1
|
Pereira F, Kerkar S, Dias DS, Gobre VV. A halophilic Chromohalobacter species from estuarine coastal waters as a detoxifier of manganese, as well as a novel bio-catalyst for synthesis of n-butyl acetate. Front Microbiol 2023; 14:1159018. [PMID: 37125204 PMCID: PMC10130588 DOI: 10.3389/fmicb.2023.1159018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Anthropogenic pollution due to ferro-manganese ore transport by barges through the Mandovi estuary in Goa, India is a major environmental concern. In this study a manganese (Mn) tolerant, moderately halophilic Chromohalobacter sp. belonging to the family Halomonadaceae was isolated from the sediments of a solar saltern adjacent to this Mandovi estuary. Using techniques of Atomic absorption spectroscopy, Scanning electron microscopy-Energy dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy and Atomic Force Microscopy, the Chromohalobacter sp. was explored for its ability to tolerate and immobilize Mn in amended and unamended media with 20% natural salt concentration (w/v). In aqueous media supplemented with 0.1 mM Mn, the Chromohalobacter sp. was capable of sequestering up to 76% Mn with an average immobilization rate of 8 mg Mn /g /day. Growth rate kinetic analysis using Gompertz mathematical functions was found to model the experimental data well. The model inferred that the maximum growth rate of Chromohalobacter sp. was at 10% natural salt concentration (w/v). The Chromohalobacter sp. was further found to be multimetal tolerant showing high tolerance to Iron (Fe), Nickel (Ni) and Cobalt (Co), (each at 4 mM), and tolerated Manganese (Mn) up to 6 mM. Morphologically, the Chromohalobacter sp. was a non-spore forming, Gram negative motile rod (0.726 μ× 1.33 μ). The adaptative mechanism of Chromohalobacter sp. to elevated Mn concentrations (1 mM) resulted in the reduction of its cell size to 0.339 μ× 0.997 μ and the synthesis of an extracellular slime, immobilizing Mn from the liquid phase forming Manganese oxide, as confirmed by Scanning Electron Microscopy. The expression of Mnx genes for manganese oxidation further substantiated the finding. This bacterial synthesized manganese oxide also displayed catalytic activity (∼50% conversion) for the esterification of butan-1-ol with CH3COOH to yield n-butyl acetate. This Chromohalobacter sp. being indigenous to marine salterns, has adapted to high concentrations of heavy metals and high salinities and can withstand this extremely stressed environment, and thus holds a tremendous potential as an environmentally friendly "green bioremediator" of Mn from euryhaline environments. The study also adds to the limited knowledge about metal-microbe interactions in extreme environments. Further, since Chromohalobacter sp. exhibits commendable catalytic activity for the synthesis of n-butyl acetate, it would have several potential industrial applications.
Collapse
Affiliation(s)
- Flory Pereira
- Department of Microbiology, P. E. S’s R. S. N. College of Arts and Science, Ponda, India
- *Correspondence: Flory Pereira,
| | - Savita Kerkar
- School of Biological Sciences and Biotechnology, Goa University, Taleigão, India
| | - Dominic Savio Dias
- Department of Chemistry, P. E. S’s R. S. N. College of Arts and Science, Ponda, India
| | | |
Collapse
|
2
|
He Y, Zeng X, Xu F, Shao Z. Diversity of Mixotrophic Neutrophilic Thiosulfate- and Iron-Oxidizing Bacteria from Deep-Sea Hydrothermal Vents. Microorganisms 2022; 11:microorganisms11010100. [PMID: 36677390 PMCID: PMC9861301 DOI: 10.3390/microorganisms11010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
At deep-sea hydrothermal vents, sulfur oxidation and iron oxidation are of the highest importance to microbial metabolisms, which are thought to contribute mainly in chemolithoautotrophic groups. In this study, 17 mixotrophic neutrophilic thiosulfate- and iron-oxidizing bacteria were isolated from hydrothermal fields on the Carlsberg Ridge in the Indian Ocean, nine to the γ-proteobacteria (Halomonas (4), Pseudomonas (2), Marinobacter (2), and Rheinheimera (1)), seven to the α-proteobacteria (Thalassospira, Qipengyuania, Salipiger, Seohaeicola, Martelella, Citromicrobium, and Aurantimonas), and one to the Actinobacteria (Agromyces), as determined by their 16S rRNA and genome sequences. The physiological characterization of these isolates revealed wide versatility in electron donors (Fe(II) and Mn(II), or thiosulfate) and a variety of lifestyles as lithotrophic or heterotrophic, microaerobic, or anaerobic. As a representative strain, Pseudomonas sp. IOP_13 showed its autotrophic gowth from 105 cells/ml to 107 cells/ml;carbon dioxide fixation capacity with the δ13CVPDB in the biomass increased from -27.42‱ to 3460.06‱; the thiosulfate-oxidizing ability with produced SO42- increased from 60 mg/L to 287 mg/L; and the iron-oxidizing ability with Fe(II) decreased from 10 mM to 5.2 mM. In addition, iron-oxide crust formed outside the cells. Gene coding for energy metabolism involved in possible iron, manganese, and sulfur oxidation, and denitrification was identified by their genome analysis. This study sheds light on the function of the mixotrophic microbial community in the iron/manganese/sulfur cycles and the carbon fixation of the hydrothermal fields.
Collapse
|
3
|
Start-Up and Performance of a Full Scale Passive System In-Cluding Biofilters for the Treatment of Fe, as and Mn in a Neutral Mine Drainage. WATER 2022. [DOI: 10.3390/w14121963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Passive mine drainage treatment plants are the scene of many chemical and biological reactions. Here, the establishment of iron (Fe), arsenic (As), and manganese (Mn) removal was monitored immediately after the commissioning of the Lopérec (Brittany, France) passive water treatment plant, composed of aeration cascades and settling ponds followed by pozzolana biofilters. Iron and As were almost completely removed immediately after commissioning, while Mn removal took more than 28 days to reach its maximum performance. Investigations were performed during two periods presenting strong variations in feeding flow-rates: from 2.8 m3.h−1 to 8.6 m3.h−1 and from 13.2 m3.h−1 to 31.3 m3.h−1. Design flow rate was reached during the first week of the second period. Dissolved Fe and As were not affected by the decrease in residence time while Mn was only slightly affected. Microbial communities in biofilter presented similarities with those of the pond sludge, and genera including Mn-oxidizing species were detected. Proportion of bacteria carrying the aioA gene encoding for As(III)-oxidase enzyme increased in communities during the second period. Results suggest Mn removal is mainly associated with bio-oxidation whereas removal of Fe and As could be mainly attributed to chemical oxidation and precipitation of Fe, possibly helped by As(III) bio-oxidation.
Collapse
|
4
|
Martínez-Ruiz EB, Cooper M, Barrero-Canosa J, Haryono MAS, Bessarab I, Williams RBH, Szewzyk U. Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation. BMC Genomics 2021; 22:464. [PMID: 34157973 PMCID: PMC8218464 DOI: 10.1186/s12864-021-07766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Myriel Cooper
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Jimena Barrero-Canosa
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ulrich Szewzyk
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
5
|
Arif S, Reitner J, Hoppert M. Composition, Diversity and Functional Analysis of the Modern Microbiome of the Middle Triassic Cava Superiore Beds (Monte San Giorgio, Switzerland). Sci Rep 2019; 9:20394. [PMID: 31892704 PMCID: PMC6938485 DOI: 10.1038/s41598-019-55955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022] Open
Abstract
Organic-rich laminated shales and limestones from the Monte San Giorgio (Lugano Prealps, Switzerland) are known as famous fossil lagerstätten for excellently preserved fossils from the Middle Triassic Period. The various bituminous shales from Monte San Giorgio are thermally immature and rich in diverse organic compounds, which provide unique substrates for active soil microbial communities. We selected the Cava superior beds of the Acqua del Ghiffo site for this study. To investigate its microbial structure and diversity, contig assembly, Operational Taxonomic Units (OTUs) clustering, and rarefaction analysis were performed for bacterial 16S rDNA preparations from bituminous and non-bituminous limestone strata with the MetaAmp pipeline. Principal coordinates analysis shows that the microbial communities from the bituminous strata differ significantly from limestone samples (P < 0.05 Unifrac weighted). Moreover, metagenomic tools could also be used effectively to analyze the microbial communities shift during enrichment in specific growth media. In the nutrient-rich media, one or few taxa, mainly Proteobacteria and Firmicutes, were enriched which led to the drastic diversity loss while oligotrophic media could enrich many taxa simultaneously and sustain the richness and diversity of the inoculum. Piphillin, METAGENassist and MicrobiomeAnalyst pipeline also predicted that the Monte San Giorgio bituminous shales and oligotrophic enriched microbiomes degrade complex polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Sania Arif
- Institute of Microbiology & Genetics, Department of General Microbiology, Georg-August-Universität Göttingen, Göttingen, Germany.
| | - Joachim Reitner
- Geosciences Centre, Department of Geobiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael Hoppert
- Institute of Microbiology & Genetics, Department of General Microbiology, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Matsushita S, Komizo D, Cao LTT, Aoi Y, Kindaichi T, Ozaki N, Imachi H, Ohashi A. Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater. WATER RESEARCH 2018; 130:224-233. [PMID: 29227871 DOI: 10.1016/j.watres.2017.11.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Biogenic manganese oxide (BioMnOx) can efficiently adsorb various minor metals. The production of BioMnOx in reactors to remove metals during wastewater treatment processes is a promising biotechnological method. However, it is difficult to preferentially enrich manganese-oxidizing bacteria (MnOB) to produce BioMnOx during wastewater treatment processes. A unique method of cultivating MnOB using methane-oxidizing bacteria (MOB) to produce soluble microbial products is proposed here. MnOB were successfully enriched in a methane-fed reactor containing MOB. BioMnOx production during the wastewater treatment process was confirmed. Long-term continual operation of the reactor allowed simultaneous removal of Mn(II), Co(II), and Ni(II). The Co(II)/Mn(II) and Ni(II)/Mn(II) removal ratios were 53% and 19%, respectively. The degree to which Mn(II) was removed indicated that the enriched MnOB used utilization-associated products and/or biomass-associated products. Microbial community analysis revealed that methanol-oxidizing bacteria belonging to the Hyphomicrobiaceae family played important roles in the oxidation of Mn(II) by using utilization-associated products. Methane-oxidizing bacteria were found to be inhibited by MnO2, but the maximum Mn(II) removal rate was 0.49 kg m-3 d-1.
Collapse
Affiliation(s)
- Shuji Matsushita
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan; Western Region Industrial Research Center, Hiroshima Prefectural Technology Research Institute, 2-10-1, Aga-minami, Kure, Hiroshima 737-0004, Japan
| | - Daisuke Komizo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Linh Thi Thuy Cao
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yoshiteru Aoi
- Institute for Sustainable Science and Development, Hiroshima University, 2-313, VBL403, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Hiroyuki Imachi
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, Japan; Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.
| |
Collapse
|
7
|
Manganese Oxidation by Bacteria: Biogeochemical Aspects. MOLECULAR BIOMINERALIZATION 2011; 52:49-76. [DOI: 10.1007/978-3-642-21230-7_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Bräuer SL, Adams C, Kranzler K, Murphy D, Xu M, Zuber P, Simon HM, Baptista AM, Tebo BM. Culturable Rhodobacter and Shewanella species are abundant in estuarine turbidity maxima of the Columbia River. Environ Microbiol 2010; 13:589-603. [PMID: 20977571 DOI: 10.1111/j.1462-2920.2010.02360.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Measurements of dissolved, ascorbate-reducible and total Mn by ICP-OES revealed significantly higher concentrations during estuarine turbidity maxima (ETM) events, compared with non-events in the Columbia River. Most probable number (MPN) counts of Mn-oxidizing or Mn-reducing heterotrophs were not statistically different from that of other heterotrophs (10³ -10⁴ cells ml⁻¹) when grown in defined media, but counts of Mn oxidizers were significantly lower in nutrient-rich medium (13 cells ml⁻¹). MPN counts of Mn oxidizers were also significantly lower on Mn(III)-pyrophosphate and glycerol (21 cells ml⁻¹). Large numbers of Rhodobacter spp. were cultured from dilutions of 10⁻² to 10⁻⁵, and many of these were capable of Mn(III) oxidation. Up to c. 30% of the colonies tested LBB positive, and all 77 of the successfully sequenced LBB positive colonies (of varying morphology) yielded sequences related to Rhodobacter spp. qPCR indicated that a cluster of Rhodobacter isolates and closely related strains (95-99% identity) represented approximately 1-3% of the total Bacteria, consistent with clone library results. Copy numbers of SSU rRNA genes for either Rhodobacter spp. or Bacteria were four to eightfold greater during ETM events compared with non-events. Strains of a Shewanella sp. were retrieved from the highest dilutions (10⁻⁵) of Mn reducers, and were also capable of Mn oxidation. The SSU rRNA gene sequences from these strains shared a high identity score (98%) with sequences obtained in clone libraries. Our results support previous findings that ETMs are zones with high microbial activity. Results indicated that Shewanella and Rhodobacter species were present in environmentally relevant concentrations, and further demonstrated that a large proportion of culturable bacteria, including Shewanella and Rhodobacter spp., were capable of Mn cycling in vitro.
Collapse
Affiliation(s)
- S L Bräuer
- Department of Biology, Appalachian State University, Boone, NC 28608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Braun B, Richert I, Szewzyk U. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe. J Microbiol Methods 2009; 79:37-43. [PMID: 19638289 DOI: 10.1016/j.mimet.2009.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/16/2009] [Accepted: 07/18/2009] [Indexed: 10/20/2022]
Abstract
Iron-depositing bacteria play an important role in technical water systems (water wells, distribution systems) due to their intense deposition of iron oxides and resulting clogging effects. Pedomicrobium is known as iron- and manganese-oxidizing and accumulating bacterium. The ability to detect and quantify members of this species in biofilm communities is therefore desirable. In this study the fluorescence in situ hybridization (FISH) method was used to detect Pedomicrobium in iron and manganese incrusted biofilms. Based on comparative sequence analysis, we designed and evaluated a specific oligonucleotide probe (Pedo 1250) complementary to the hypervariable region 8 of the 16S rRNA gene for Pedomicrobium. Probe specificities were tested against 3 different strains of Pedomicrobium and Sphingobium yanoikuyae as non-target organism. Using optimized conditions the probe hybridized with all tested strains of Pedomicrobium with an efficiency of 80%. The non-target organism showed no hybridization signals. The new FISH probe was applied successfully for the in situ detection of Pedomicrobium in different native, iron-depositing biofilms. The hybridization results of native bioflims using probe Pedo_1250 agreed with the results of the morphological structure of Pedomicrobium bioflims based on scanning electron microscopy.
Collapse
Affiliation(s)
- Burga Braun
- Department of Environmental Microbiology, Berlin University of Technology, Franklinstrasse 29, 10587 Berlin, Germany.
| | | | | |
Collapse
|
10
|
Caspi R, Tebo BM, Haygood MG. c-type cytochromes and manganese oxidation in Pseudomonas putida MnB1. Appl Environ Microbiol 1998; 64:3549-55. [PMID: 9758766 PMCID: PMC106463 DOI: 10.1128/aem.64.10.3549-3555.1998] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida MnB1 is an isolate from an Mn oxide-encrusted pipeline that can oxidize Mn(II) to Mn oxides. We used transposon mutagenesis to construct mutants of strain MnB1 that are unable to oxidize manganese, and we characterized some of these mutants. The mutants were divided into three groups: mutants defective in the biogenesis of c-type cytochromes, mutants defective in genes that encode key enzymes of the tricarboxylic acid cycle, and mutants defective in the biosynthesis of tryptophan. The mutants in the first two groups were cytochrome c oxidase negative and did not contain c-type cytochromes. Mn(II) oxidation capability could be recovered in a c-type cytochrome biogenesis-defective mutant by complementation of the mutation.
Collapse
Affiliation(s)
- R Caspi
- Scripps Institution of Oceanography, University of California in San Diego, La Jolla, California 92093-0202, USA
| | | | | |
Collapse
|
11
|
|
12
|
Lünsdorf H, Brümmer I, Timmis KN, Wagner-Döbler I. Metal selectivity of in situ microcolonies in biofilms of the Elbe river. J Bacteriol 1997; 179:31-40. [PMID: 8981977 PMCID: PMC178658 DOI: 10.1128/jb.179.1.31-40.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ultrastructure of natural complex biofilm communities of the Elbe river grown in situ on microscopic glass coverslips was studied by using transmission electron microscopy and energy-dispersive x-ray (EDX) analysis. Characteristic microcolonies which measured between 3.3 and 9.3 microm in diameter were frequently observed. They had an outer envelope and harbored 6 to 30 cells. The cells formed short rods measuring 1.09 +/- 0.28 microm (n = 10) in length and 0.55 + 0.07 microm (n = 21) in width. They were surrounded by a thick layer of electron-transparent, nonosmicated matter, 120 to 300 nm thick. Individual cells exhibited a unique ultrastructural trait, namely, a concentric membrane stack which completely surrounded the cytoplasm. It consisted of three membrane doublets, which showed an overall thickness of 57 to 66 nm. The center-to-center spacing between two membrane doublets was 22.2 +/- 1.0 nm (n = 12). The bacterial cell wall seemed to be of the gram-negative type. The fact that upon shrinkage hexagonal clefts appeared proved the cells to be tightly packed, and septum formation by binary fissions was observed. All of these morphological details indicate that the cells within these microcolonies were actively growing and did not represent spore-like states. EDX analysis showed that only the electron-dense surface deposit of the microcolonies contained Mn and Fe in significant amounts, while these two elements were absent from the intercellular space and the cytoplasm of the microorganisms. In contrast, aluminum ions were able to penetrate the outer envelope of the microcolonies and were detected in the intercellular space. They were, however, completely absent from the microbial cytoplasm, indicating a filter cascade with respect to aluminum. From the ultrastructural data together with the deposition of iron and manganese on the microcolony surface, it appears that these organisms may belong to the genus Siderocapsa or Nitrosomonas. They do not precisely match any of the described species and may therefore represent a new species.
Collapse
Affiliation(s)
- H Lünsdorf
- Department of Microbiology, National Institute of Biotechnological Research, Braunschweig, Germany.
| | | | | | | |
Collapse
|
13
|
Moser DP, Brozowski JR, Nealson KH. Elemental analysis for biomass determination in the presence of insoluble substrates. J Microbiol Methods 1996. [DOI: 10.1016/0167-7012(96)00924-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Moser DP, Nealson KH. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol 1996; 62:2100-5. [PMID: 11536738 PMCID: PMC167988 DOI: 10.1128/aem.62.6.2100-2105.1996] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino Acids added as a growth stimulant) containing 30 mM lactate and limiting concentrations of elemental sulfur. When mechanisms were provided for the removal of the metabolic end product, H2S, measurable growth was obtained at sulfur concentrations of from 2 to 30 mM. Initial doubling times were ca. 1.5 h and substrate independent over the range of sulfur concentrations tested. In the cultures with the highest sulfur concentrations, cell numbers increased by greater than 400-fold after 48 h, reaching a maximum density of 6.8 x 10(8) cells ml-1. Yields were determined as total cell carbon and ranged from 1.7 to 5.9 g of C mol of S(0) consumed-1 in the presence of the amino acid supplement and from 0.9 to 3.4 g of C mol of S(0-1) in its absence. Several lines of evidence indicate that cell-to-sulfur contact is not required for growth. Approaches for the culture of sulfur-metabolizing bacteria and potential ecological implications of sulfur reduction in Shewanella-like heterotrophs are discussed.
Collapse
Affiliation(s)
- D P Moser
- Center for Great Lakes Studies, University of Wisconsin-Milwaukee 53204, USA
| | | |
Collapse
|
15
|
Nealson KH, Tebo BM, Rosson RA. Occurrence and Mechanisms of Microbial Oxidation of Manganese. ADVANCES IN APPLIED MICROBIOLOGY 1988. [DOI: 10.1016/s0065-2164(08)70209-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|