1
|
Purple bacteria screening for photoautohydrogenotrophic food production: Are new H 2-fed isolates faster and nutritionally better than photoheterotrophically obtained reference species? N Biotechnol 2022; 72:38-47. [PMID: 36049649 DOI: 10.1016/j.nbt.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
Abstract
Photoautohydrogenotrophic enrichments of wastewater treatment microbiomes were performed to obtain hypothetically high-potential specialist species for biotechnological applications. From these enrichment cultures, ten photoautohydrogenotrophic species were isolated: six Rhodopseudomonas species, three Rubrivivax members and Rhodobacter blasticus. The performance of these isolates was compared to three commonly studied, and originally photoheterotrophically enriched species (Rhodopseudomonas palustris, Rhodobacter capsulatus and Rhodobacter sphaeroides), designated as reference species. Repeated subcultivations were applied to improve the initial poor performance of the isolates (acclimation effect), which resulted in increases in both maximum growth rate and protein productivity. However, the maximum growth rate of the reference species remained 3-7 times higher compared to the isolates (0.42-0.84 d-1 at 28 °C), while protein productivities remained 1.5-1.7 times higher. This indicated that H2-based enrichment did not result in photoautohydrogenotrophic specialists, suggesting that the reference species are more suitable for intensified biomass and protein production. On the other hand, the isolates were able to provide equally high protein quality profiles as the references species, providing full dietary essential amino acid matches for human food. Lastly, the effect of metabolic carbon/electron switching (back and forth between auto- to heterotrophic conditions) initially boosted µmax when returning to photoautohydrogenotrophic conditions. However, the switch negatively impacted lag phase, protein productivities and pigment contents. In the case of protein productivity, the acquired acclimation was partially lost with decreases of up to 44 % and 40 % respectively for isolates and reference species. Finally, the three reference species, and specifically Rh. capsulatus, remained the most suitable candidate(s) for further biotechnological development.
Collapse
|
2
|
Abstract
Production of hydrogen by anaerobes, facultative anaerobes, aerobes, methylotrophs, and photosynthetic bacteria is possible. Anaerobic Clostridia are potential producers and immobilized C. butyricum produces 2 mol H2/mol glucose at 50% efficiency. Spontaneous production of H2 from formate and glucose by immobilized Escherichia coli showed 100% and 60% efficiencies, respectively. Enterobactericiae produces H2 at similar efficiency from different monosaccharides during growth. Among methylotrophs, methanogenes, rumen bacteria, and thermophilic archae, Ruminococcus albus, is promising (2.37 mol/mol glucose). Immobilized aerobic Bacillus licheniformis optimally produces 0.7 mol H2/mol glucose. Photosynthetic Rhodospirillum rubrum produces 4, 7, and 6 mol of H2 from acetate, succinate, and malate, respectively. Excellent productivity (6.2 mol H2/mol glucose) by co-cultures of Cellulomonas with a hydrogenase uptake (Hup) mutant of R. capsulata on cellulose was found. Cyanobacteria, viz., Anabaena, Synechococcus, and Oscillatoria sp., have been studied for photoproduction of H2. Immobilized A. cylindrica produces H2 (20 ml/g dry wt/h) continually for 1 year. Increased H2 productivity was found for Hup mutant of A. variabilis. Synechococcus sp. has a high potential for H2 production in fermentors and outdoor cultures. Simultaneous productions of oxychemicals and H2 by Klebseilla sp. and by enzymatic methods were also attempted. The fate of H2 biotechnology is presumed to be dictated by the stock of fossil fuel and state of pollution in future.
Collapse
Affiliation(s)
- R Nandi
- Department of Applied Biochemistry, Indian Institute of Chemical Biology, Calcutta, India
| | | |
Collapse
|
3
|
Abstract
Reduced inorganic sulfur compounds are oxidized by members of the domains Archaea and Bacteria. These compounds are used as electron donors for anaerobic phototrophic and aerobic chemotrophic growth, and are mostly oxidized to sulfate. Different enzymes mediate the conversion of various reduced sulfur compounds. Their physiological function in sulfur oxidation is considered (i) mostly from the biochemical characterization of the enzymatic reaction, (ii) rarely from the regulation of their formation, and (iii) only in a few cases from the mutational gene inactivation and characterization of the resulting mutant phenotype. In this review the sulfur-metabolizing reactions of selected phototrophic and of chemotrophic prokaryotes are discussed. These comprise an archaeon, a cyanobacterium, green sulfur bacteria, and selected phototrophic and chemotrophic proteobacteria. The genetic systems are summarized which are presently available for these organisms, and which can be used to study the molecular basis of their dissimilatory sulfur metabolism. Two groups of thiobacteria can be distinguished: those able to grow with tetrathionate and other reduced sulfur compounds, and those unable to do so. This distinction can be made irrespective of their phototrophic or chemotrophic metabolism, neutrophilic or acidophilic nature, and may indicate a mechanism different from that of thiosulfate oxidation. However, the core enzyme for tetrathionate oxidation has not been identified so far. Several phototrophic bacteria utilize hydrogen sulfide, which is considered to be oxidized by flavocytochrome c owing to its in vitro activity. However, the function of flavocytochrome c in vivo may be different, because it is missing in other hydrogen sulfide-oxidizing bacteria, but is present in most thiosulfate-oxidizing bacteria. A possible function of flavocytochrome c is discussed based on biophysical studies, and the identification of a flavocytochrome in the operon encoding enzymes involved in thiosulfate oxidation of Paracoccus denitrificans. Adenosine-5'-phosphosulfate reductase thought to function in the 'reverse' direction in different phototrophic and chemotrophic sulfur-oxidizing bacteria was analysed in Chromatium vinosum. Inactivation of the corresponding gene does not affect the sulfite-oxidizing ability of the mutant. This result questions the concept of its 'reverse' function, generally accepted for over three decades.
Collapse
Affiliation(s)
- C G Friedrich
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Chemietechnik, Universität Dortmund, Germany
| |
Collapse
|
4
|
Collman JP, Wagenknecht PS, Hutchison JE. Cofaciale Bis(metallo)diporphyrine als potentielle molekulare Katalysatoren für Mehrelektronenreduktionen und -oxidationen kleiner Moleküle. Angew Chem Int Ed Engl 1994. [DOI: 10.1002/ange.19941061505] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Vignais PM, Colbeau A, Willison JC, Jouanneau Y. Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol 1985; 26:155-234. [PMID: 3913292 DOI: 10.1016/s0065-2911(08)60397-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
|
7
|
Colbeau A, Vignais P. The membrane-bound hydrogenase of Rhodopseudomonas capsulata is inducible and contains nickel. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0167-4838(83)90035-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
|
9
|
Colbeau A, Kelley BC, Vignais PM. Hydrogenase activity in Rhodopseudomonas capsulata: relationship with nitrogenase activity. J Bacteriol 1980; 144:141-8. [PMID: 6998943 PMCID: PMC294606 DOI: 10.1128/jb.144.1.141-148.1980] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hydrogenase activity was found in cells of Rhodopseudomonas capsulata strain B10 cultured under a variety of growth conditions either anaerobically in the light or aerobically in the dark. The highest activities were found routinely in cells grown in the presence of H2. The hydrogenase of R. capsulata was localized in the particulate fraction of the cells. High hydrogenase activities were usually observed in cells possessing an active nitrogenase. The hydrogen produced by the nitrogenase stimulated the activity of hydrogenase in growing cells. However, the synthesis of hydrogenase was not closely linked to the synthesis of nitrogenase. Hydrogenase was present in dark-grown cultures, whereas nitrogenase synthesis was not significant in the absence of light. Unlike nitrogenase, hydrogenase was present in cultures grown on NH4+. Conditions were established which allowed the synthesis of either nitrogenase or hydrogenase by resting cells. We concluded that hydrogenase can be synthesized independently of nitrogenase.
Collapse
|
10
|
Voelskow H, Sch�n G. H2 production of Rhodospirillum rubrum during adaptation to anaerobic dark conditions. Arch Microbiol 1980. [DOI: 10.1007/bf00446884] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Chemoautotrophic growth of Rhodopseudomonas species with hydrogen and chemotrophic utilization of methanol and formate. Arch Microbiol 1979. [DOI: 10.1007/bf00411357] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Madigan MT, Gest H. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 1979; 137:524-30. [PMID: 216663 PMCID: PMC218479 DOI: 10.1128/jb.137.1.524-530.1979] [Citation(s) in RCA: 143] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phototrophic bacterium Rhodopseudomonas capsulata was found to be capable of growing chemoautotrophically under aerobic conditions in darkness. Growth was strictly dependent on the presence of H2 as the source of energy and reducing power, O2 as the terminal electron acceptor for energy transduction, and CO2 as the sole carbon source; under optimal conditions the generation time was about 6 h. Chemoautotrophically grown cells showed a relatively high content of bacteriochlorophyll a and intracytoplasmic membranes (chromatophores). Experiments with various mutants of R. capsulata, affected in electron transport, indicate that either of the two terminal oxidases of this bacterium can participate in the energy-yielding oxidation of H2. The ability of R. capsulata to multiply in at least five different physiological growth modes suggests that it is one of the most metabolically versatile procaryotes known.
Collapse
|
13
|
Abstract
The photosynthetic bacteria are found in a wide range of specialized aquatic environments. These bacteria represent important members of the microbial community since they are capable of carrying out two of the most important processes on earth, namely, photosynthesis and nitrogen fixation, at the expense of solar energy. Since the discovery that these bacteria could fix atmospheric nitrogen, there has been an intensification of studies relating to both the biochemistry and physiology of this process. The practical importance of this field is emphasized by a consideration of the tremendous energy input required for the production of artificial nitrogenous fertilizer. The present communication aims to briefly review the current state of knowledge relating to certain aspects of nitrogen fixation by the photosynthetic bacteria. The topics that will be discussed include a general survey of the nitrogenase system in the various photosynthetic bacteria, the regulation of both nitrogenase biosynthesis and activity, recent advances in the genetics of the nitrogen fixing system, and the hydrogen cycle in these bacteria. In addition, a brief discussion of some of some of the possible practical applications provided by the photosynthetic bacteria will be presented.
Collapse
|
14
|
Eisbrenner G, Distler E, Floener L, Bothe H. The occurrence of the hydrogenase in some blue-green algae. Arch Microbiol 1978. [DOI: 10.1007/bf00415727] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Bothe H, Tennigkeit J, Eisbrenner G. The utilization of molecular hydrogen by the blue-green alga Anabaena cylindrica. Arch Microbiol 1977; 114:43-9. [PMID: 410380 DOI: 10.1007/bf00429628] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Conrad R, Schlegel HG. Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata. Arch Microbiol 1977; 112:39-48. [PMID: 139134 DOI: 10.1007/bf00446652] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In Rhodopseudomonas capsulata the enzymes of the Entner-Doudoroff pathway and the Embden-Meyerhof pathway have been examined. Fructose-grown cells contained inducible activities of phosphoenolpyruvate-fructosephospho-transferase and 1-phosphofructokinase and only low levels of fructokinase and 6-phosphofructokinase. Although fructose-grown cells contained, in addition, all the enzymes of the Entner-Doudoroff pathway together with fructose-1,6-diphosphatase and phosphoglucose isomerase, the Entner-Doudoroff pathway was not operative in fructose catabolism and served only the degradation of glucose. The functional separation of glucose and fructose catabolism via the Entner-Doudoroff and a modified Embden-Meyerhof pathway, respectively, was confirmed by different approaches: 1. Radiorespirometric experiments with glucose and fructose labelled in positions 1, 2, 3, 3+4 and 6 have been carried out. The pattern of 14CO2-evolution from position-labelled glucose was characteristic for the Entner-Doudoroff pathway, that from position-labelled fructose for the Embden-Meyerhof pathway. 2. In the presence of arsenite up to 50% of glucose- and fructose-carbon was excreted as pyruvate. Using 1-14C-glucose, 86% of the pyruvate was labelled in the carboxyl group, whereas using 1-14C-fructose only 19% of the pyruvate was labelled in the carboxyl group. 3. A glucose-6-phosphate dehydrogenase-deficient mutant was isolated which lacked a functional Entner-Doudoroff pathway but which was unaltered in its ability to grow on fructose.
Collapse
|
17
|
Abstract
Thirty-three strains of Rhodopseudomonas capsulata have been studied in order to develop a more comprehensive characterization of the species. On the basis of morphological, nutritional, physiological and other properties, the characteristics of an "ideal biotype" have been defined, which can be used to distinguish Rps. capsulata from similar purple bacteria. In this connection, two properties of Rps. capsulata are of particular note: a) sensitivity to penicillin G is 10(3)-10(5) times greater than that shown by closely related species, and b) all strains examined are susceptible to lysis by one or more strains of host species-specific virulent bacteriophages. It appears that members of the species Rps. capsulata form a stringent taxonomic grouping.
Collapse
|
18
|
Hansen TA, Veldkamp H. Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. ARCHIV FUR MIKROBIOLOGIE 1973; 92:45-58. [PMID: 4725822 DOI: 10.1007/bf00409510] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Rindt KP, Ohmann E. [Aspects of thymine metabolism in Athiorhodaceae]. ZEITSCHRIFT FUR ALLGEMEINE MIKROBIOLOGIE 1972; 12:143-51. [PMID: 4628432 DOI: 10.1002/jobm.3630120209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Hansen TA, van Gemerden H. Sulfide utilization by purple nonsulfur bacteria. ARCHIV FUR MIKROBIOLOGIE 1972; 86:49-56. [PMID: 4628180 DOI: 10.1007/bf00412399] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
|
22
|
Broda E. The evolution of bioenergetic processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1970. [DOI: 10.1016/0079-6107(70)90025-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Stokes JE, Hoare DS. Reductive pentose cycle and formate assimilation in Rhodopseudomonas palustris. J Bacteriol 1969; 100:890-4. [PMID: 5354954 PMCID: PMC250172 DOI: 10.1128/jb.100.2.890-894.1969] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rhodopseudomonas palustris assimilated formate autotrophically as carbon dioxide and hydrogen arising from the activity of the formic hydrogenlyase system. Kinetic analyses of cell suspensions pulse-labeled with (14)C-formate or (14)C-bicarbonate showed similar distributions of incorporated radioactivity. In both cases phosphate esters were the first assimilation products. Ribulose diphosphate carboxylase, phosphoribose isomerase, and phosphoribulokinase, characteristic enzymes of the reductive pentose cycle, were present in extracts of cells grown on formate.
Collapse
|