1
|
Agostoni M, Logan-Jackson AR, Heinz ER, Severin GB, Bruger EL, Waters CM, Montgomery BL. Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress. Front Microbiol 2018; 9:1121. [PMID: 29896182 PMCID: PMC5986932 DOI: 10.3389/fmicb.2018.01121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
Second messengers are intracellular molecules regulated by external stimuli known as first messengers that are used for rapid organismal responses to dynamic environmental changes. Cyclic di-AMP (c-di-AMP) is a relatively newly discovered second messenger implicated in cell wall homeostasis in many pathogenic bacteria. C-di-AMP is synthesized from ATP by diadenylyl cyclases (DAC) and degraded by specific c-di-AMP phosphodiesterases (PDE). C-di-AMP DACs and PDEs are present in all sequenced cyanobacteria, suggesting roles for c-di-AMP in the physiology and/or development of these organisms. Despite conservation of these genes across numerous cyanobacteria, the functional roles of c-di-AMP in cyanobacteria have not been well-investigated. In a unique feature of cyanobacteria, phylogenetic analysis indicated that the broadly conserved DAC, related to CdaA/DacA, is always co-associated in an operon with genes critical for controlling cell wall synthesis. To investigate phenotypes regulated by c-di-AMP in cyanobacteria, we overexpressed native DAC (sll0505) and c-di-AMP PDE (slr0104) genes in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) to increase and decrease intracellular c-di-AMP levels, respectively. DAC- and PDE-overexpression strains, showed abnormal aggregation phenotypes, suggesting functional roles for regulating c-di-AMP homeostasis in vivo. As c-di-AMP may be implicated in osmotic responses in cyanobacteria, we tested whether sorbitol and NaCl stresses impacted expression of sll0505 and slr0104 or intracellular c-di-AMP levels in Synechocystis. Additionally, to determine the range of cyanobacteria in which c-di-AMP may function, we assessed c-di-AMP levels in two unicellular cyanobacteria, i.e., Synechocystis and Synechococcus elongatus PCC 7942, and two filamentous cyanobacteria, i.e., Fremyella diplosiphon and Anabaena sp. PCC 7120. C-di-AMP levels responded differently to abiotic stress signals in distinct cyanobacteria strains, whereas salt stress uniformly impacted another second messenger cyclic di-GMP in cyanobacteria. Together, these results suggest regulation of c-di-AMP homeostasis in cyanobacteria and implicate a role for the second messenger in maintaining cellular fitness in response to abiotic stress.
Collapse
Affiliation(s)
- Marco Agostoni
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Alshaé R Logan-Jackson
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Emily R Heinz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Geoffrey B Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Eric L Bruger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Christopher M Waters
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Beronda L Montgomery
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Zhu Y, Hamlow LA, He CC, Strobehn SF, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT. Influence of Sodium Cationization versus Protonation on the Gas-Phase Conformations and Glycosidic Bond Stabilities of 2'-Deoxyadenosine and Adenosine. J Phys Chem B 2016; 120:8892-904. [PMID: 27494378 DOI: 10.1021/acs.jpcb.6b06105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of noncovalent interactions with a sodium cation on the gas-phase structures and N-glycosidic bond stabilities of 2'-deoxyadenosine (dAdo) and adenosine (Ado), [dAdo+Na](+) and [Ado+Na](+), are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and energy-resolved collision-induced dissociation (ER-CID) experiments. ER-CID experiments are also performed on the protonated forms of these nucleosides, [dAdo+H](+) and [Ado+H](+), for comparison purposes. Complementary electronic structure calculations are performed to determine the structures and relative stabilities of the stable low-energy conformations of the sodium cationized nucleoside complexes and to predict their IR spectra. Comparison between the measured IRMPD action spectra and calculated IR spectra enables the conformations of the sodium cationized nucleosides present in the experiments to be elucidated. The influence of sodium cationization versus protonation on the structures and IR spectra is elucidated by comparison to IRMPD and theoretical results previously reported for the protonated forms of these nucleosides. The influence of sodium cationization versus protonation on the glycosidic bond stability of the adenine nucleosides is determined by comparison of the ER-CID behavior of these systems. All structures present in the experiments are found to involve tridentate binding of Na(+) to the N3, O4', and O5' atoms forming favorable 5- and 6-membered chelation rings, which requires that adenine rotate to a syn configuration. This mode of sodium cation binding results in moderate flexibility of the sugar moiety such that the sugar puckering of the conformations present varies between C2'-endo and O4'-endo. Sodium cationization is found to be less effective toward activating the N-glycosidic bond than protonation for both dAdo and Ado. Both the IRMPD yields and ER-CID behavior indicate that the 2'-hydroxyl substituent of Ado stabilizes the N-glycosidic bond relative to that of dAdo.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - S F Strobehn
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J K Lee
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Gao
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
3
|
Montgomery BL. Light-dependent governance of cell shape dimensions in cyanobacteria. Front Microbiol 2015; 6:514. [PMID: 26074902 PMCID: PMC4443024 DOI: 10.3389/fmicb.2015.00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Forcada-Nadal A, Forchhammer K, Rubio V. SPR analysis of promoter binding of Synechocystis PCC6803 transcription factors NtcA and CRP suggests cross-talk and sheds light on regulation by effector molecules. FEBS Lett 2014; 588:2270-6. [PMID: 24846138 DOI: 10.1016/j.febslet.2014.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/23/2023]
Abstract
Surface plasmon resonance monitoring of the binding of transcription factors cAMP receptor protein (CRP) and nitrogen control factor of cyanobacteria (NtcA) from Synechocystis sp. PCC6803 to promoter fragments of glnA, glnN (NtcA regulon) and cccS (CRP regulon), revealed exclusive CRP binding to cccS, whereas NtcA was bound to all three promoters with different affinities, which were strongly increased by the NtcA activator 2-oxoglutarate. Effective NtcA affinity for 2-oxoglutarate varied with the promoter. High-affinity promoters and the NtcA-coactivating protein PII-interacting protein X (PipX) increased NtcA affinity towards 2-oxoglutarate, suggesting PipX-stabilization of the 2-oxoglutarate-bound NtcA conformation. PipX binding to NtcA required 2-oxoglutarate and was much tighter (Kd≈85 nM) than to the PipX-sequestering PII protein. NtcA appears to require more strongly PipX and 2-oxoglutarate (2OG) for estimulating gene expression at promoters having "imperfect" NtcA binding sites.
Collapse
Affiliation(s)
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Germany.
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain; Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, Spain.
| |
Collapse
|
5
|
Yoshimura H, Kaneko Y, Ehira S, Yoshihara S, Ikeuchi M, Ohmori M. CccS and CccP are involved in construction of cell surface components in the cyanobacterium Synechocystis sp. strain PCC 6803. PLANT & CELL PHYSIOLOGY 2010; 51:1163-72. [PMID: 20538620 DOI: 10.1093/pcp/pcq081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have previously identified two target genes (slr1667 and slr1668) for transcriptional regulation by a cAMP receptor protein, SYCRP1, in a cAMP-dependent manner. For this study we investigated the localizations of products of slr1667 and slr1668 (designated cccS and cccP, respectively) biochemically and immunocytochemically, and examined the phenotypes of their disruptants. CccS protein was detected in the culture medium and the acid-soluble fraction containing proteins derived from outside the outer membrane. Disruptants of cccS and cccP showed a more or less similar pleiotropic phenotype. Several proteins secreted into the culture medium or retained on the outside of the outer membrane were greatly reduced in both disruptants compared with the wild type. Electron microscopy revealed that the cccS disruptant lacked the thick pili responsible for motility and that the cccP disruptant had almost no discernible thick pili on its cell surface. Both disruptants largely secreted far greater amounts of yellow pigments into the culture medium than did the wild type. Furthermore, the disruptions reduced the amount of UV-absorbing compound(s) extractable from the exopolysaccharide layer. These results suggest that the cccS and cccP genes are involved in the construction of cell surface components in Synechocystis sp. strain PCC 6803.
Collapse
Affiliation(s)
- Hidehisa Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo. 153-8902 Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Mutation at different sites in the Nostoc punctiforme cyaC gene, encoding the multiple-domain enzyme adenylate cyclase, results in different levels of infection of the host plant Blasia pusilla. J Bacteriol 2007; 190:1843-7. [PMID: 18156269 DOI: 10.1128/jb.01321-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Nostoc punctiforme forms symbioses with plants. Disruption of the catalytic domain of the N. punctiforme adenylate cyclase (CyaC) significantly increased symbiotic competence, whereas reduced infectivity was observed in a mutant with a disruption close to the N terminus of CyaC. The total cellular cyclic AMP levels were significantly reduced in both mutants.
Collapse
|
7
|
Ohmori M, Terauchi K, Okamoto S, Watanabe M. Regulation of cAMP-mediated Photosignaling by a Phytochrome in the Cyanobacterium Anabaena cylindrica¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750675rocmpb2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Okamoto S, Kasahara M, Kamlya A, Nakahira Y, Ohmori M. A Phytochrome-like Protein AphC Triggers the cAMP Signaling Induced by Far-red Light in the Cyanobacterium Anabaena sp. Strain PCC7120¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00109.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Okamoto S, Kasahara M, Kamiya A, Nakahira Y, Ohmori M. A phytochrome-like protein AphC triggers the cAMP signaling induced by far-red light in the cyanobacterium Anabaena sp. strain PCC7120. Photochem Photobiol 2006; 80:429-33. [PMID: 15623325 DOI: 10.1562/0031-8655(2004)080<0429:appatt>2.0.co;2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the filamentous, nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, red light (630 nm) decreased, whereas far-red light (720 nm) increased cellular adenosine 3',5'-cyclic monophosphate (cAMP) content. To find a red and far-red light photoreceptor that triggers the cAMP signal cascade, we disrupted 10 open reading frame having putative chromophore-binding GAF domains. The response of the cellular cAMP concentration to red and far-red light in each open reading frame disruptant was determined. It was found that only the mutant of the gene all2699 failed to respond to far-red light. The open reading frame named as aphC encoded a protein with 920 amino acids including GAF domains similar to those involved in Cph2, a photoreceptor of Synechocystis sp. PCC6803. To determine which adenylate cyclase (AC) is responsible for far-red light signal, we disrupted all AC genes and found that CyaC was the candidate. The enzymatic activity of CyaC might be controlled by a far-red light photoreceptor through the phosphotransfer reaction. The site-specific mutant of the Asp59 residue of the receiver (R1) domain of CyaC lost its light-response capability. It was suggested that the far-red light signal was received by AphC and then transferred to the N-terminal response regulator domain of CyaC. Then its catalytic activity was stimulated, which increased the cellular cAMP concentration and drove the subsequent signal transduction cascade.
Collapse
Affiliation(s)
- Shinobu Okamoto
- Department of Biology, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
Imashimizu M, Yoshimura H, Katoh H, Ehira S, Ohmori M. NaCl enhances cellular cAMP and upregulates genes related to heterocyst development in the cyanobacterium, Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 2005; 252:97-103. [PMID: 16182471 DOI: 10.1016/j.femsle.2005.08.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 11/30/2022] Open
Abstract
Cellular cAMP was rapidly increased in the nitrogen-fixing cyanobacterium, Anabaena sp. PCC 7120, by the addition of 200 mM NaCl to the culture medium. Other alkaline-metal chlorides such as KCl or LiCl caused a lesser increase. The increase in cellular cAMP was transient and diminished when an adenylate cyclase, CyaC, which contains the conserved domains of the bacterial two-component regulatory system, was disrupted. DNA microarray analysis showed that expression of a gene cluster containing all5347 and alr5351 (hglE) was upregulated by NaCl in the wild-type strain but not in the cyaC mutant. Primer extension analysis indicated that transcription levels of all5347 and hglE were rapidly increased in response to the NaCl addition, and that these genes have NaCl-dependent transcription start sites. It was concluded that NaCl induced expression of genes related to heterocyst envelope formation in this cyanobacterium, possibly via a CyaC-cAMP signal transduction system.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Department of Life Sciences, The University of Tokyo, 381 Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
11
|
Masuda S, Ono TA. Biochemical characterization of the major adenylyl cyclase, Cya1, in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 2005; 577:255-8. [PMID: 15527795 DOI: 10.1016/j.febslet.2004.09.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 09/26/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
We report herein the biochemical properties of an adenylyl cyclase, Cya1, from the cyanobacterium Synechocystis sp. PCC 6803. Heterologously expressed Cya1 catalyzed cyclic AMP formation with a Km for ATP of approximately 2.2 microM at pH 7.5. Although cellular Cya1 activity is increased by blue light illumination [Terauchi and Ohmori, Mol. Microbiol. 52 (2004) 303], purified Cya1 did not contain any chromophores, and the activity was light-insensitive. This suggests that an unknown blue light-responsive factor interacts with the N-terminal regulatory domain of Cya1 to control its adenylyl cyclase activity. Finally, our results show that the sensor of blue light using FAD (BLUF) protein, Slr1694, does not appear to be involved in the regulation of Cya1-mediated cAMP signal transduction in this bacterium.
Collapse
Affiliation(s)
- Shinji Masuda
- Laboratory for Photo-Biology (1), RIKEN Photodynamics Research Center, The Institute of Physical and Chemical Research, 519-1399 Aramaki, Aoba, Sendai 980-0845, Japan.
| | | |
Collapse
|
12
|
Suzuki T, Yoshimura H, Hisabori T, Ohmori M. Two cAMP receptor proteins with different biochemical properties in the filamentous cyanobacterium Anabaena sp. PCC 7120. FEBS Lett 2004; 571:154-60. [PMID: 15280034 DOI: 10.1016/j.febslet.2004.06.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 06/24/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Two open reading frames (ORFs), alr0295 and alr2325, are found to encode putative cAMP receptor proteins (CRPs) in the genome of the filamentous cyanobacterium Anabaena sp. PCC 7120. These ORFs were named cAMP receptor protein-like gene A in Anabaena sp. PCC 7120 (ancrpA) and cAMP receptor protein-like gene B in Anabaena sp. PCC 7120 (ancrpB), respectively, and those translated products were investigated. The equilibrium dialysis measurements revealed that AnCrpA bound with cAMP specifically, while AnCrpB bound with both cAMP and cGMP, though the affinity for cGMP was weak. The binding affinity for cAMP of AnCrpA showed the lowest dissociation constant, approximately 0.8 microM, among bacterial CRPs. A gel mobility shift assay elucidated that AnCrpA and AnCrpB formed a complex with the consensus DNA sequence in the presence of cAMP, although AnCrpB did not have ordinary DNA-binding motifs.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
13
|
Terauchi K, Ohmori M. Blue light stimulates cyanobacterial motility via a cAMP signal transduction system. Mol Microbiol 2004; 52:303-9. [PMID: 15049828 DOI: 10.1111/j.1365-2958.2003.03980.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The participation of cAMP in photosignal transduction in cyanobacteria was investigated. When cells of the cyanobacterium Synechocystis sp. PCC 6803 were exposed to light, cellular cAMP contents increased within a few minutes. Among incident monochromatic lights, blue light (450 nm) markedly increased cellular cAMP content, while red (630 nm) and far-red (720 nm) lights did not. Disruption of the cya1 gene encoding an adenylate cyclase caused the insensitivity of cellular cAMP level to blue light. Treatment of wild-type cells with the flavin antagonist phenylacetic acid inhibited this blue light effect. The motility of wild-type cells was enhanced by blue light, whereas that of cya1 mutant cells was not. Based on these results, we concluded that a blue light-cAMP signal transduction system stimulates the motility of Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Kazuki Terauchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | |
Collapse
|
14
|
Shenroy AR, Visweswariah SS. Class III nucleotide cyclases in bacteria and archaebacteria: lineage-specific expansion of adenylyl cyclases and a dearth of guanylyl cyclases. FEBS Lett 2004; 561:11-21. [PMID: 15043055 DOI: 10.1016/s0014-5793(04)00128-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Class III nucleotide cyclases are found in bacteria, eukaryotes and archaebacteria. Our survey of the bacterial and archaebacterial genome and plasmid sequences identified 193 Class III cyclase genes in only 29 species, of which we predict the majority to be adenylyl cyclases. Interestingly, several putative cyclase genes were found to have non-conserved substrate specifying residues. Ancestors of the eukaryotic C1-C2 domain containing soluble adenylyl cyclases as well as the protist guanylyl cyclases were found in bacteria. Diverse domains were fused to the cyclase domain and phylogenetic analysis indicated that most proteins within a single cluster have similar domain compositions, emphasising the ancient evolutionary origin and versatility of the cyclase domain.
Collapse
Affiliation(s)
- Avinash R Shenroy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
15
|
Ohmori M, Terauchi K, Okamoto S, Watanabe M. Regulation of cAMP-mediated photosignaling by a phytochrome in the cyanobacterium Anabaena cylindrica. Photochem Photobiol 2002; 75:675-9. [PMID: 12081331 DOI: 10.1562/0031-8655(2002)075<0675:rocmpb>2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Changes in cellular adenosine 3',5'-cyclic monophosphate (cAMP) content induced by monochromatic light of various wavelengths were determined in the cyanobacterium Anabaena cylindrica. Irradiation with monochromatic red light caused a rapid decrease in cAMP content. In contrast, far-red light caused a rapid increase in its content. The effects of red and far-red light were reversible, suggesting the involvement of a prototype phytochrome as the photoreceptor for cAMP-mediated light-responsive signal transduction.
Collapse
Affiliation(s)
- Masayuki Ohmori
- Department of Biology, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Japan.
| | | | | | | |
Collapse
|
16
|
Hanada S, Shimada K, Matsuura K. Active and energy-dependent rapid formation of cell aggregates in the thermophilic photosynthetic bacterium Chloroflexus aggregans. FEMS Microbiol Lett 2002; 208:275-9. [PMID: 11959449 DOI: 10.1111/j.1574-6968.2002.tb11094.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The thermophilic filamentous phototroph Chloroflexus aggregans was able to form a bacterial mat-like dense cell aggregate rapidly. The aggregate formation, which was observed in growing cells in a liquid medium in a bottle, occurred every time within 20-30 min after the cells were dispersed by shaking. The aggregation depended on the energy supplied by photosynthesis or respiration. Cells aggregated most rapidly under temperature and pH conditions that support maximum growth. The aggregation was also accelerated by the addition of 3-isobutyl-1-methylxanthine that inhibits cyclic 3',5'-AMP phosphodiesterase. Microscopic observation revealed that the bacterium has a fast gliding mobility (1-3 microm s(-1)). The distinctive cell aggregation of C. aggregans was due to this rapid gliding movement.
Collapse
Affiliation(s)
- Satoshi Hanada
- Department of Biology, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan.
| | | | | |
Collapse
|
17
|
Yoshimura H, Yanagisawa S, Kanehisa M, Ohmori M. Screening for the target gene of cyanobacterial cAMP receptor protein SYCRP1. Mol Microbiol 2002; 43:843-53. [PMID: 12085767 DOI: 10.1046/j.1365-2958.2002.02790.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The target genes for SYCRP1, a cyanobacterial cAMP receptor protein, were surveyed using a DNA microarray method. Total RNAs were extracted from a wild-type strain and a sycrp1 disruptant of Synechocystis sp. PCC 6803, and the respective gene expression levels were compared. The expression levels of six genes (slr1667, slr1168, slr2015, slr2016, slr2017 and slr2018) were clearly decreased by the disruption of the sycrp1 gene. The data suggest that slr1667 and slr1668 constitute one operon and the other four genes constitute another operon. Transcription start points for the first genes of these putative operons, which are slr1667 and slr2015, were determined by primer extension experiments. Gel mobility shift assays and DNase 1 footprint analyses were carried out to explore the binding of SYCRP1 to the putative promoter regions of slr1667 and slr2015. SYCRP1 bound to the specific site in the 5' upstream region of slr1667 from positions -170 to -155 relative to the transcription start point, while it did not bind to the 5' upstream region of slr2015. It was concluded that SYCRP1 regulates the expression of the slr1667 gene directly by binding to a specific site in its promoter.
Collapse
Affiliation(s)
- Hidehisa Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
18
|
Moutinho A, Hussey PJ, Trewavas AJ, Malhó R. cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci U S A 2001; 98:10481-6. [PMID: 11517303 PMCID: PMC56986 DOI: 10.1073/pnas.171104598] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Indexed: 11/18/2022] Open
Abstract
Pollen tube growth and reorientation is a prerequisite for fertilization and seed formation. Here we report imaging of cAMP distribution in living pollen tubes microinjected with the protein kinase A-derived fluorosensor. Growing tubes revealed a uniform distribution of cAMP with a resting concentration of approximately 100-150 nM. Modulators of adenylyl cyclase (AC), forskolin, and dideoxyadenosine could alter these values. Transient elevations in the apical region could be correlated with changes in the tube-growth axis, suggesting a role for cAMP in polarized growth. Changes in cAMP arise through the activity of a putative AC identified in pollen. This signaling protein shows homology to functional motifs in fungal AC. Expression of the cDNA in Escherichia coli resulted in cAMP increase and complemented a catabolic defect in the fermentation of carbohydrates caused by the absence of cAMP in a cyaA mutant. Antisense assays performed with oligodeoxynucleotide probes directed against conserved motifs perturbed tip growth, suggesting that modulation of cAMP concentration is vital for tip growth.
Collapse
Affiliation(s)
- A Moutinho
- Department of Plant Biology, Faculdade de Ciências de Lisboa, University of Lisbon, Block C2, Lisboa, 1749-016 Lisbon, Portugal
| | | | | | | |
Collapse
|
19
|
Yoshimura H, Hisabori T, Yanagisawa S, Ohmori M. Identification and characterization of a novel cAMP receptor protein in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2000; 275:6241-5. [PMID: 10692419 DOI: 10.1074/jbc.275.9.6241] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three open reading frames of Synechocystis sp. PCC 6803 encoding a domain homologous with the cAMP binding domain of bacterial cAMP receptor protein were analyzed. These three open reading frames, sll1371, sll1924, and slr0593, which were named sycrp1, sycrp2, and sypk, respectively, were expressed in Escherichia coli as His-tagged or glutathione S-transferase fusion proteins and purified, and their biochemical properties were investigated. The results obtained for equilibrium dialysis measurements using these recombinant proteins suggest that SYCRP1 and SYPK show a binding affinity for cAMP while SYCRP2 does not. The dissociation constant of His-tagged SYCRP1 for cAMP is approximately 3 microM. A cross-linking experiment using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide revealed that His-tagged SYCRP1 forms a homodimer, and the presence or absence of cAMP does not affect the formation of the homodimer. The amino acid sequence reveals that SYCRP1 has a domain similar to the DNA binding domain of bacterial cAMP receptor protein in the COOH-terminal region. Consistent with this, His-tagged SYCRP1 forms a complex with DNA that contains the consensus sequence for E. coli cAMP receptor protein in the presence of cAMP. These results strongly suggest that SYCRP1 is a novel cAMP receptor protein.
Collapse
Affiliation(s)
- H Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
20
|
Kasahara M, Ohmori M. Activation of a cyanobacterial adenylate cyclase, CyaC, by autophosphorylation and a subsequent phosphotransfer reaction. J Biol Chem 1999; 274:15167-72. [PMID: 10329724 DOI: 10.1074/jbc.274.21.15167] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CyaC protein, a cyanobacterial adenylate cyclase, has a unique primary structure composed of the catalytic domain of adenylate cyclase and the conserved domains of bacterial two-component regulatory systems, one transmitter domain and two receiver domains. In the present work, CyaC was produced in Escherichia coli as a histidine-tagged recombinant protein and purified to homogeneity. CyaC showed ability to autophosphorylate in vitro with the gamma-phosphate of [gamma-32P]ATP. CyaC derivatives were constructed by site-directed mutagenesis in which the highly conserved phosphorylation sites in the transmitter domain (His572) and receiver domains (Asp60 or Asp895) were replaced by glutamine and alanine residues, respectively. After autophosphorylation of the CyaC derivatives, the chemical stabilities of the phosphoryl groups bound to the derivatives were determined. It was found that His572 is the initial phosphorylation site and that the phosphoryl group once bound to His572 is transferred to Asp895. The enzyme activities of the CyaC derivatives defective in His572 or Asp895 were considerably reduced. Asp895 is phosphorylated by acetyl [32P]phosphate, a small phosphoryl molecule, but Asp60 is not. Acetyl phosphate stimulates adenylate cyclase activity only when Asp895 is intact. These results suggest that the phosphorylation of Asp895 is essential for the activation of adenylate cyclase and that Asp60 functions differently from Asp895 in regulating the enzyme activity.
Collapse
Affiliation(s)
- M Kasahara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153, Japan
| | | |
Collapse
|
21
|
Izumi S, Hirata T. Signal Transduction against the Terpenoid-Stimulation in the Liverwort Cells. CHEM LETT 1997. [DOI: 10.1246/cl.1997.1117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Katayama M, Ohmori M. Isolation and characterization of multiple adenylate cyclase genes from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 1997; 179:3588-93. [PMID: 9171404 PMCID: PMC179152 DOI: 10.1128/jb.179.11.3588-3593.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adenylate cyclase genes, designated cyaA, cyaB1, cyaB2, cyaC, and cyaD, were isolated from the filamentous cyanobacterium Anabaena sp. strain PCC 7120 by complementation of a strain of Escherichia coli defective for the presence of cya. These genes encoded polypeptides consisting of 735, 859, 860, 1,155, and 546 amino acid residues, respectively. Deduced amino acid sequences of the regions near the C-terminal ends of these cya genes were similar to those of catalytic domains of eukaryotic adenylate cyclases. The remaining part of each cya gene towards its N-terminal end showed a characteristic structure. CyaA had two putative membrane-spanning regions. Both CyaB1 and CyaB2 had regions that were very similar to the cyclic GMP (cGMP)-binding domain of cGMP-stimulated cGMP phosphodiesterase. CyaC consisted of four distinct domains forming sequentially from the N terminus: a response regulator-like domain, a histidine kinase-like domain, a response regulator-like domain, and the catalytic domain of adenylate cyclase. CyaD contained the forkhead-associated domain in its N-terminal region. Expression of these genes was examined by reverse transcription-PCR. The transcript of cyaC was shown to be predominant in this cyanobacterium. The cellular cyclic AMP level in the disruptant of the cyaC mutant was much lower than that in the wild type.
Collapse
Affiliation(s)
- M Katayama
- Department of Life Science, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Japan
| | | |
Collapse
|
23
|
Katayama M, Wada Y, Ohmori M. Molecular cloning of the cyanobacterial adenylate cyclase gene from the filamentous cyanobacterium Anabaena cylindrica. J Bacteriol 1995; 177:3873-8. [PMID: 7601856 PMCID: PMC177110 DOI: 10.1128/jb.177.13.3873-3878.1995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Molecular cloning of the structural gene for adenylate cyclase (cya) of the cyanobacterium Anabaena cylindrica was carried out by complementation of an Escherichia coli strain defective in the cya gene. The cya-defective strain produced significant amounts of cyclic AMP when it was transformed with the cya gene isolated from A. cylindrica. This gene encodes a polypeptide consisting of 502 amino acid residues (molecular weight, 55,300). The deduced primary protein structure showed that the carboxyl-terminal region of the adenylate cyclase of A. cylindrica shows strong structural similarity to the conserved regions of the adenylate cyclases of various eukaryotes. No similarity was found between the amino acid sequences of the cya gene of A. cylindrica and that of E. coli. A hydropathy plot suggests that this protein has two hydrophobic regions, a transmembrane span and a signal peptide. An antiserum specific to this adenylate cyclase was prepared by immunizing a rabbit with a glutathione S-transferase-adenylate cyclase fusion protein expressed in E. coli. This antiserum recognized a 55-kDa protein in Anabaena cell lysates. Subcellular fractionation analysis showed that A. cylindrica adenylate cyclase localized in the thylakoid membrane.
Collapse
Affiliation(s)
- M Katayama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
24
|
Tandeau de Marsac N, Houmard J. Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb05866.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
25
|
Abstract
Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth.
Collapse
Affiliation(s)
- J L Botsford
- Department of Biology, New Mexico State University, Las Cruces 88003
| | | |
Collapse
|
26
|
|
27
|
Hasunuma K, Takimoto A. ATP-GTP-BINDING PROTEINS AND ENDOGENOUS ADP-RIBOSYL TRANSFERASE IN Lemna paucicostata 441. Photochem Photobiol 1989. [DOI: 10.1111/j.1751-1097.1989.tb02911.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|