PMID: 2880836 PMCID: PMC211884 DOI: 10.1128/jb.169.3.944-948.1987] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nitrogenase activity of the microaerophilic bacteria Azospirillum brasilense and A. lipoferum was completely inhibited by 2.0 kPa of oxygen (approximately 0.02 atm of O2) in equilibrium with the solution. The activity could be partially recovered at optimal oxygen concentrations of 0.2 kPa. In contrast to the NH4+ switch off, no covalent modification of the nitrogenase reductase (Fe protein) was involved, as demonstrated by Western-blotting and 32P-labeling experiments. However, the inhibition of the nitrogenase activity under anaerobic conditions was correlated with covalent modification of the Fe protein. In contrast to the NH4+ switch off, no increase in the cellular glutamine pool and no modification of the glutamine synthetase occurred under anaerobic switch-off conditions. Therefore, a redox signal, independent of the nitrogen control of the cell, may trigger the covalent modification of the nitrogenase reductase of A. brasilense and A. lipoferum.
Collapse
|
14
|
Abstract
The photosynthetic prokaryotes possess diverse metabolic capabilities, both in carrying out different types of photosynthesis and in their other growth modes. The nature of the coupling of these energy-generating processes with the basic metabolic demands of the cell, such as nitrogen fixation, has stimulated research for many years. In addition, nitrogen fixation by photosynthetic prokaryotes exhibits several unique features; the oxygen-evolving cyanobacteria have developed various strategies for protection of the oxygen-labile nitrogenase proteins, and some photosynthetic bacteria have been found to regulate their nitrogenase (N2ase) activity in a rapid response to fixed nitrogen, thus saving substantial amounts of energy. Recent advances in the biochemistry, physiology, and genetics of nitrogen fixation by cyanobacteria and photosynthetic bacteria are reviewed, with special emphasis on the unique features found in these organisms. Several major topics in cyanobacterial nitrogen fixation are reviewed. The isolation and characterization of N2ase and the isolation and sequence of N2ase structural genes have shown a great deal of similarity with other organisms. The possible pathways of electron flow to N2ase, the mechanisms of oxygen protection, and the control of nif expression and heterocyst differentiation will be discussed. Several recent advances in the physiology and biochemistry of nitrogen fixation by the photosynthetic bacteria are reviewed. Photosynthetic bacteria have been found to fix nitrogen microaerobically in darkness. The regulation of nif expression and possible pathways of electron flow to N2ase are discussed. The isolation of N2ase proteins, particularly the covalent modification of the Fe protein, the nature of the modifying group, properties of the activating enzyme, and regulating factors of the inactivation/activation process are reviewed.
Collapse
|
15
|
Li JD, Hu CZ, Yoch DC. Changes in amino acid and nucleotide pools of Rhodospirillum rubrum during switch-off of nitrogenase activity initiated by NH4+ or darkness. J Bacteriol 1987; 169:231-7. [PMID: 2878918 PMCID: PMC211758 DOI: 10.1128/jb.169.1.231-237.1987] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Amino acid and nucleotide pools were measured in nitrogenase-containing Rhodospirillum rubrum cultures during NH4+- or dark-induced inactivation (switch-off) of the Fe protein. A big increase in the glutamine pool size preceded NH4+ switch-off of nitrogenase activity, but the glutamine pool remained unchanged during dark switch-off. Furthermore, methionine sulfoximine had no effect on the rate of dark switch-off, suggesting that glutamine plays no role in this process. In the absence of NH4+ azaserine, an inhibitor of glutamate synthate, raised glutamine pool levels sufficiently to initiate switch-off in vivo. While added NH4+ substantially increased the size of the nucleotide pools in N-limited cells, the kinetics of nucleotide synthesis were all similar and followed (rather than preceded) Fe protein inactivation. Darkness had little effect on nucleotide pool sizes. Glutamate pool sizes were also found to be important in NH4+ switch-off because of the role of this molecule as a glutamine precursor. Much of the diversity reported in the observations on NH4+ switch-off appears to be due to variations in glutamate pool sizes prior to the NH4+ shock. The nitrogen nutritional background is an important factor in determining whether darkness initiates nitrogenase switch-off; however, no link has yet been established between this and NH4+ (glutamine) switch-off.
Collapse
|
16
|
Cejudo FJ, Paneque A. Short-term nitrate (nitrite) inhibition of nitrogen fixation in Azotobacter chroococcum. J Bacteriol 1986; 165:240-3. [PMID: 3455689 PMCID: PMC214395 DOI: 10.1128/jb.165.1.240-243.1986] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nitrate-grown Azotobacter chroococcum ATCC 4412 cells lack the ability to fix N2. Nitrogenase activity developed after the cells were suspended in a combined nitrogen-free medium and was paralleled by a concomitant decrease in nitrate assimilation capacity. In such treated cells exhibiting transitory nitrate assimilation and N2-fixation capacity, nitrate or nitrite caused a short-term inhibitory effect on nitrogenase activity which ceased once the anion was exhausted from the medium. The analog L-methionine-DL-sulfoximine, an inhibitor of glutamine synthetase, prevented inhibition of nitrogenase activity by nitrate or nitrite without affecting the uptake of these antions, which were reduced and stoichiometrically released into the external medium as ammonium. Inhibition of nitrogenase by nitrate (nitrite) did not take place in A. chroococcum MCD1, which is unable to assimilate either. We conclude that the short-term inhibitory effect of nitrate (nitrite) on nitrogenase activity is due to some organic product(s) formed during the assimilation of the ammonium resulting from nitrate (nitrite) reduction.
Collapse
|
17
|
Nordlund S, Kanemoto RH, Murrell SA, Ludden PW. Properties and regulation of glutamine synthetase from Rhodospirillum rubrum. J Bacteriol 1985; 161:13-7. [PMID: 2857158 PMCID: PMC214828 DOI: 10.1128/jb.161.1.13-17.1985] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glutamine synthetase from Rhodospirillum rubrum was purified and characterized with respect to its pH optimum and the effect of Mg2+ on its active and inactive forms. Both adenine and phosphorus were incorporated into the inactive form of the enzyme, indicating covalent modification by AMP. The modification could not be removed by phosphodiesterase. Evidence for regulation of the enzyme by oxidation was obtained. Extracts from oxygen-treated cells had lower specific activities than did extracts from cells treated anaerobically. Glutamine synthetase activity was found to decrease in the dark in phototrophically grown cells; activity was recovered on re-illumination.
Collapse
|
18
|
|
19
|
Vignais PM, Colbeau A, Willison JC, Jouanneau Y. Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol 1985; 26:155-234. [PMID: 3913292 DOI: 10.1016/s0065-2911(08)60397-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Jouanneau Y, Lebecque S, Vignais PM. Ammonia and light effect on nitrogenase activity in nitrogen-limited continuous cultures of Rhodopseudomonas capsulata. Role of glutamine synthetase. Arch Microbiol 1984. [DOI: 10.1007/bf00408374] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Cejudo FJ, de la Torre A, Paneque A. Short-term ammonium inhibition of nitrogen fixation in Azotobacter. Biochem Biophys Res Commun 1984; 123:431-7. [PMID: 6593068 DOI: 10.1016/0006-291x(84)90248-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Addition of NH4Cl at low concentrations to Azotobacter chroococcum cells caused an immediate cessation of nitrogenase activity, which was recovered once the added NH+4 was exhausted from the medium. In the presence of inhibitors of ammonium assimilation, such as L-methionine-DL-sulfoximine, L-methionine sulfone or 6-diazo-5-oxo-L-norleucine, externally added NH+4 had no effect on nitrogenase activity and the newly-fixed nitrogen was excreted into the medium as NH+4. It is concluded that, in A. chroococcum, NH+4 must be assimilated to exert its short-term inhibitory effect on nitrogen fixation.
Collapse
|
22
|
Kanemoto RH, Ludden PW. Effect of ammonia, darkness, and phenazine methosulfate on whole-cell nitrogenase activity and Fe protein modification in Rhodospirillum rubrum. J Bacteriol 1984; 158:713-20. [PMID: 6427184 PMCID: PMC215488 DOI: 10.1128/jb.158.2.713-720.1984] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A procedure for the immunoprecipitation of Fe protein from cell extracts was developed and used to monitor the modification of Fe protein in vivo. The subunit pattern of the isolated Fe protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was assayed by Coomassie brilliant blue protein staining and autoradiographic 32P detection of the modifying group. Whole-cell nitrogenase activity was also monitored during Fe protein modification. The addition of ammonia, darkness, oxygen, carbonyl cyanide m-chlorophenylhydrazone, and phenazine methosulfate each resulted in a loss of whole-cell nitrogenase activity and the in vivo modification of Fe protein. For ammonia and darkness, the rate of loss of nitrogenase activity was similar to that for Fe protein modification. The reillumination of a culture incubated in the dark brought about a rapid recovery of nitrogenase activity and the demodification of Fe protein. Cyclic dark-light treatments resulted in matching cycles of nitrogenase activity and Fe protein modification. Carbonyl cyanide m-chlorophenylhydrazone and phenazine methosulfate treatments caused an immediate loss of nitrogenase activity, whereas Fe protein modification occurred at a slower rate. Oxygen treatment resulted in a rapid loss of activity but only an incomplete modification of the Fe protein.
Collapse
|
23
|
Klugkist J, Haaker H. Inhibition of nitrogenase activity by ammonium chloride in Azotobacter vinelandii. J Bacteriol 1984; 157:148-51. [PMID: 6581156 PMCID: PMC215144 DOI: 10.1128/jb.157.1.148-151.1984] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In Azotobacter vinelandii cells, the short-term inhibition of nitrogenase activity by NH4Cl was found to depend on several factors. The first factor is the dissolved oxygen concentration during the assay of nitrogenase. When cells are incubated with low concentrations of oxygen, nitrogenase activity is low and ammonia inhibits strongly. With more oxygen, nitrogenase activity increases. Cells incubated with an optimum amount of oxygen have maximum nitrogenase activity, and the extent of inhibition by ammonia is small. With higher amounts of oxygen, the nitrogenase activity of the cells is decreased and strongly inhibited by ammonia. The second factor found to be important for the inhibition of nitrogenase activity by NH4Cl was the pH of the medium. At a low pH, NH4+ inhibits more strongly than at a higher pH. The third factor that influenced the extent of ammonia inhibition was the respiration rate of the cells. When cells are grown with excess oxygen, the respiration rate of the cells is high and inhibition of nitrogenase activity by ammonia is small. Cells grown under oxygen-limited conditions have a low respiration rate and NH4Cl inhibition of nitrogenase activity is strong. Our results explain the contradictory reports described in the literature for the NH4Cl inhibition of nitrogenase in A. vinelandii.
Collapse
|
24
|
Jouanneau Y, Meyer CM, Vignais PM. Regulation of nitrogenase activity through iron protein interconversion into an active and an inactive form in Rhodopseudomonas capsulata. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0167-4838(83)90242-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Willison JC, Jouanneau Y, Colbeau A, Vignais PM. H2 metabolism in photosynthetic bacteria and relationship to N2 fixation. ANNALES DE MICROBIOLOGIE 1983; 134B:115-35. [PMID: 6139053 DOI: 10.1016/s0769-2609(83)80100-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The photosynthetic bacteria can evolve H2 in the light through a nitrogenase-mediated reaction. The nitrogenase enzyme in the photosynthetic bacteria is similar to other nitrogenases. It is made of two soluble components: a) the Fe protein (dinitrogenase reductase or Component II) which receives electrons from ferredoxin, and b) the Mo-Fe protein (dinitrogenase or Component I) on which the substrates (including protons) are reduced. In photosynthetic bacteria, the physiological regulation of nitrogenase activity involves inactivation by covalent modification of the nitrogenase Fe protein. This inactivation can be reversed by an activating factor (or activating enzyme) which is an extrinsic membrane protein. After an ammonia shock, both the Fe protein of nitrogenase, and the glutamine synthetase, become adenylylated in vivo. In the adenylylation state, glutamine synthetase has AMP moieties bound to the protein by phosphate linkage. In toluene-treated cells of Rhodopseudomas capsulata preincubated with radioactive ATP, labelled either by 14C on the adenine or by 32P on the P alpha of ATP and then submitted to an ammonia shock, the Fe protein becomes covalently labelled only with [14C]ATP ad not with [32P]alpha ATP, while glutamine synthetase becomes labelled with both radioactive ATP molecules. This indicates that a different type of linkage is involved in the binding of the modifying group to Fe protein and to glutamine synthetase. Like other N2 fixers, the photosynthetic bacteria also contain a hydrogenase. In R. capsulata, the hydrogenase is an intrinsic membrane protein which protrudes in the cytoplasmic space and is not accessible to anti-hydrogenase antibodies from the periplasmic side. The hydrogenase can transfer electrons from H2 to the electron transport chain. It functions physiologically as an uptake-hydrogenase and may contribute to the recycling of electrons to nitrogenase. In the presence of excess carbon compounds, its main role may be to maintain an anaerobic microenvironment for the nitrogenase. Ferredoxin has been isolated from photosynthetic bacteria. Rhodospirillum rubrum and Rhodopseudomonas capsulata each contain two different soluble ferredoxin molecules. Reduced Fd I from R. capsulata has been shown to donate its electrons to nitrogenase.
Collapse
|
26
|
Arp DJ, Zumft WG. Overproduction of nitrogenase by nitrogen-limited cultures of Rhodopseudomonas palustris. J Bacteriol 1983; 153:1322-30. [PMID: 6402491 PMCID: PMC221780 DOI: 10.1128/jb.153.3.1322-1330.1983] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rhodopseudomonas palustris cells grown on limiting nitrogen produced four- to eightfold higher nitrogenase specific activity relative to cells sparged with N2. The high activity of N-limited cells was the result of overproduction of the nitrogenase proteins. This was shown by four independent techniques: (i) titration of the Mo-Fe protein in cell-free extracts with Fe protein from Azotobacter vinelandii; (ii) direct detection of the subunits of Mo-Fe protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; (iii) monitoring of the electron paramagnetic resonance spectrum of Mo-Fe protein in whole cells; and (iv) immunological assay of the Fe protein level with an antiserum against the homologous protein of Rhodospirillum rubrum. The derepressed level of nitrogenase found in N2-grown cells was not due to an increased turnover of nitrogenase. The apparent half-lives of nitrogenase in N2-grown and N-limited cells were 58 and 98 h, respectively, but were too long to account for the difference in enzyme level. Half-lives were determined by measuring nitrogenase after repression of de novo synthesis by ammonia and subsequent release of nitrogenase switch-off by methionine sulfoximine. Observations were extended to R. rubrum, Rhodopseudomonas capsulata, and Rhodomicrobium vannielii and indicated that overproduction of nitrogenase under nitrogen limitation is not an exceptional property of R. palustris, but rather a general property of phototrophic bacteria.
Collapse
|
27
|
Michalski W, Nicholas D, Vignais P. 14C-labelling of glutamine synthetase and Fe protein of nitrogenase in toluene-treated cells of Rhodopseudomonas capsulata. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0167-4838(83)90427-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Arp DJ, Zumft WG. L-methionine-SR-sulfoximine as a probe for the role of glutamine synthetase in nitrogenase switch-off by ammonia and glutamine in Rhodopseudomonas palustris. Arch Microbiol 1983; 134:17-22. [PMID: 6135404 DOI: 10.1007/bf00429400] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Methionine sulfoximine (MSX), an irreversible inhibitor of glutamine synthetase of Rhodopseudomonas palustris restored nitrogenase activity to cells in which nitrogenase had been completely inhibited by ammonia switch-off. After addition of MSX, there was a lag period before nitrogenase activity was fully restored. During this lag, glutamine synthetase activity progressively decreased, and near the time of its complete inhibition, nitrogenase activity resumed. Nitrogenase switch-off by ammonia thus required active glutamine synthetase. Glutamine itself caused nitrogenase inhibition whose reversal by MSX depended on the relative ratio of MSX to glutamine. Unlike ammonia, glutamine inhibited nitrogenase under conditions where glutamine synthetase activity was absent. This indicates that glutamine is the effector molecule in nitrogenase switch-off, for instance by interacting with the enzymatic system for Fe protein inactivation. The effects of glutamine and MSX were also dependent on the culture age. Possible explanation for this and for the competitive effects are a common binding site within the regulatory apparatus for nitrogenase, or, in part, within a common transport system. Some observations with MSX were extended to Rhodopseudomonas capsulata and agreed with those in R. palustris.
Collapse
|
29
|
Haaker H, Laane C, Hellingwerf K, Houwer B, Konings WN, Veeger C. Short-term regulation of the nitrogenase activity in Rhodopseudomonas sphaeroides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 127:639-45. [PMID: 6983438 DOI: 10.1111/j.1432-1033.1982.tb06920.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The nitrogenase activity in whole cells of Rhodopseudomonas sphaeroides could be inhibited by lowering the electrical potential across the cytoplasmic membrane. The membrane potential was partly dissipated either by lowering the light intensity or by the addition of a lipophilic cation, tetraphenylphosphonium. Under these circumstances, it was shown that the intracellular ATP/ADP ratio was not affected and that the inhibition of the whole cell nitrogenase activity was not due to an inactivation of the nitrogenase enzyme. From these results it is concluded that electron transport to nitrogenase in Rps. sphaeroides is dependent on a high membrane potential. The nitrogenase enzyme in whole cells could be inactivated by lowering the membrane potential across the cytoplasmic membrane by incubating the cells in the dark or in the light in the presence of uncouplers. Nitrogenase could be reactivated in the light in the absence of uncouplers. Some possible mechanisms of action of NH+4 inhibition of whole cell nitrogenase activity could be excluded. Inhibition by NH4Cl of whole cell nitrogenase activity in Rps. sphaeroides could neither be explained by a rapid inactivation of the nitrogenase enzyme, nor by an effect on the intracellular ATP/ADP ratio or the membrane potential. NH+4 inhibits whole cell nitrogenase activity not directly but probably after being assimilated by glutamine synthetase. The role of glutamine, glutamate and 2-oxoglutarate on the regulation of electron transport to nitrogenase will be discussed.
Collapse
|
30
|
The role of glutamine synthetase in the regulation of nitrogenase activity (?switch off? effect) in Rhodospirillum rubrum. Arch Microbiol 1982. [DOI: 10.1007/bf00407960] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Yoch DC, Gotto JW. Effect of light intensity and inhibitors of nitrogen assimilation on NH4+ inhibition of nitrogenase activity in Rhodospirillum rubrum and Anabaena sp. J Bacteriol 1982; 151:800-6. [PMID: 6807962 PMCID: PMC220328 DOI: 10.1128/jb.151.2.800-806.1982] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nitrogenase activity in Rhodospirillum rubrum was inhibited by NH4+ more rapidly in low light than in high light. Furthermore, the nitrogenase of cells exposed to phosphorylation uncouplers was inhibited by NH4+ more rapidly than was the nitrogenase of controls without an uncoupler. These observations suggest that high levels of photosynthate inhibit the nitrogenase inactivation system. L-Methionine-DL-sulfoximine, a glutamine synthetase inhibitor, prevented NH4+ from inhibiting nitrogenase activity, which suggests that NH4+ must be processed at least to glutamine for inhibition to occur. An inhibitor of glutamate synthase activity, 6-diazo-5-oxo-L-norleucine, inhibited nitrogenase activity in the absence of NH4+, but only in cells exposed to low light. The mechanism of 6-diazo-5-oxo-L-norleucine inhibition appeared to be the same as that induced by NH4+, because nitrogenase activity could be restored in vitro by activating enzyme and Mn2+. The inhibitor data suggest that the glutamine pool or a molecule that responds to it activates the Fe protein-modifying (or protein-inactivating) system and that the accumulation of this (unidentified) molecule is retarded when the cells are exposed to high light. It was confirmed here that Anabaena nitrogenase is also inhibited by NH4+, but only when the cells are incubated under low light. This inhibition, however, unlike that in R. rubrum, could be completely reversed in high light, suggesting that the mechanisms of nitrogenase inhibition by NH4+ in these two phototrophs are different.
Collapse
|
32
|
Evidence for an ammonium transport system in the N2-fixing phototrophic bacteriumRhodospirillum rubrum. Arch Microbiol 1982. [DOI: 10.1007/bf00690822] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
|