1
|
Rajpurohit H, Eiteman MA. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022; 10:2226. [PMID: 36363817 PMCID: PMC9695796 DOI: 10.3390/microorganisms10112226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 08/24/2023] Open
Abstract
Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists has shifted from these fundamental biochemical processes. This review draws attention again to nutrient-limited processes. Indeed, the sophisticated gene editing tools not available to pioneers offer the prospect of metabolic engineering strategies which leverage nutrient limited processes. Thus, nutrient- limited processes continue to be very relevant to generate microbially derived biochemicals.
Collapse
Affiliation(s)
| | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, Jetten MSM, Lüke C, Reimann J. Nitrate- and nitrite-dependent anaerobic oxidation of methane. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:941-955. [PMID: 27753265 DOI: 10.1111/1758-2229.12487] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbial methane oxidation is an important process to reduce the emission of the greenhouse gas methane. Anaerobic microorganisms couple the oxidation of methane to the reduction of sulfate, nitrate and nitrite, and possibly oxidized iron and manganese minerals. In this article, we review the recent finding of the intriguing nitrate- and nitrite-dependent anaerobic oxidation of methane (AOM). Nitrate-dependent AOM is catalyzed by anaerobic archaea belonging to the ANME-2d clade closely related to Methanosarcina methanogens. They were named 'Candidatus Methanoperedens nitroreducens' and use reverse methanogenesis with the key enzyme methyl-coenzyme M (methyl-CoM) reductase for methane activation. Their major end product is nitrite which can be taken up by nitrite-dependent methanotrophs. Nitrite-dependent AOM is performed by the NC10 bacterium 'Candidatus Methylomirabilis oxyfera' that probably utilizes an intra-aerobic pathway through the dismutation of NO to N2 and O2 for aerobic methane activation by methane monooxygenase, yet being a strictly anaerobic microbe. Environmental distribution, physiological and biochemical aspects are discussed in this article as well as the cooperation of the microorganisms involved.
Collapse
Affiliation(s)
- Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Olivia Rasigraf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Netherlands Earth Systems Science Center, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Annika Vaksmaa
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Arslan Arshad
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Netherlands Earth Systems Science Center, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Claudia Lüke
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Joachim Reimann
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| |
Collapse
|
3
|
Aiba H, Nishiya Y, Azuma M, Yokooji Y, Atomi H, Imanaka T. Characterization of a thermostable glucose dehydrogenase with strict substrate specificity from a hyperthermophilic archaeon Thermoproteus sp. GDH-1. Biosci Biotechnol Biochem 2015; 79:1094-102. [DOI: 10.1080/09168451.2015.1018120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
A hyperthermophilic archaeon was isolated from a terrestrial hot spring on Kodakara Island, Japan and designated as Thermoproteus sp. glucose dehydrogenase (GDH-1). Cell extracts from cells grown in medium supplemented with glucose exhibited NAD(P)-dependent glucose dehydrogenase activity. The enzyme (TgGDH) was purified and found to display a strict preference for d-glucose. The gene was cloned and expressed in Escherichia coli, resulting in the production of a soluble and active protein. Recombinant TgGDH displayed extremely high thermostability and an optimal temperature higher than 85 °C, in addition to its strict specificity for d-glucose. Despite its thermophilic nature, TgGDH still exhibited activity at 25 °C. We confirmed that the enzyme could be applied for glucose measurements at ambient temperatures, suggesting a potential of the enzyme for use in measurements in blood samples.
Collapse
Affiliation(s)
- Hiroshi Aiba
- Institute of Biotechnology, TOYOBO CO., LTD., Tsuruga, Japan
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Yoshiaki Nishiya
- Department of Life Science, Setsunan University, Neyagawa, Osaka, Japan
| | - Masayuki Azuma
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Yuusuke Yokooji
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tadayuki Imanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
4
|
Bekker M, Kramer G, Hartog AF, Wagner MJ, de Koster CG, Hellingwerf KJ, Teixeira de Mattos MJ. Changes in the redox state and composition of the quinone pool of Escherichia coli during aerobic batch-culture growth. Microbiology (Reading) 2007; 153:1974-1980. [PMID: 17526854 DOI: 10.1099/mic.0.2007/006098-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquinones (UQs) and menaquinones (MKs) perform distinct functions in Escherichia coli. Whereas, in general, UQs are primarily involved in aerobic respiration, the MKs serve as electron carriers in anaerobic respiration. Both UQs and MKs can accept electrons from various dehydrogenases, and may donate electrons to different oxidases. Hence, they play a role in maintaining metabolic flexibility in E. coli whenever this organism has to adapt to conditions with changing redox characteristics, such as oxygen availability. Here, the authors report on the changes in both the size and the redox state of the quinone pool when the environment changes from being well aerated to one with low oxygen availability. It is shown that such transitions are accompanied by a rapid increase in the demethylmenaquinone pool, and a slow increase in the MK pool. Moreover, in exponentially growing cultures in a well-shaken Erlenmeyer flask, it is observed that the assumption of a pseudo-steady state does not hold with respect to the redox state of the quinone pool.
Collapse
Affiliation(s)
- M Bekker
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - G Kramer
- Biological Mass-Spectrometry Group, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - A F Hartog
- Biomolecular Synthesis Group, Van't Hoff Institute for Molecular Sciences, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - M J Wagner
- Molecular Cell Physiology Group, Institute of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - C G de Koster
- Biological Mass-Spectrometry Group, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - K J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - M J Teixeira de Mattos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Lidén G. Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions. Biotechnol Bioeng 2006; 92:541-52. [PMID: 16240440 DOI: 10.1002/bit.20546] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Shikimic acid is one of several industrially interesting chiral starting materials formed in the aromatic amino acid pathway of plants and microorganisms. In this study, the physiology of a shikimic acid producing strain of Escherichia coli (derived from W3110) deleted in aroL (shikimic acid kinase II gene), was compared to that of a corresponding control strain (W3110) under carbon- and phosphate-limited conditions. For the shikimic acid producing strain (referred to as W3110.shik1), phosphate limitation resulted in a higher yield of shikimic acid (0.059 +/- 0.012 vs. 0.024 +/- 0.005 c-mol/c-mol) and a lower yield of by-products from the shikimate pathway, when compared to carbon-limited condition. The yield of the by-product 3-dehydroshikimic acid (DHS) decreased from 0.076 +/- 0.028 to 0.022 +/- 0.001 c-mol/c-mol. Several other by-products were only detected under carbon-limited conditions. The latter group included 3-dehydroquinic acid (0.021 +/- 0.021 c-mol/c-mol), quinic acid (0.012 +/- 0.005 c-mol/c-mol), and gallic acid (0.002 +/- 0.001 c-mol/c-mol). For both strains, more acetate was produced under phosphate than the carbon-limited case. Considerable cell lysis was found for both strains but was higher for W3110.shik1, and increased for both strains under phosphate limitation. The advantages of the latter condition in terms of an increased shikimic acid yield was thus counteracted by an increased cell lysis, which may make downstream processing more difficult.
Collapse
Affiliation(s)
- Louise Johansson
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Central metabolism of carbohydrates uses the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways. This review reviews the biological roles of the enzymes and genes of these three pathways of E. coli. Glucose, pentoses, and gluconate are primarily discussed as the initial substrates of the three pathways, respectively. The genetic and allosteric regulatory mechanisms of glycolysis and the factors that affect metabolic flux through the pathways are considered here. Despite the fact that a lot of information on each of the reaction steps has been accumulated over the years for E. coli, surprisingly little quantitative information has been integrated to analyze glycolysis as a system. Therefore, the review presents a detailed description of each of the catalytic steps by a systemic approach. It considers both structural and kinetic aspects. Models that include kinetic information of the reaction steps will always contain the reaction stoichiometry and therefore follow the structural constraints, but in addition to these also kinetic rate laws must be fulfilled. The kinetic information obtained on isolated enzymes can be integrated using computer models to simulate behavior of the reaction network formed by these enzymes. Successful examples of such approaches are the modeling of glycolysis in S. cerevisiae, the parasite Trypanosoma brucei, and the red blood cell. With the rapid developments in the field of Systems Biology many new methods have been and will be developed, for experimental and theoretical approaches, and the authors expect that these will be applied to E. coli glycolysis in the near future.
Collapse
Affiliation(s)
- Tony Romeo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and Department of Molecular Cell Physiology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Abstract
Pyrrolo-quinoline quinone (PQQ) is the non-covalently bound prosthetic group of many quinoproteins catalysing reactions in the periplasm of Gram-negative bacteria. Most of these involve the oxidation of alcohols or aldose sugars. PQQ is formed by fusion of glutamate and tyrosine, but details of the biosynthetic pathway are not known; a polypeptide precursor in the cytoplasm is probably involved, the completed PQQ being transported into the periplasm. In addition to the soluble methanol dehydrogenase of methylotrophs, there are three classes of alcohol dehydrogenases; type I is similar to methanol dehydrogenase; type II is a soluble quinohaemoprotein, having a C-terminal extension containing haem C; type III is similar but it has two additional subunits (one of which is a multihaem cytochrome c), bound in an unusual way to the periplasmic membrane. There are two types of glucose dehydrogenase; one is an atypical soluble quinoprotein which is probably not involved in energy transduction. The more widely distributed glucose dehydrogenases are integral membrane proteins, bound to the membrane by transmembrane helices at the N-terminus. The structures of the catalytic domains of type III alcohol dehydrogenase and membrane glucose dehydrogenase have been modelled successfully on the methanol dehydrogenase structure (determined by X-ray crystallography). Their mechanisms are likely to be similar in many ways and probably always involve a calcium ion (or other divalent cation) at the active site. The electron transport chains involving the soluble alcohol dehydrogenases usually consist only of soluble c-type cytochromes and the appropriate terminal oxidases. The membrane-bound quinohaemoprotein alcohol dehydrogenases pass electrons to membrane ubiquinone which is then oxidized directly by ubiquinol oxidases. The electron acceptor for membrane glucose dehydrogenase is ubiquinone which is subsequently oxidized directly by ubiquinol oxidases or by electron transfer chains involving cytochrome bc1, cytochrome c and cytochrome c oxidases. The function of most of these systems is to produce energy for growth on alcohol or aldose substrates, but there is some debate about the function of glucose dehydrogenases in those bacteria which contain one or more alternative pathways for glucose utilization. Synthesis of the quinoprotein respiratory systems requires production of PQQ, haem and the dehydrogenase subunits, transport of these into the periplasm, and incorporation together with divalent cations, into active quinoproteins and quinohaemoproteins. Six genes required for regulation of synthesis of methanol dehydrogenase have been identified in Methylobacterium, and there is evidence that two, two-component regulatory systems are involved.
Collapse
Affiliation(s)
- P M Goodwin
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, UK
| | | |
Collapse
|
8
|
Iswantini D, Kato K, Kano K, Ikeda T. Electrochemical measurements of glucose dehydrogenase activity exhibited by Escherichia coli cells; effects of the additions of pyrroloquinoline quinone, magnesium or calcium ions and ethylenediaminetetraacetic acid. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(98)00140-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
de Jonge R, Teixeira de Mattos MJ, Stock JB, Neijssel OM. Pyrroloquinoline quinone, a chemotactic attractant for Escherichia coli. J Bacteriol 1996; 178:1224-6. [PMID: 8576064 PMCID: PMC177791 DOI: 10.1128/jb.178.4.1224-1226.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli is attracted by pyrroloquinoline quinone (PQQ), and chemotaxis toward glucose is enhanced by the presence of PQQ. A ptsI mutant showed no chemotactic response to either glucose or PQQ alone but did show a chemotactic response to a mixture of glucose and PQQ. A strain lacking the methylated chemotaxis receptor protein Tar showed no response to PQQ.
Collapse
Affiliation(s)
- R de Jonge
- Department of Microbiology, E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
10
|
Sode K, Sugimoto S, Watanabe M, Tsugawa W. Effect of PQQ glucose dehydrogenase overexpression in Escherichia coli on sugar-dependent respiration. J Biotechnol 1995; 43:41-4. [PMID: 8573321 DOI: 10.1016/0168-1656(95)00112-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pyrroloquinoline quinone glucose dehydrogenase (PQQGDH) was overexpressed in Escherichia coli, and its impact on sugar-dependent respiration was investigated. Sugar-dependent respiration patterns under PQQGDH overexpression can be devided into two types. The first type involves D-glucose and D-mannose, which are utilized by the phosphotransferase system (PTS) and are also the substrates of PQQGDH. As a result of PQQGDH overexpression, the apparent Km value of sugar-dependent respiration shifted to higher concentration compared with E. coli parental cells. The second type included D-xylose and D-galactose, which are the substrates of PQQGDH, but not the PTS sugars. PQQGDH overexpressing cells showed much higher respiration than parental cells. These results suggested that PQQGDH overexpression may alter sugar utilization preferences in E. coli, suggesting further possible applications in metabolic engineering for carbon source utilization.
Collapse
Affiliation(s)
- K Sode
- Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, Japan
| | | | | | | |
Collapse
|
11
|
Snoep JL, Arfman N, Yomano LP, Fliege RK, Conway T, Ingram LO. Reconstruction of glucose uptake and phosphorylation in a glucose-negative mutant of Escherichia coli by using Zymomonas mobilis genes encoding the glucose facilitator protein and glucokinase. J Bacteriol 1994; 176:2133-5. [PMID: 8144485 PMCID: PMC205325 DOI: 10.1128/jb.176.7.2133-2135.1994] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Expression of the Zymomonas mobilis glf (glucose facilitator protein) and glk (glucokinase) genes in Escherichia coli ZSC113 (glucose negative) provided a new functional pathway for glucose uptake and phosphorylation. Both genes were essential for the restoration of growth in glucose minimal medium and for acid production on glucose-MacConkey agar plates.
Collapse
Affiliation(s)
- J L Snoep
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611
| | | | | | | | | | | |
Collapse
|