1
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
2
|
Mahajan M, Seeger C, Yee B, Andersson SGE. Evolutionary Remodeling of the Cell Envelope in Bacteria of the Planctomycetes Phylum. Genome Biol Evol 2020; 12:1528-1548. [PMID: 32761170 DOI: 10.1093/gbe/evaa159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 01/09/2023] Open
Abstract
Bacteria of the Planctomycetes phylum have many unique cellular features, such as extensive membrane invaginations and the ability to import macromolecules. These features raise intriguing questions about the composition of their cell envelopes. In this study, we have used microscopy, phylogenomics, and proteomics to examine the composition and evolution of cell envelope proteins in Tuwongella immobilis and other members of the Planctomycetes. Cryo-electron tomography data indicated a distance of 45 nm between the inner and outer membranes in T. immobilis. Consistent with the wide periplasmic space, our bioinformatics studies showed that the periplasmic segments of outer-membrane proteins in type II secretion systems are extended in bacteria of the order Planctomycetales. Homologs of two highly abundant cysteine-rich cell wall proteins in T. immobilis were identified in all members of the Planctomycetales, whereas genes for peptidoglycan biosynthesis and cell elongation have been lost in many members of this bacterial group. The cell wall proteins contain multiple copies of the YTV motif, which is the only domain that is conserved and unique to the Planctomycetales. Earlier diverging taxa in the Planctomycetes phylum contain genes for peptidoglycan biosynthesis but no homologs to the YTV cell wall proteins. The major remodeling of the cell envelope in the ancestor of the Planctomycetales coincided with the emergence of budding and other unique cellular phenotypes. The results have implications for hypotheses about the process whereby complex cellular features evolve in bacteria.
Collapse
Affiliation(s)
- Mayank Mahajan
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Christian Seeger
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Benjamin Yee
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| |
Collapse
|
3
|
Aepfler RF, Bühring SI, Elvert M. Substrate characteristic bacterial fatty acid production based on amino acid assimilation and transformation in marine sediments. FEMS Microbiol Ecol 2019; 95:5555570. [PMID: 31504469 DOI: 10.1093/femsec/fiz131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/23/2019] [Indexed: 01/25/2023] Open
Abstract
Polar lipid-derived fatty acids (PLFAs) and their stable carbon isotopes are frequently combined to characterize microbial populations involved in the degradation of organic matter, offering a link to biogeochemical processes and carbon sources used. However, PLFA patterns derive from multiple species and may be influenced by substrate types. Here, we investigated such dependencies by monitoring the transformation of position-specifically 13C-labeled amino acids (AAs) in coastal marine sediments dominated by heterotrophic bacteria. Alanine was assimilated into straight-chain FAs, while valine and leucine incorporation led to the characteristic production of even- and odd-numbered iso-series FAs. This suggests that identical microbial communities adjust lipid biosynthesis according to substrate availability. Transformation into precursor molecules for FA biosynthesis was manifested in increased 13C recoveries of the corresponding volatiles acetate, isobutyrate and isovalerate of up to 39.1%, much higher than for PLFAs (<0.9%). A significant fraction of 13C was found in dissolved inorganic carbon (up to 37.9%), while less was recovered in total organic carbon (up to 17.3%). We observed a clear discrimination against the carboxyl C, whereby C2 and C3 positions were preferentially incorporated into PLFAs. Therefore, position-specific labeling is an appropriate tool for reconstructing the metabolic fate of protein-derived AAs in marine environments.
Collapse
Affiliation(s)
- Rebecca F Aepfler
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany.,Hydrothermal Geomicrobiology Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 13, 28359 Bremen, Germany
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 13, 28359 Bremen, Germany
| | - Marcus Elvert
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
| |
Collapse
|
4
|
Vega-Cabrera LA, Pardo-López L. Membrane remodeling and organization: Elements common to prokaryotes and eukaryotes. IUBMB Life 2017; 69:55-62. [DOI: 10.1002/iub.1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Luz A. Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| |
Collapse
|
5
|
Thermostilla marina gen. nov., sp. nov., a thermophilic, facultatively anaerobic planctomycete isolated from a shallow submarine hydrothermal vent. Int J Syst Evol Microbiol 2016; 66:633-638. [DOI: 10.1099/ijsem.0.000767] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Mahat R, Seebart C, Basile F, Ward NL. Global and Targeted Lipid Analysis of Gemmata obscuriglobus Reveals the Presence of Lipopolysaccharide, a Signature of the Classical Gram-Negative Outer Membrane. J Bacteriol 2016; 198:221-36. [PMID: 26483522 PMCID: PMC4751799 DOI: 10.1128/jb.00517-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/10/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Planctomycete bacteria possess many unusual cellular properties, contributing to a cell plan long considered to be unique among the bacteria. However, data from recent studies are more consistent with a modified Gram-negative cell plan. A key feature of the Gram-negative plan is the presence of an outer membrane (OM), for which lipopolysaccharide (LPS) is a signature molecule. Despite genomic evidence for an OM in planctomycetes, no biochemical verification has been reported. We attempted to detect and characterize LPS in the planctomycete Gemmata obscuriglobus. We obtained direct evidence for LPS and lipid A using electrophoresis and differential staining. Gas chromatography-mass spectrometry (GC-MS) compositional analysis of LPS extracts identified eight different 3-hydroxy fatty acids (3-HOFAs), 2-keto 3-deoxy-d-manno-octulosonic acid (Kdo), glucosamine, and hexose and heptose sugars, a chemical profile unique to Gram-negative LPS. Combined with molecular/structural information collected from matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS analysis of putative intact lipid A, these data led us to propose a heterogeneous hexa-acylated lipid A structure (multiple-lipid A species). We also confirmed previous reports of G. obscuriglobus whole-cell fatty acid (FA) and sterol compositions and detected a novel polyunsaturated FA (PUFA). Our confirmation of LPS, and by implication an OM, in G. obscuriglobus raises the possibility that other planctomycetes possess an OM. The pursuit of this question, together with studies of the structural connections between planctomycete LPS and peptidoglycans, will shed more light on what appears to be a planctomycete variation on the Gram-negative cell plan. IMPORTANCE Bacterial species are classified as Gram positive or negative based on their cell envelope structure. For 25 years, the envelope of planctomycete bacteria has been considered a unique exception, as it lacks peptidoglycan and an outer membrane (OM). However, the very recent detection of peptidoglycan in planctomycete species has provided evidence for a more conventional cell wall and raised questions about other elements of the cell envelope. Here, we report direct evidence of lipopolysaccharide in the planctomycete G. obscuriglobus, suggesting the presence of an OM and supporting the proposal that the planctomycete cell envelope is an extension of the canonical Gram-negative plan. This interpretation features a convoluted cytoplasmic membrane and expanded periplasmic space, the functions of which provide an intriguing avenue for future investigation.
Collapse
Affiliation(s)
- Rajendra Mahat
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Corrine Seebart
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Franco Basile
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Naomi L Ward
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
7
|
Kulichevskaya IS, Ivanova AA, Detkova EN, Rijpstra WIC, Sinninghe Damsté JS, Dedysh SN. Planctomicrobium piriforme gen. nov., sp. nov., a stalked planctomycete from a littoral wetland of a boreal lake. Int J Syst Evol Microbiol 2015; 65:1659-1665. [DOI: 10.1099/ijs.0.000154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, budding, non-pigmented and rosette-forming bacterium was isolated from a littoral wetland of a boreal lake located in Valaam Island, northern Russia, and designated strain P3T. Ellipsoidal to pear-shaped cells of this bacterium were covered with crateriform pits and possessed stalks suggesting a planctomycete morphotype. 16S rRNA gene sequence analysis confirmed that strain P3T was a member of the order
Planctomycetales
and belonged to a phylogenetic lineage defined by the genus
Planctomyces
, with 89 and 86 % sequence similarity to
Planctomyces brasiliensis
and
Planctomyces maris
, respectively. Strain P3T was a mildly acidophilic, mesophilic organism capable of growth at pH values between pH 4.2 and 7.1 (with an optimum at pH 6.0–6.5) and at temperatures between 10 and 30 °C (optimum at 20–28 °C). Most sugars, a number of polysaccharides and several organic acids were the preferred growth substrates. Compared with
Planctomyces brasiliensis
and
Planctomyces maris
, which require NaCl for growth, strain P3T was salt-sensitive and did not develop at NaCl concentrations above 0.5 % (w/v). The major fatty acids were C16 : 0 and C16 : 1ω7c; the cells also contained significant amounts of C18 : 1ω7c and C18 : 0. The major intact polar lipids were diacylglycerol-O-(N,N,N-trimethyl)homoserine (DGTS) lipids; the major neutral lipids were long-chain 1,(ω-1)-diols and C31 : 9 hydrocarbon. The quinone was MK-6, and the G+C content of the DNA was 59.0 mol%. Strain P3T differed from
Planctomyces brasiliensis
and
Planctomyces maris
by cell morphology, substrate utilization pattern and a number of physiological characteristics. Based on these data, the novel isolate should be considered as representing a novel genus and species of planctomycetes, for which the name Planctomicrobium piriforme gen. nov., sp. nov., is proposed. The type strain is P3T ( = DSM 26348T = VKM B-2887T).
Collapse
Affiliation(s)
- Irina S. Kulichevskaya
- S. N. Winogradsky Institute of Microbiology, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| | - Anastasia A. Ivanova
- S. N. Winogradsky Institute of Microbiology, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| | - Ekaterina N. Detkova
- S. N. Winogradsky Institute of Microbiology, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| | - W. Irene C. Rijpstra
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - Jaap S. Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - Svetlana N. Dedysh
- S. N. Winogradsky Institute of Microbiology, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| |
Collapse
|
8
|
Scheuner C, Tindall BJ, Lu M, Nolan M, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Huntemann M, Liolios K, Pagani I, Mavromatis K, Ivanova N, Pati A, Chen A, Palaniappan K, Jeffries CD, Hauser L, Land M, Mwirichia R, Rohde M, Abt B, Detter JC, Woyke T, Eisen JA, Markowitz V, Hugenholtz P, Göker M, Kyrpides NC, Klenk HP. Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305(T)), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order Planctomycetales and the family Planctomycetaceae. Stand Genomic Sci 2014; 9:10. [PMID: 25780503 PMCID: PMC4334474 DOI: 10.1186/1944-3277-9-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 12/21/2022] Open
Abstract
Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448(T), were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published and the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. Phylogenomic analyses indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. In addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.
Collapse
Affiliation(s)
- Carmen Scheuner
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Brian J Tindall
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Megan Lu
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Matt Nolan
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Ioanna Pagani
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Krishna Palaniappan
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Cynthia D Jeffries
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Loren Hauser
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Miriam Land
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Romano Mwirichia
- Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Manfred Rohde
- HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Birte Abt
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - John C Detter
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Jonathan A Eisen
- DOE Joint Genome Institute, Walnut Creek, California, USA
- University of California Davis Genome Center, Davis, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Philip Hugenholtz
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Markus Göker
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans-Peter Klenk
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| |
Collapse
|
9
|
Slobodkina GB, Kovaleva OL, Miroshnichenko ML, Slobodkin AI, Kolganova TV, Novikov AA, van Heerden E, Bonch-Osmolovskaya EA. Thermogutta terrifontis gen. nov., sp. nov. and Thermogutta hypogea sp. nov., thermophilic anaerobic representatives of the phylum Planctomycetes. Int J Syst Evol Microbiol 2014; 65:760-765. [PMID: 25479950 DOI: 10.1099/ijs.0.000009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel strains of thermophilic planctomycetes were recovered from terrestrial and subterranean habitats. Strain R1(T) was isolated from a hot spring (Kunashir Island, Russia) and strain SBP2(T) was isolated from a deep gold mine (South Africa). Both isolates grew in the temperature range 30-60 °C and pH range 5.0-8.0. Strain R1(T) grew optimally at 60 °C and pH 6.0-6.5; for SBP2(T) optimal conditions were at 52 °C and pH 7.5-8.0. Both strains were capable of anaerobic respiration with nitrate and nitrite as electron acceptors as well as of microaerobic growth. They also could grow by fermentation of mono-, di- and polysaccharides. Based on their phylogenetic position and phenotypic features we suggest that the new isolates represent two novel species belonging to a new genus in the order Planctomycetales, for which the names Thermogutta terrifontis gen. nov., sp. nov. and Thermogutta hypogea sp. nov. are proposed. The type strain of Thermogutta terrifontis, the type species of the genus, is R1(T) ( = DSM 26237(T) = VKM B-2805(T)), and the type strain of Thermogutta hypogea is SBP2(T) ( = JCM 19991(T) = VKM B-2782(T)).
Collapse
Affiliation(s)
- Galina B Slobodkina
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Olga L Kovaleva
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
10
|
Flores C, Catita JAM, Lage OM. Assessment of planctomycetes cell viability after pollutants exposure. Antonie van Leeuwenhoek 2014; 106:399-411. [PMID: 24903954 DOI: 10.1007/s10482-014-0206-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
In this study, the growth of six different planctomycetes, a particular ubiquitous bacterial phylum, was assessed after exposure to pollutants. In addition and for comparative purposes, Pseudomonas putida, Escherichia coli and Vibrio anguillarum were tested. Each microorganism was exposed to several concentrations of 21 different pollutants. After exposure, bacteria were cultivated using the drop plate method. In general, the strains exhibited a great variation of sensitivity to pollutants in the order: V. anguillarum > planctomycetes > P. putida > E. coli. E. coli showed resistance to all pollutants tested, with the exception of phenol and sodium azide. Copper, Ridomil® (fungicide), hydrazine and phenol were the most toxic pollutants. Planctomycetes were resistant to extremely high concentrations of nitrate, nitrite and ammonium but they were the only bacteria sensitive to Previcur N® (fungicide). Sodium azide affected the growth on plates of E. coli, P. putida and V. anguillarum, but not of planctomycetes. However, this compound affected planctomycetes cell respiration but with less impact than in the aforementioned bacteria. Our results provide evidence for a diverse response of bacteria towards pollutants, which may influence the structuring of microbial communities in ecosystems under stress, and provide new insights on the ecophysiology of planctomycetes.
Collapse
Affiliation(s)
- Carlos Flores
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, FC4 Rua do Campo Alegre s/nº, 4169-007, Porto, Portugal
| | | | | |
Collapse
|
11
|
PVC bacteria: variation of, but not exception to, the Gram-negative cell plan. Trends Microbiol 2014; 22:14-20. [DOI: 10.1016/j.tim.2013.10.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/17/2022]
|
12
|
Jahnke LL, Turk-Kubo KA, N Parenteau M, Green SJ, Kubo MDY, Vogel M, Summons RE, Des Marais DJ. Molecular and lipid biomarker analysis of a gypsum-hosted endoevaporitic microbial community. GEOBIOLOGY 2014; 12:62-82. [PMID: 24325308 DOI: 10.1111/gbi.12068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/28/2013] [Indexed: 06/03/2023]
Abstract
Modern evaporitic microbial ecosystems are important analogs for understanding the record of earliest life on Earth. Although mineral-depositing shallow-marine environments were prevalent during the Precambrian, few such environments are now available today for study. We investigated the molecular and lipid biomarker composition of an endoevaporitic gypsarenite microbial mat community in Guerrero Negro, Mexico. The 16S ribosomal RNA gene-based phylogenetic analyses of this mat corroborate prior observations indicating that characteristic layered microbial communities colonize gypsum deposits world-wide despite considerable textural and morphological variability. Membrane fatty acid analysis of the surface tan/orange and lower green mat crust layers indicated cell densities of 1.6 × 10(9) and 4.2 × 10(9) cells cm(-3) , respectively. Several biomarker fatty acids, ∆7,10-hexadecadienoic, iso-heptadecenoic, 10-methylhexadecanoic, and a ∆12-methyloctadecenoic, correlated well with distributions of Euhalothece, Stenotrophomonas, Desulfohalobium, and Rhodobacterales, respectively, revealed by the phylogenetic analyses. Chlorophyll (Chl) a and cyanobacterial phylotypes were present at all depths in the mat. Bacteriochlorophyl (Bchl) a and Bchl c were first detected in the oxic-anoxic transition zone and increased with depth. A series of monomethylalkanes (MMA), 8-methylhexadecane, 8-methylheptadecane, and 9-methyloctadecane were present in the surface crust but increased in abundance in the lower anoxic layers. The MMA structures are similar to those identified previously in cultures of the marine Chloroflexus-like organism 'Candidatus Chlorothrix halophila' gen. nov., sp. nov., and may represent the Bchl c community. Novel 3-methylhopanoids were identified in cultures of marine purple non-sulfur bacteria and serve as a probable biomarker for this group in the lower anoxic purple and olive-black layers. Together microbial culture and environmental analyses support novel sources for lipid biomarkers in gypsum crust mats.
Collapse
Affiliation(s)
- L L Jahnke
- Exobiology Branch, NASA, Ames Research Center, Moffett Field, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Diversity of Planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel Planctomycete from deep sea iron-hydroxide deposits. Antonie van Leeuwenhoek 2013; 104:569-84. [PMID: 24018702 DOI: 10.1007/s10482-013-0019-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
Planctomycetes form a deep branching and distinct phylum of the domain Bacteria, and represent a fascinating group due to their unusual features such as intracellular compartmentalization and lack of peptidoglycan in their cell walls. The phylum Planctomycetes was described already in 1924, but still the diversity of this phylum represents an enigma and unexploited resource. In this study the diversity of the phylum Planctomycetes in low temperature iron-hydroxide deposits at the Mohns Ridge, a part of the Arctic Mid Ocean Ridge (AMOR), was characterised by descriptive analysis of 16S rRNA gene sequences in combination with isolation of planctomycetes strains. The 16S rRNA gene sequences were affiliated with three order within the phylum Planctomycetes namely the (i)Planctomycetales, (ii) "Candidatus Brocadiales" and (iii) Phycisphaerae in addition to sequences affiliating to hitherto unknown Planctomycetes. The majority of the sequences were affiliated with the CCM11a group (Phycisphaerae), and with the Pir4 group (Planctomycetaceae). Two strains from the order Planctomycetales were isolated. One strain (Plm2) showed high similarity to the previously isolated Planctomyces maris (99 % 16S rRNA sequence identity). The other strain (Pr1d) belonged to the Pir4 group, and showed highest identity with Rhodopirellula baltica (86 %), Blastopirellula marina (86 %) and Pirellula staleyi (85 %). Based on its physiological and biochemical properties, strain Pr1d(T) is considered to represent a new genus of the order Planctomycetales. We propose to classify the novel planctomycete in a new genus and species, Bythoypirellula goksoyri gen. nov., sp. nov., the type strain being Pr1d(T).
Collapse
|
14
|
Production of long-chain hydroxy fatty acids by microbial conversion. Appl Microbiol Biotechnol 2013; 97:3323-31. [PMID: 23494626 DOI: 10.1007/s00253-013-4815-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
Hydroxy fatty acids (HFAs) are very important chemicals for versatile applications in biodegradable polymer materials and cosmetic and pharmaceutical industries. They are difficult to be synthesized via chemical routes due to the inertness of the fatty acyl chain. In contrast, these fatty acids make up a major class of natural products widespread among bacteria, yeasts, and fungi. A number of microorganisms capable of producing HFAs from fatty acids or vegetable oils have been reported. Therefore, HFAs could be produced by biotechnological strategies, especially by microbial conversion processes. Microorganisms could oxidize fatty acids either at the terminal carbon or inside the acyl chain to produce various HFAs, including α-HFAs, β-HFAs, mid-position HFAs, ω-HFAs, di-HFAs, and tri-HFAs. The enzymes and their encoded genes responsible for the hydroxylation of the carbon chain have been identified and characterized during the past few years. The involved microbes and catalytic mechanisms for the production of different types of HFAs are systematically demonstrated in this review. It provides a better view of HFA biosynthesis and lays the foundation for further industrial production.
Collapse
|
15
|
Jogler C, Waldmann J, Huang X, Jogler M, Glöckner FO, Mascher T, Kolter R. Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 2012; 194:6419-30. [PMID: 23002222 PMCID: PMC3497475 DOI: 10.1128/jb.01325-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022] Open
Abstract
Members of the Planctomycetes clade share many unusual features for bacteria. Their cytoplasm contains membrane-bound compartments, they lack peptidoglycan and FtsZ, they divide by polar budding, and they are capable of endocytosis. Planctomycete genomes have remained enigmatic, generally being quite large (up to 9 Mb), and on average, 55% of their predicted proteins are of unknown function. Importantly, proteins related to the unusual traits of Planctomycetes remain largely unknown. Thus, we embarked on bioinformatic analyses of these genomes in an effort to predict proteins that are likely to be involved in compartmentalization, cell division, and signal transduction. We used three complementary strategies. First, we defined the Planctomycetes core genome and subtracted genes of well-studied model organisms. Second, we analyzed the gene content and synteny of morphogenesis and cell division genes and combined both methods using a "guilt-by-association" approach. Third, we identified signal transduction systems as well as sigma factors. These analyses provide a manageable list of candidate genes for future genetic studies and provide evidence for complex signaling in the Planctomycetes akin to that observed for bacteria with complex life-styles, such as Myxococcus xanthus.
Collapse
|
16
|
Nevalainen TJ, Cardoso JCR. Conservation of group XII phospholipase A2 from bacteria to human. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:340-50. [PMID: 22909802 DOI: 10.1016/j.cbd.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 12/26/2022]
Abstract
Vertebrate group XII phospholipases A(2) (GXII PLA(2), conserved domain pfam06951) are proteins with unique structural and functional features within the secreted PLA(2) family. In humans, two genes (GXIIA PLA(2) and GXIIB PLA(2)) have been characterised. GXIIA PLA(2) is enzymatically active whereas GXIIB PLA(2) is devoid of catalytic activity. Recently, putative homologues of the vertebrate GXII PLA(2)s were described in non-vertebrates. In the current study a total of 170 GXII PLA(2) sequences were identified in vertebrates, invertebrates, non-metazoan eukaryotes, fungi and bacteria. GXIIB PLA(2) was found only in vertebrates and the searches failed to identify putative GXII PLA(2) homologues in Archaea. Comparisons of the predicted functional domains of GXII PLA(2)s revealed considerable structural identity within the Ca(2+)-binding and the catalytic sites among the various organisms suggesting that functional conservation may have been retained across evolution. The preservation of GXII PLA(2) family members from bacteria to human indicates that they have emerged early in evolution and evolved via gene/genome duplication events prior to Eubacteria. Gene duplicates were identified in some invertebrate taxa suggesting that species-specific duplications occurred. The analysis of the GXII PLA(2) homologue genome environment revealed that gene synteny and gene order are preserved in vertebrates. Conservation of GXII PLA(2)s indicates that important functional roles involved in species survival and were maintained across evolution and may be dependent on or independent of the enzyme's phospholipolytic activity.
Collapse
|
17
|
Aquisphaera giovannonii gen. nov., sp. nov., a planctomycete isolated from a freshwater aquarium. Int J Syst Evol Microbiol 2011; 61:2844-2850. [DOI: 10.1099/ijs.0.027474-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As part of a study of the diversity of planctomycetes, two novel strains, designated OJF2T and OJF8, were isolated from the sediments of a freshwater aquarium. The organisms were chemoheterotrophic, spherical and pink-pigmented, had an optimum growth temperature of about 30–35 °C and an optimum pH for growth of around 7.5–8.5. The predominant fatty acids were C18 : 1ω9c and C16 : 0. The two strains were able to assimilate several sugars and organic acids. 16S rRNA gene sequence analysis confirmed the affiliation of these organisms to the phylum ‘Planctomycetes’; they showed highest similarity to the type strains of Singulisphaera acidiphila (92.4 %) and Isosphaera pallida (91.9 %). On the basis of physiological, biochemical and chemotaxonomic characteristics, strains OJF2T and OJF8 are considered to represent a novel species of a new genus of the order Planctomycetales, for which the name Aquisphaera giovannonii gen. nov., sp. nov. is proposed. The type strain of Aquisphaera giovannonii is OJF2T ( = CECT 7510T = DSM 22561T).
Collapse
|
18
|
Reynaud EG, Devos DP. Transitional forms between the three domains of life and evolutionary implications. Proc Biol Sci 2011; 278:3321-8. [PMID: 21920985 PMCID: PMC3177640 DOI: 10.1098/rspb.2011.1581] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The question as to the origin and relationship between the three domains of life is lodged in a phylogenetic impasse. The dominant paradigm is to see the three domains as separated. However, the recently characterized bacterial species have suggested continuity between the three domains. Here, we review the evidence in support of this hypothesis and evaluate the implications for and against the models of the origin of the three domains of life. The existence of intermediate steps between the three domains discards the need for fusion to explain eukaryogenesis and suggests that the last universal common ancestor was complex. We propose a scenario in which the ancestor of the current bacterial Planctomycetes, Verrucomicrobiae and Chlamydiae superphylum was related to the last archaeal and eukaryotic common ancestor, thus providing a way out of the phylogenetic impasse.
Collapse
Affiliation(s)
- Emmanuel G Reynaud
- School of Biology and Environmental Science, UCD Science Centre, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
19
|
Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 2011; 9:403-13. [PMID: 21572457 DOI: 10.1038/nrmicro2578] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Planctomycetes form a distinct phylum of the domain Bacteria and possess unusual features such as intracellular compartmentalization and a lack of peptidoglycan in their cell walls. Remarkably, cells of the genus Gemmata even contain a membrane-bound nucleoid analogous to the eukaryotic nucleus. Moreover, the so-called 'anammox' planctomycetes have a unique anaerobic, autotrophic metabolism that includes the ability to oxidize ammonium; this process is dependent on a characteristic membrane-bound cell compartment called the anammoxosome, which might be a functional analogue of the eukaryotic mitochondrion. The compartmentalization of planctomycetes challenges our hypotheses regarding the origins of eukaryotic organelles. Furthermore, the recent discovery of both an endocytosis-like ability and proteins homologous to eukaryotic clathrin in a planctomycete marks this phylum as one to watch for future research on the origin and evolution of the eukaryotic cell.
Collapse
|
20
|
|
21
|
Sutcliffe IC. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 2010; 18:464-70. [DOI: 10.1016/j.tim.2010.06.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/04/2010] [Accepted: 06/18/2010] [Indexed: 01/03/2023]
|
22
|
Labutti K, Sikorski J, Schneider S, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Tindall BJ, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A. Complete genome sequence of Planctomyces limnophilus type strain (Mü 290). Stand Genomic Sci 2010; 3:47-56. [PMID: 21304691 PMCID: PMC3035269 DOI: 10.4056/sigs.1052813] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Planctomyces limnophilus Hirsch and Müller 1986 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall which is stabilized by a proteinaceous layer rather than a peptidoglycan layer. Besides Pirellula staleyi, this is the second completed genome sequence of the family Planctomycetaceae. P. limnophilus is of interest because it differs from Pirellula by the presence of a stalk and its structure of fibril bundles, its cell shape and size, the formation of multicellular rosettes, low salt tolerance and red pigmented colonies. The 5,460,085 bp long genome with its 4,304 protein-coding and 66 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
23
|
Nichols PD, Mancuso Nichols CA. Microbial signature lipid profiling and exopolysaccharides: Experiences initiated with Professor David C White and transported to Tasmania, Australia. J Microbiol Methods 2008; 74:33-46. [PMID: 17669527 DOI: 10.1016/j.mimet.2007.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 06/27/2007] [Indexed: 12/01/2022]
Abstract
Developments and applications with signature lipid and exopolysaccharide (EPS) methodologies covering a thirty year period in the DC White laboratories at Florida State University and the University of Tennessee at Knoxville are illustrated. These powerful techniques were used to gain new insight into microbial communities, not obtainable by classical approaches. Selected case examples are highlighted and include: use of a specific dimethyl disulphide (DMDS) derivitization procedure with monounsaturated fatty acids (MUFA) to precisely determine double bond position and geometry; application of the DMDS procedure in taxonomic and environmental studies including the degradation of pollutant halogenated hydrocarbons in groundwater and subsurface aquifers; exploiting the ubiquitous nature of uronic acids in microbial EPS to quantify these exopolymers in complex environmental samples; development of rapid and non-destructive approaches including FT-IR to follow biofilm formation in a unique manner not possible with other approaches. The foundations laid in the DC White laboratories have seen a wide suite of applications in modern microbial ecology and associated fields. The training of young scientists by DC White will also ensure that his unique approach and quest for new and or novel methodologies for use in environmental microbiology will continue.
Collapse
Affiliation(s)
- Peter D Nichols
- CSIRO Marine and Atmospheric Research, CSIRO Food Futures Flagship, GPO Box 1538, Hobart, Tasmania 7000, Australia.
| | | |
Collapse
|
24
|
Kulichevskaya IS, Ivanova AO, Baulina OI, Bodelier PLE, Damste JSS, Dedysh SN. Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int J Syst Evol Microbiol 2008; 58:1186-93. [DOI: 10.1099/ijs.0.65593-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Kulichevskaya IS, Ivanova AO, Belova SE, Baulina OI, Bodelier PLE, Rijpstra WIC, Sinninghe Damsté JS, Zavarzin GA, Dedysh SN. Schlesneria paludicola gen. nov., sp. nov., the first acidophilic member of the order Planctomycetales, from Sphagnum-dominated boreal wetlands. Int J Syst Evol Microbiol 2007; 57:2680-2687. [DOI: 10.1099/ijs.0.65157-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three strains of budding, ellipsoid-shaped and rosette-forming bacteria were isolated from acidic Sphagnum-dominated boreal wetlands of northern Russia and were designated strains MPL7T, MOB77 and SB2. The presence of crateriform pits and numerous fibrillar appendages on the cell surface and an unusual spur-like projection on one pole of the cell indicated a planctomycete morphotype. These isolates are moderately acidophilic, mesophilic organisms capable of growth at pH values between 4.2 and 7.5 (with an optimum at pH 5.0–6.2) and at temperatures between 4 and 32 °C (optimum 15–26 °C). The major fatty acids are C16 : 0 and C16 : 1
ω7c; the major quinone is MK-6. The G+C content of the DNA is 54.4–56.5 mol%. Strains MPL7T, MOB77 and SB2 possess nearly identical 16S rRNA gene sequences and belong to the planctomycete lineage defined by the genus Planctomyces, being most closely related to Planctomyces limnophilus DSM 3776T (86.9–87.1 % sequence similarity). However, strain MPL7T showed only 28 % DNA–DNA hybridization with P. limnophilus DSM 3776T. Compared with currently described members of the genus Planctomyces, the isolates from northern wetlands do not form long and distinctive stalks, have greater tolerance of acidic conditions and low temperatures, are more sensitive to NaCl, lack pigmentation and degrade a wider range of biopolymers. The data therefore suggest that strains MPL7T, MOB77 and SB2 represent a novel genus and species, for which the name Schlesneria paludicola gen. nov., sp. nov., is proposed. Strain MPL7T (=ATCC BAA-1393T =VKM B-2452T) is the type strain of Schlesneria paludicola.
Collapse
Affiliation(s)
- Irina S. Kulichevskaya
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| | - Anastasia O. Ivanova
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| | - Svetlana E. Belova
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| | - Olga I. Baulina
- M. V. Lomonosov Moscow State University, Faculty of Biology Science, GSP-2, Leninskie Gory, Moscow 119992, Russia
| | | | - W. Irene C. Rijpstra
- Royal Netherlands Institute for Sea Research, Department of Marine Biogeochemistry and Toxicology, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - Jaap S. Sinninghe Damsté
- Royal Netherlands Institute for Sea Research, Department of Marine Biogeochemistry and Toxicology, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - George A. Zavarzin
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| | - Svetlana N. Dedysh
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| |
Collapse
|
26
|
Fuchsman CA, Rocap G. Whole-genome reciprocal BLAST analysis reveals that planctomycetes do not share an unusually large number of genes with Eukarya and Archaea. Appl Environ Microbiol 2006; 72:6841-4. [PMID: 17021241 PMCID: PMC1610313 DOI: 10.1128/aem.00429-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequences of Rhodopirellula baltica, formerly Pirellula sp. strain 1, Blastopirellula marina, Gemmata obscuriglobus, and Kuenenia stuttgartiensis were used in a series of pairwise reciprocal best-hit analyses to evaluate the contested evolutionary position of Planctomycetes. Contrary to previous reports which suggested that R. baltica had a high percentage of genes with closest matches to Archaea and Eukarya, we show here that these Planctomycetes do not share an unusually large number of genes with the Archaea or Eukarya, compared with other Bacteria. Thus, best-hit analyses may assign phylogenetic affinities incorrectly if close relatives are absent from the sequence database.
Collapse
Affiliation(s)
- Clara A Fuchsman
- School of Oceanography, Box 357940, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
27
|
Manteca A, Pelaez AI, Zardoya R, Sanchez J. Actinobacteria cyclophilins: phylogenetic relationships and description of new class- and order-specific paralogues. J Mol Evol 2006; 63:719-32. [PMID: 17103061 DOI: 10.1007/s00239-005-0130-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/30/2006] [Indexed: 10/23/2022]
Abstract
Cyclophilins are folding helper enzymes belonging to the class of peptidyl-prolyl cis-trans isomerases (PPIases; EC 5.2.1.8) that catalyze the cis-trans isomerization of peptidyl-prolyl bonds in proteins. They are ubiquitous proteins present in almost all living organisms analyzed to date, with extremely rare exceptions. Few cyclophilins have been described in Actinobacteria, except for three reported in the genus Streptomyces and another one in Mycobacterium tuberculosis. In this study, we performed a complete phylogenetic analysis of all Actinobacteria cyclophilins available in sequence databases and new Streptomyces cyclophilin genes sequenced in our laboratory. Phylogenetic analyses of cyclophilins recovered six highly supported groups of paralogy. Streptomyces appears as the bacteria having the highest cyclophilin diversity, harboring proteins from four groups. The first group was named "A" and is made up of highly conserved cytosolic proteins of approximately 18 kDa present in all Actinobacteria. The second group, "B," includes cytosolic proteins widely distributed throughout the genus Streptomyces and closely related to eukaryotic cyclophilins. The third group, "M" cyclophilins, consists of high molecular mass cyclophilins ( approximately 30 kDa) that contain putative membrane binding domains and would constitute the only membrane cyclophilins described to date in bacteria. The fourth group, named "C" cyclophilins, is made up of proteins of approximately 18 kDa that are orthologous to Gram-negative proteobacteria cyclophilins. Ancestral character reconstruction under parsimony was used to identify shared-derived (and likely functionally important) amino acid residues of each paralogue. Southern and Western blot experiments were performed to determine the taxonomic distribution of the different cyclophilins in Actinobacteria.
Collapse
Affiliation(s)
- Angel Manteca
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Universidad de Oviedo, Julian Claveria s/n, Oviedo, 33006, Spain
| | | | | | | |
Collapse
|
28
|
Abstract
The phylum Planctomycetes of the domain Bacteria consists of budding, peptidoglycan-less organisms important for understanding the origins of complex cell organization. Their significance for cell biology lies in their possession of intracellular membrane compartmentation. All planctomycetes share a unique cell plan, in which the cell cytoplasm is divided into compartments by one or more membranes, including a major cell compartment containing the nucleoid. Of special significance is Gemmata obscuriglobus, in which the nucleoid is enveloped in two membranes to form a nuclear body that is analogous to the structure of a eukaryotic nucleus. Planctomycete compartmentation may have functional physiological roles, as in the case of anaerobic ammonium-oxidizing anammox planctomycetes, in which the anammoxosome harbors specialized enzymes and is wrapped in an envelope possessing unique ladderane lipids. Organisms in phyla other than the phylum Planctomycetes may possess compartmentation similar to that of some planctomycetes, as in the case of members of the phylum Poribacteria from marine sponges.
Collapse
Affiliation(s)
- John A Fuerst
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
29
|
Schlesner H, Rensmann C, Tindall BJ, Gade D, Rabus R, Pfeiffer S, Hirsch P. Taxonomic heterogeneity within the Planctomycetales as derived by DNA–DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula. Int J Syst Evol Microbiol 2004; 54:1567-1580. [PMID: 15388712 DOI: 10.1099/ijs.0.63113-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ninety-seven strains of budding bacteria originating from various aquatic habitats and morphologically resembling planctomycetes were investigated taxonomically. Taxonomic differentiation was based on DNA–DNA hybridization, physiological properties and chemotaxonomic tests. Nineteen hybridization groups, containing 79 of the tested strains, were established. Eighteen strains, however, did not fit into any of these groups. Rhodopirellula baltica gen. nov., sp. nov. is described, with strain SH 1T (=IFAM 1310T=DSM 10527T=NCIMB 13988T) as the type strain. Pirellula marina is transferred to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov., with strain SH 106T (=IFAM 1313T=DSM 3645T=ATCC 49069T) as the type strain. An emended description of the genus Pirellula is also provided. Differentiation between R. baltica, B. marina and Pirellula staleyi was achieved by the integration of morphological, physiological, chemotaxonomic and genetic characteristics.
Collapse
Affiliation(s)
- Heinz Schlesner
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Christina Rensmann
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Brian J Tindall
- DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig, Germany
| | - Dörte Gade
- Max-Planck-Institut für Marine Mikrobiologie, Celsiusstraße 1, D-28359 Bremen, Germany
| | - Ralf Rabus
- Max-Planck-Institut für Marine Mikrobiologie, Celsiusstraße 1, D-28359 Bremen, Germany
| | - Stefan Pfeiffer
- Zentrale Mikroskopie, Christian-Albrechts-Universität, Am Botanischen Garten 5, D-24098 Kiel, Germany
| | - Peter Hirsch
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| |
Collapse
|
30
|
Teeling H, Lombardot T, Bauer M, Ludwig W, Glöckner FO. Evaluation of the phylogenetic position of the planctomycete 'Rhodopirellula baltica' SH 1 by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome trees. Int J Syst Evol Microbiol 2004; 54:791-801. [PMID: 15143026 DOI: 10.1099/ijs.0.02913-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, the planctomycetes have been recognized as a phylum of environmentally important bacteria with habitats ranging from soil and freshwater to marine ecosystems. The planctomycetes form an independent phylum within the bacterial domain, whose exact phylogenetic position remains controversial. With the completion of sequencing of the genome of 'Rhodopirellula baltica' SH 1, it is now possible to re-evaluate the phylogeny of the planctomycetes based on multiple genes and genome trees in addition to single genes like the 16S rRNA or the elongation factor Tu. Here, evidence is presented based on the concatenated amino acid sequences of ribosomal proteins and DNA-directed RNA polymerase subunits from 'Rhodopirellula baltica' SH 1 and more than 90 other publicly available genomes that support a relationship of the Planctomycetes and the Chlamydiae. Affiliation of 'Rhodopirellula baltica' SH 1 and the Chlamydiae was reasonably stable regarding site selection since, during stepwise filtering of less-conserved sites from the alignments, it was only broken when rigorous filtering was applied. In a few cases, 'Rhodopirellula baltica' SH 1 shifted to a deep branching position adjacent to the Thermotoga/Aquifex clade. These findings are in agreement with recent publications, but the deep branching position was dependent on site selection and treeing algorithm and thus not stable. A genome tree calculated from normalized BLASTP scores did not confirm a close relationship of 'Rhodopirellula baltica' SH 1 and the Chlamydiae, but also indicated that the Planctomycetes do not emerge at the very root of the Bacteria. Therefore, these analyses rather contradict a deep branching position of the Planctomycetes within the bacterial domain and reaffirm their earlier proposed relatedness to the Chlamydiae.
Collapse
Affiliation(s)
- Hanno Teeling
- Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Thierry Lombardot
- Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Margarete Bauer
- Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Wolfgang Ludwig
- Department of Microbiology, Technical University Munich, D-85350 Freising, Germany
| | - Frank Oliver Glöckner
- Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| |
Collapse
|
31
|
Pearson A, Budin M, Brocks JJ. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 2003; 100:15352-7. [PMID: 14660793 PMCID: PMC307571 DOI: 10.1073/pnas.2536559100] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Indexed: 11/18/2022] Open
Abstract
Sterol biosynthesis is viewed primarily as a eukaryotic process, and the frequency of its occurrence in bacteria has long been a subject of controversy. Two enzymes, squalene monooxygenase and oxidosqualene cyclase, are the minimum necessary for initial biosynthesis of sterols from squalene. In this work, 19 protein gene sequences for eukaryotic squalene monooxygenase and 12 protein gene sequences for eukaryotic oxidosqualene cyclase were compared with all available complete and partial prokaryotic genomes. The only unequivocal matches for a sterol biosynthetic pathway were in the proteobacterium, Methylococcus capsulatus, in which sterol biosynthesis is known, and in the planctomycete, Gemmata obscuriglobus. The latter species contains the most abbreviated sterol pathway yet identified in any organism. Analysis shows that the major sterols in Gemmata are lanosterol and its uncommon isomer, parkeol. There are no subsequent modifications of these products. In bacteria, the sterol biosynthesis genes occupy a contiguous coding region and possibly comprise a single operon. Phylogenetic trees constructed for both enzymes show that the sterol pathway in bacteria and eukaryotes has a common ancestry. It is likely that this contiguous reading frame was exchanged between bacteria and early eukaryotes via lateral gene transfer or endosymbiotic events. The primitive sterols produced by Gemmata suggest that this genus could retain the most ancient remnants of the sterol biosynthetic pathway.
Collapse
Affiliation(s)
- Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
32
|
Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci U S A 2003; 100:8298-303. [PMID: 12835416 PMCID: PMC166223 DOI: 10.1073/pnas.1431443100] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pirellula sp. strain 1 ("Rhodopirellula baltica") is a marine representative of the globally distributed and environmentally important bacterial order Planctomycetales. Here we report the complete genome sequence of a member of this independent phylum. With 7.145 megabases, Pirellula sp. strain 1 has the largest circular bacterial genome sequenced so far. The presence of all genes required for heterolactic acid fermentation, key genes for the interconversion of C1 compounds, and 110 sulfatases were unexpected for this aerobic heterotrophic isolate. Although Pirellula sp. strain 1 has a proteinaceous cell wall, remnants of genes for peptidoglycan synthesis were found. Genes for lipid A biosynthesis and homologues to the flagellar L- and P-ring protein indicate a former Gram-negative type of cell wall. Phylogenetic analysis of all relevant markers clearly affiliates the Planctomycetales to the domain Bacteria as a distinct phylum, but a deepest branching is not supported by our analyses.
Collapse
Affiliation(s)
- F. O. Glöckner
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
- To whom correspondence may be addressed. E-mail:
or
.
Requests for sequencing details, sequences, and clones should go directly to
R. Reinhardt. E-mail:
| | - M. Kube
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - M. Bauer
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
- To whom correspondence may be addressed. E-mail:
or
.
Requests for sequencing details, sequences, and clones should go directly to
R. Reinhardt. E-mail:
| | - H. Teeling
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - T. Lombardot
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - W. Ludwig
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - D. Gade
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - A. Beck
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - K. Borzym
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - K. Heitmann
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - R. Rabus
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - H. Schlesner
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - R. Amann
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - R. Reinhardt
- Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany; Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin,
Germany; Department of Microbiology, Technical
University Munich, Am Hochanger 4, D-85350 Freising, Germany; and
Department for General Microbiology, University
of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
- To whom correspondence may be addressed. E-mail:
or
.
Requests for sequencing details, sequences, and clones should go directly to
R. Reinhardt. E-mail:
| |
Collapse
|
33
|
Guezennec J, Ortega-Morales O, Raguenes G, Geesey G. Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00495.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Quantitative comparisons ofin situ microbial biodiversity by signature biomarker analysis. J Ind Microbiol Biotechnol 1996. [DOI: 10.1007/bf01574692] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
|
36
|
Ringelberg D, Townsend G, DeWeerd K, Suflita J, White D. Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrices by its signature lipopolysacchride branched-long-chain hydroxy fatty acids. FEMS Microbiol Ecol 1994. [DOI: 10.1111/j.1574-6941.1994.tb00085.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
|
38
|
Liesack W, Söller R, Stewart T, Haas H, Giovannoni S, Stackebrandt E. The Influence of Tachytelically (Rapidly) Evolving Sequences on the Topology of Phylogenetic Trees — Intrafamily Relationships and the Phylogenetic Position of Planctomycetaceae as Revealed by Comparative Analysis of 16S Ribosomal RNA Sequences. Syst Appl Microbiol 1992. [DOI: 10.1016/s0723-2020(11)80208-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
|