1
|
Roy S, Ueda M, Kadowaki KI, Tsutsumi N. Different status of the gene for ribosomal protein S16 in the chloroplast genome during evolution of the genus Arabidopsis and closely related species. Genes Genet Syst 2010; 85:319-26. [DOI: 10.1266/ggs.85.319] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Shradha Roy
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo
| | - Minoru Ueda
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo
| | - Koh-ichi Kadowaki
- Genetic Diversity Department, National Institute of Agrobiological Sciences
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo
| |
Collapse
|
2
|
Circumscription and phylogeny of Apiaceae subfamily Saniculoideae based on chloroplast DNA sequences. Mol Phylogenet Evol 2007; 44:175-91. [PMID: 17321762 DOI: 10.1016/j.ympev.2007.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 01/03/2007] [Accepted: 01/04/2007] [Indexed: 11/21/2022]
Abstract
An estimate of phylogenetic relationships within Apiaceae subfamily Saniculoideae was inferred using data from the chloroplast DNA trnQ-trnK 5'-exon region to clarify the circumscription of the subfamily and to assess the monophyly of its constituent genera. Ninety-one accessions representing 14 genera and 82 species of Apiaceae were examined, including the genera Steganotaenia, Polemanniopsis, and Lichtensteinia which have been traditionally treated in subfamily Apioideae but determined in recent studies to be more closely related to or included within subfamily Saniculoideae. The trnQ-trnK 5'-exon region includes two intergenic spacers heretofore underutilized in molecular systematic studies and the rps16 intron. Analyses of these loci permitted an assessment of the relative utility of these noncoding regions (including the use of indel characters) for phylogenetic study at different hierarchical levels. The use of indels in phylogenetic analyses of both combined and partitioned data sets improves resolution of relationships, increases bootstrap support values, and decreases levels of overall homoplasy. Intergeneric relationships derived from maximum parsimony, Bayesian, and maximum likelihood analyses, as well as from maximum parsimony analysis of indel data alone, are fully resolved and consistent with one another and generally very well supported. We confirm the expansion of subfamily Saniculoideae to include Steganotaenia and Polemanniopsis (as the new tribe Steganotaenieae C.I. Calviño and S.R. Downie) but not Lichtensteinia. Sister group to tribe Steganotaenieae is tribe Saniculeae, redefined to include the genera Actinolema, Alepidea, Arctopus, Astrantia, Eryngium, Petagnaea, and Sanicula. With the synonymization of Hacquetia into Sanicula, all genera are monophyletic. Eryngium is divided into "Old World" and "New World" subclades and within Astrantia sections Astrantia and Astrantiella are monophyletic.
Collapse
|
3
|
Processing, degradation, and polyadenylation of chloroplast transcripts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Calviño CI, Tilney PM, Wyk BEV, Downie SR. A molecular phylogenetic study of southern African Apiaceae. AMERICAN JOURNAL OF BOTANY 2006; 93:1828-47. [PMID: 21642128 DOI: 10.3732/ajb.93.12.1828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
It has been suggested that southern Africa is the origin of the predominantly herbaceous Apiaceae subfamily Apioideae and that the woody habit is plesiomorphic. We expand previous molecular phylogenetic analyses of the family by considering all but three of the approximately 38 genera native to southern Africa, including all genera whose members, save one, have a woody habit. Representatives of five other genera are included because they may be closely related to these southern African taxa. Chloroplast DNA rps16 intron and/or nuclear rDNA ITS sequences for 154 accessions are analyzed using maximum parsimony, Bayesian, and maximum likelihood methods. Within Apioideae, two major clades hitherto unrecognized in the subfamily are inferred. The monogeneric Lichtensteinia clade is sister group to all other members of the subfamily, whereas the Annesorhiza clade (Annesorhiza, Chamarea, and Itasina) plus Molopospermum (and Astydamia in the ITS trees) are the successive sister group to all Apioideae except Lichtensteinia. Tribe Heteromorpheae is expanded to include Pseudocarum, "Oreofraga" ined., and five genera endemic to Madagascar. The southern African origin of subfamily Apioideae is corroborated (with subsequent migration northward into Eurasia along two dispersal routes), and the positions of the herbaceous Lichtensteinia and Annesorhiza clades within the subfamily suggest, surprisingly, that its ancestor was herbaceous, not woody.
Collapse
Affiliation(s)
- Carolina I Calviño
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA; Instituto de Botánica Darwinion, Buenos Aires, Argentina; and University of Johannesburg, Auckland Park, South Africa
| | | | | | | |
Collapse
|
5
|
Hayes ML, Reed ML, Hegeman CE, Hanson MR. Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivo and in vitro. Nucleic Acids Res 2006; 34:3742-54. [PMID: 16893957 PMCID: PMC1557790 DOI: 10.1093/nar/gkl490] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/07/2006] [Accepted: 06/19/2006] [Indexed: 11/14/2022] Open
Abstract
In tobacco chloroplast transcripts 34 nt are efficiently edited to U. No common consensus region is present around all editing sites; however, sites can be grouped in clusters that share short common sequences. Transgene transcripts carrying either the wild-type -31/+22 or -31/+60 sequence near NTrpoB C473, an editing site within tobacco rpoB transcripts, or three different mutated sequences, were all highly edited in vivo. Endogenous transcripts of rpoB, psbL and rps14, all of which contain common sequences S1, S2 and S3 5' to NTrpoB C473, NTpsbL C2 and NTrps14 C80, were less edited in transgenic plants that over-express transcripts from NTrpoB C473 transgenes. Extent of reduction of endogenous editing differed between transgenic lines expressing mutated -31/+22 regions, depending on the abundance of the transgene transcripts. The -20/-5 sequence contains critical 5' sequence elements. Synthetic RNA templates with alterations within this 5' region were less efficiently edited in vitro than wild-type templates, by either tobacco or maize chloroplast extracts. The tobacco chloroplast extract supports both RNA editing and processing of 3' transcript termini. We conclude that within the -20/-5 region, sequences common to editing sites in the transcripts of rpoB, psbL and rps14 are critical for efficient NTrpoB C473 editing.
Collapse
Affiliation(s)
- Michael L. Hayes
- Department of Molecular Biology and Genetics, Cornell UniversityBiotechnology Building, Ithaca, NY, 14853, USA
| | - Martha L. Reed
- Department of Molecular Biology and Genetics, Cornell UniversityBiotechnology Building, Ithaca, NY, 14853, USA
| | - Carla E. Hegeman
- Department of Molecular Biology and Genetics, Cornell UniversityBiotechnology Building, Ithaca, NY, 14853, USA
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell UniversityBiotechnology Building, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Baba K, Schmidt J, Espinosa-Ruiz A, Villarejo A, Shiina T, Gardeström P, Sane AP, Bhalerao RP. Organellar gene transcription and early seedling development are affected in the rpoT;2 mutant of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:38-48. [PMID: 15053758 DOI: 10.1111/j.1365-313x.2004.02022.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
An Arabidopsis mutant that exhibited reduced root length was isolated from a population of activation-tagged T-DNA insertion lines in a screen for aberrant root growth. This mutant also exhibited reduced hypocotyl length as well as a delay in greening and altered leaf shape. Molecular genetic analysis of the mutant indicated a single T-DNA insertion in the gene RpoT;2 encoding a homolog of the phage-type RNA polymerase (RNAP), that is targeted to both mitochondria and plastids. A second T-DNA-tagged allele also showed a similar phenotype. The mutation in RpoT;2 affected the light-induced accumulation of several plastid mRNAs and proteins and resulted in a lower photosynthetic efficiency. In contrast to the alterations in the plastid gene expression, no major effect of the rpoT;2 mutation on the accumulation of examined mitochondrial gene transcripts and proteins was observed. The rpoT;2 mutant exhibited tissue-specific alterations in the transcript levels of two other organelle-directed nuclear-encoded RNAPs, RpoT;1 and RpoT;3. This suggests the existence of cross-talk between the regulatory pathways of the three RNAPs through organelle to nucleus communication. These data provide an important information on a role of RpoT;2 in plastid gene expression and early plant development.
Collapse
Affiliation(s)
- Kyoko Baba
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Downie SR, Hartman RL, Sun FJ, Katz-Downie DS. Polyphyly of the spring-parsleys (Cymopterus): molecular and morphological evidence suggests complex relationships among the perennial endemic genera of western North American Apiaceae. ACTA ACUST UNITED AC 2002. [DOI: 10.1139/b02-119] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cladistic analyses of DNA sequences from the nuclear rDNA internal transcribed spacer region and cpDNA rps16 intron and, for a subset of taxa, the cpDNA trnF-trnL-trnT locus were carried out to evaluate the monophyly of Cymopterus and to ascertain its phylogenetic placement among the other perennial genera of Apiaceae (Umbelliferae) subfamily Apioideae endemic to western North America. To elucidate patterns in the evolution of specific fruit characters and to evaluate their utility in circumscribing genera unambiguously, additional evidence was procured from cross-sections of mature fruits and the results of cladistic analysis of 25 morphological characters. Analyses of the partitioned data sets resulted in weakly supported and largely unresolved phylogenetic hypotheses, possibly due to the rapid radiation of the group, whereas the combined analysis of all molecular evidence resulted in a well-resolved phylogeny with higher bootstrap support. The traditionally used fruit characters of wing shape and composition and orientation of mericarp compression are highly variable. The results of these analyses reveal that Cymopterus and Lomatium, the two largest genera of western North American Apiaceae, are polyphyletic, and that their species are inextricably linked with those of other endemic perennial genera of the region (such as, Aletes, Musineon, Oreoxis, Pseudocymopterus, Pteryxia, and Tauschia), many of which are also not monophyletic. Prior emphasis on characters of the fruit in all systems of classification of the group has led to highly artificial assemblages of species. A complete reassessment of generic limits of all western endemic Apiaceae is required, as is further systematic study of this intractable group.Key words: Apiaceae, Cymopterus, phylogeny, ITS, rps16 intron, morphology.
Collapse
|
8
|
Lee J, Hymowitz T. A molecular phylogenetic study of the subtribe Glycininae (Leguminosae) derived from the chloroplast DNA rps16 intron sequences. AMERICAN JOURNAL OF BOTANY 2001. [PMID: 21669638 DOI: 10.2307/3558432] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phylogenetic relationships among 13 genera of the subtribe Glycininae, two genera of the allied subtribe Diocleinae that were included within Glycininae by Polhill, and two genera of the subtribe Erythrininae as outgroups were inferred from chloroplast DNA rps16 intron sequence variation. Pairwise sequence divergence values ranged from identity between Teramnus mollis and T. micans and between T. flexilis and T. labialis to 7.89% between Pueraria wallichii and Pseudeminia comosa across all accessions. Phylogenies estimated using parsimony and neighbor-joining methods revealed that (1) Glycininae is monophyletic if Pachyrhizus and Calopogonium (both Diocleinae) are included within Glycininae; (2) the genus Teramnus is closely related to Glycine, and Amphicarpaea showed a sister relationship to the clade comprising Teramnus and Glycine; (3) the expanded Glycininae including two genera of Diocleinae is divided into three branches, temporarily named I (comprising the rest of the examined taxa), II (Pueraria wallichii), and III (Mastersia), but their relationships are equivocal; and (4) the genus Pueraria, regarded as a closely related genus to Glycine, is not monophyletic and should be divided into at least four genera (a hypothesis supported previously by Lackey).
Collapse
Affiliation(s)
- J Lee
- Department of Crop Sciences, University of Illinois, 1102 South Goodwin Avenue, Urbana, Illinois 61801 USA
| | | |
Collapse
|
9
|
Downie SR, Watson MF, Spalik K, Katz-Downie DS. Molecular systematics of Old World Apioideae (Apiaceae): relationships among some members of tribe Peucedaneae sensu lato, the placement of several island-endemic species, and resolution within the apioid superclade. ACTA ACUST UNITED AC 2000. [DOI: 10.1139/b00-029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative sequencing of the two internal transcribed spacer regions of nuclear ribosomal DNA was carried out to examine evolutionary relationships among representatives of Old World Apiaceae (Umbelliferae) subfamily Apioideae. Emphasis was placed on delimiting groups within the previously designated apioid superclade and clarifying relationships within and among the peucedanoid genera Angelica, Ferula, Heracleum, and Peucedanum. These spacer data, and those obtained from the chloroplast rps16 intron for a subset of the taxa, also enabled hypotheses on the phylogenetic placement of several narrowly distributed endemic species. The monophyly of Drude's tribe Echinophoreae is confirmed and it is sister to the Socotran endemic genera Nirarathamnos and Rughidia; the Balearic Islands endemic genus Naufraga allies with Apium graveolens; tribes Careae and Pyramidoptereae are recognized formally to be the previously designated clades "Aegopodium" and "Crithmum"; and tribes Oenantheae and Scandiceae are each expanded to include two species of Apium, previously attributable to Helosciadium, and four species of Ferula, respectively. Within the apioid superclade, five major lineages are recognized that are consistent with all available molecular evidence: tribe Echinophoreae, the clades "Pimpinella" and "Heracleum," and the more narrowly circumscribed clades "Angelica" and "Apium." Angelica and Ferula each comprise at least two lineages; Heracleum is polyphyletic if Heracleum candicans is retained in the genus; and Peucedanum is distributed in three well-separated clades with some species allied with those species of Angelica referred to Xanthogalum.Key words: Apiaceae subfamily Apioideae, nuclear rDNA ITS, chloroplast rps16 intron, Umbelliferae.
Collapse
|
10
|
Downie SR, Katz-Downie DS. Phylogenetic analysis of chloroplast rps16 intron sequences reveals relationships within the woody southern African Apiaceae subfamily Apioideae. ACTA ACUST UNITED AC 1999. [DOI: 10.1139/b99-086] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evolutionary relationships among 48 genera of Apiaceae (Umbelliferae) were inferred using maximum parsimony, maximum-likelihood, and neighbor-joining analyses of chloroplast DNA rps16 intron and adjacent rps16 3prime exon sequences. Emphasis was placed on woody members of Apiaceae subfamily Apioideae endemic to southern Africa, a region hypothesized to be the place of origin of this largely herbaceous subfamily. The resultant phylogenies were highly concordant and indicate that the apioid genera Polemanniopsis and Steganotaenia form a clade sister to Apiaceae subfamily Saniculoideae. The African genera Anginon, Dracosciadium, Glia, Heteromorpha, and Polemannia also comprise a clade and likely represent the most basal elements within Apioideae. Heteromorpha, however, is not monophyletic, with Heteromorpha arborescens (Spreng.) Cham. & Schltdl. var. abyssinica (A. Rich.) H. Wolff and Heteromorpha arborescens (Spreng.) Cham. & Schltdl. var. arborescens arising in separate subclades. Progressing up the trees, Annesorhiza then Bupleurum fall as successive sister taxa to all remaining Apioideae. The major clades recognized within subfamily Apioideae are largely congruent with those inferred using other types of molecular evidence. Sequence divergence is similar to that of other chloroplast introns, including being generally low among congeners and woody taxa. While the rps16 intron has seen very little use in molecular systematic studies to date, this study demonstrates its ability to discern high-level relationships within Apiaceae.Key words: Apiaceae, Apioideae, chloroplast rps16 intron, phylogeny, southern Africa, Umbelliferae.
Collapse
|
11
|
Abstract
The nuclear genome of the model plant Arabidopsis thaliana contains a small gene family consisting of three genes encoding RNA polymerases of the single-subunit bacteriophage type. There is evidence that similar gene families also exist in other plants. Two of these RNA polymerases are putative mitochondrial enzymes, whereas the third one may represent the nuclear-encoded RNA polymerase (NEP) active in plastids. In addition, plastid genes are transcribed from another, entirely different multisubunit eubacterial-type RNA polymerase, the core subunits of which are encoded by plastid genes [plastid-encoded RNA polymerase (PEP)]. This core enzyme is complemented by one of several nuclear-encoded sigma-like factors. The development of photosynthetically active chloroplasts requires both PEP and NEP. Most NEP promoters show certain similarities to mitochondrial promoters in that they include the sequence motif 5'-YRTA-3' near the transcription initiation site. PEP promoters are similar to bacterial promoters of the -10/-35 sigma 70 type.
Collapse
Affiliation(s)
- W R Hess
- Institute of Biology, Humboldt University, Berlin, Germany
| | | |
Collapse
|
12
|
Kim M, Thum KE, Morishige DT, Mullet JE. Detailed architecture of the barley chloroplast psbD-psbC blue light-responsive promoter. J Biol Chem 1999; 274:4684-92. [PMID: 9988705 DOI: 10.1074/jbc.274.8.4684] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The photosystem II reaction center chlorophyll protein D2, is encoded by the chloroplast gene psbD. PsbD is transcribed from at least three different promoters, one which is activated by high fluence blue light. Sequences within 130 base pairs (bp) of the psbD blue light-responsive promoter (BLRP) are highly conserved in higher plants. In this study, the structure of the psbD BLRP was analyzed in detail using deletion and site-directed mutagenesis and in vitro transcription. Deletion analysis showed that a 53-bp DNA region of the psbD BLRP, from -57 to -5, was sufficient for transcription in vitro. Mutation of a putative prokaryotic -10 element (TATTCT) located from -7 to -12 inhibited transcription from the psbD BLRP. In contrast, mutation of a putative prokaryotic -35 element, had no influence on transcription. Mutation of a TATATA sequence located between the barley psbA -10 and -35 elements significantly reduced transcription from this promoter. However, site-directed mutation of sequences located between -35 and -10 had no effect on transcription from the psbD BLRP. Transcription from the psbD BLRP was previously shown to require a 22-bp sequence, termed the AAG-box, located between -36 and -57. The AAG-box specifically binds the protein complex AGF. Site-directed mutagenesis identified two different sequence motifs in the AAG-box that are important for transcription in vitro. Based on these results, we propose that positive factors bind to the AAG-box and interact with the chloroplast-encoded RNA polymerase to promote transcription from the psbD BLRP. Transcription from the psbD BLRP is thus similar to type II bacterial promoters that use activating proteins to stimulate transcription. Transcription of the psbD BLRP was approximately 6. 5-fold greater in plastid extracts from illuminated versus dark-grown plants. This suggests that light-induced activation of this promoter in vivo involves factors interacting with the 53-bp psbD BLRP in vitro.
Collapse
Affiliation(s)
- M Kim
- Department of Biochemistry and Biophysics, Crop Biotechnology Center, Texas A & M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
13
|
Sugita M, Sugiura M. Regulation of gene expression in chloroplasts of higher plants. PLANT MOLECULAR BIOLOGY 1996; 32:315-26. [PMID: 8980485 DOI: 10.1007/bf00039388] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chloroplasts contain their own genetic system which has a number of prokaryotic as well as some eukaryotic features. Most chloroplast genes of higher plants are organized in clusters and are cotranscribed as polycistronic pre-RNAs which are generally processes into many shorter overlapping RNA species, each of which accumulates of steady-state RNA levels. This indicates that posttranscriptional RNA processing of primary transcripts is an important step in the control of chloroplast gene expression. Chloroplast RNA processing steps include RNA cleavage/trimming, RNA splicing, ENA editing and RNA stabilization. Several chloroplast genes are interrupted by introns and therefore require processing for gene function. In tobacco chloroplasts, 18 genes contain introns, six for tRNA genes and 12 for protein-encoding genes. A number of specific proteins and RNA factors are believed to be involved in splicing and maturation of pre-RNAs in chloroplasts. Processing enzymes and RNA-binding proteins which could be involved in posttranscriptional steps have been identified in the last several years. Our current knowledge of the regulation of gene expression in chloroplasts of higher plants is overviewed and further studies on this matter are also considered.
Collapse
Affiliation(s)
- M Sugita
- Center for Gene Research, Nagoya University, Japan
| | | |
Collapse
|
14
|
Vera A, Hirose T, Sugiura M. A ribosomal protein gene (rpl32) from tobacco chloroplast DNA is transcribed from alternative promoters: similarities in promoter region organization in plastid housekeeping genes. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:518-25. [PMID: 8709957 DOI: 10.1007/bf02173640] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Multiple transcriptional start sites have been identified in the tobacco plastid ribosomal protein gene rpl32 by RNA mapping and in vitro capping techniques. A promotor with a canonical -10 Pribnow Box (P1) produces a major transcript in leaf chloroplasts. Transcription is also driven from additional promoters in non-photosynthetic plastids from heterotrophically cultured cells (BY2 line). Among them, a second promoter located downstream (P2) generates the most prominent transcript in this type of cell. The absence of typical plastid promoter motifs upstream of this site and the higher steady-state level of the P2-derived transcript in BY2 cells suggest a distinct modulation of transcription. Mobility shift experiments also seem to indicate the existence of differences in protein-DNA binding between both kinds of plastids with respect to a DNA fragment including the sequence upstream from the P2 starting site. The structure of the rpl32 promoter region is discussed in relation to that of other plastid housekeeping genes encoding elements of the genetic machinery.
Collapse
Affiliation(s)
- A Vera
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
15
|
Vera A, Sugiura M. Chloroplast rRNA transcription from structurally different tandem promoters: an additional novel-type promoter. Curr Genet 1995; 27:280-4. [PMID: 7736614 DOI: 10.1007/bf00326161] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Identification of transcription initiation sites in the promoter region of the tobacco chloroplast rRNA operon has been carried out by ribonuclease protection of in vitro capped RNAs and primer extension experiments. A promoter with typical chloroplast -10 and -35 motifs (P1) drives initiation of transcription from position -116 relative to the mature 16s rRNA sequence. In addition, we have found that a second primary transcript starts at position -64. This proximal promoter (P2) lacks any elements similar to those reported so far in chloroplast promoter regions, and hence P2 represents a novel-type promoter. Both transcripts are present in chloroplasts from green leaves and in non-photosynthetic proplastids from heterotrophically cultured cells (BY2), but their relative amounts appear to differ. The steady state level of the P2 transcript, with respect to P1, is higher in BY2 proplastids than in leaf chloroplasts.
Collapse
Affiliation(s)
- A Vera
- Center for Gene Research, Nagoya University, Japan
| | | |
Collapse
|
16
|
Richard M, Tremblay C, Bellemare G. Chloroplastic genomes of Ginkgo biloba and Chlamydomonas moewusii contain a chlB gene encoding one subunit of a light-independent protochlorophyllide reductase. Curr Genet 1994; 26:159-65. [PMID: 8001171 DOI: 10.1007/bf00313805] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have cloned and sequenced a Chlamydomonas moewusii chloroplastic DNA fragment that includes a 563 amino-acid open reading frame (ORF563, chlB) presenting 89% amino-acid homology with ORF513 from Marchantia polymorpha. It is also homologous to ORF510 from Pinus thunbergii but includes two insertions absent in both M. polymorphia and P. thunbergii. The derived polypeptide is 54% similar to the product of bchB from Rhodobacter capsulatus, identified as one subunit of a light-independent NADH-protochlorophyllide reductase. We also isolated and sequenced an homologous chloroplastic gene from the gymnosperm Ginkgo biloba. Northern hybridizations performed on RNA isolated from synchronized Chlamydomonas eugametos cells showed higher expression between the tenth hour of light and the eighth hour of darkness, peaking during the first 2 h of darkness.
Collapse
Affiliation(s)
- M Richard
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | | | | |
Collapse
|
17
|
Affiliation(s)
- G Link
- University of Bochum, Plant Cell Physiology and Molecular Biology, FRG
| |
Collapse
|
18
|
Tiller K, Link G. Sigma-like transcription factors from mustard (Sinapis alba L.) etioplast are similar in size to, but functionally distinct from, their chloroplast counterparts. PLANT MOLECULAR BIOLOGY 1993; 21:503-513. [PMID: 8443343 DOI: 10.1007/bf00028807] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three proteins resembling bacterial sigma factors were previously isolated from mustard chloroplasts (K. Tiller, A. Eisermann and G. Link, Eur J Biochem 198: 93-99, 1991). These sigma-like factors (SLFs) confer DNA-binding and transcription specificity to a system consisting of Escherichia coli core RNA polymerase and cloned DNA regions that carry a chloroplast promoter. Sigma-like activity was now isolated also from etioplasts and could be assigned to three polypeptides of M(r) 67,000 (SLF67), 52,000 (SLF52) and 29,000 (SLF29), i.e. the same sizes as for the chloroplast SLFs. The purification scheme for the factors from either plastid type included an initial heparin-Sepharose and a final gel filtration step. For the etioplast factors, however, an additional phosphocellulose step was required to release these polypeptides from the RNA polymerase. The etioplast SLFs have similar, but not identical, salt requirements for DNA binding as compared to their chloroplast counterparts. Under conditions of maximum binding activity there is overall preference of etioplast SLFs for the psbA promoter over the trnQ and rps16 promoters.
Collapse
Affiliation(s)
- K Tiller
- University of Bochum, Plant Cell Physiology and Molecular Biology, Germany
| | | |
Collapse
|
19
|
Kaleikau EK, André CP, Walbot V. Structure and expression of the rice mitochondrial apocytochrome b gene (cob-1) and pseudogene (cob-2). Curr Genet 1992; 22:463-70. [PMID: 1282087 DOI: 10.1007/bf00326411] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rice mitochondrial DNA contains an intact copy and a pseudogene copy of a apocytochrome b gene (cob-1 and cob-2, respectively). Using primer extension and capping analyses, the transcriptional start site has been mapped; an 11-base motif at the transcription start site closely matches the consensus promoter motifs proposed for maize, wheat and soybean mitochondrial genes. Although both copies are identical in the 5' upstream region and through most of the coding region, only cob-1-specific mRNA is detected on RNA gel-blots. Run-on transcription analysis indicates, however, that both cob-1 and cob-2 mRNAs are synthesized in vivo but less cob-2 is accumulated. At its mapped 3' terminus the cob-1 transcript possesses a sequence that could fold into a double stem-loop structure. The possible roles of a double stem-loop structure in mitochondrial gene expression are discussed.
Collapse
Affiliation(s)
- E K Kaleikau
- Department of Biological Sciences, Stanford University, CA 94305-5020
| | | | | |
Collapse
|
20
|
Vera A, Matsubayashi T, Sugiura M. Active transcription from a promoter positioned within the coding region of a divergently oriented gene: the tobacco chloroplast rpl32 gene. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:151-6. [PMID: 1603058 DOI: 10.1007/bf00587573] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new transcription unit has been identified and characterized in the small single-copy region of tobacco chloroplast DNA. A primary transcript (1550 nucleotides) spanning the entire transcription unit contains no significant open reading frames (ORFs), other than ORF55, recently identified as the gene encoding the ribosomal protein CL32 (rpl32). The leader sequence extends 1101 nucleotides from the rpl32 initiation codon. Primer extension and in vitro capping experiments in combination with ribonuclease protection assays, revealed a promoter situated more than 322 bp inside the coding region of ndhF, which is divergently oriented with respect to rpl32. A canonical Pribnow-box is found just upstream of the transcription start site, but a typical -35 motif was not detected. This is the first internal divergent promoter to be characterized in the chloroplast genome.
Collapse
Affiliation(s)
- A Vera
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
21
|
Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M. Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:206-14. [PMID: 1557027 DOI: 10.1007/bf00279998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A physical map of black pine (Pinus thunbergii) chloroplast DNA (120 kb) was constructed and two separate portions of its nucleotide sequence were determined. One portion contains trnQ-UUG, ORF510, ORF83, trnK-UUU (ORF515 in the trnK intron), ORF22, psbA, trnI-CAU (on the opposing strand) and trnH-GUG, in that order. Sequence analysis of another portion revealed the presence of a 495 bp inverted repeat containing trnI-CAU and the 3' end of psbA but lacking rRNA genes. The position of trnI-CAU is unique because most chloroplast DNAs have no gene between psbA and trnH (trnI-CAU is usually located further downstream). Black pine chloroplast DNA lacks rps16, which has been found between trnQ and trnK in angiosperm chloroplast DNAs, but possesses ORF510 instead. This ORF is highly homologous to ORF513 found in the corresponding region of liverwort chloroplast DNA and ORF563 located downstream from trnT in Chlamydomonas moewusii chloroplast DNA. A possible pathway for the evolution of black pine chloroplast DNA is discussed.
Collapse
Affiliation(s)
- J Tsudzuki
- Sugiyama Jogakuen University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Nickelsen J, Link G. RNA-protein interactions at transcript 3' ends and evidence for trnK-psbA cotranscription in mustard chloroplasts. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:89-96. [PMID: 1715978 DOI: 10.1007/bf00282452] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vitro transcripts from the 3' flanking regions of mustard chloroplast genes were tested for protein binding in a chloroplast extract. Efficient and sequence-specific RNA-protein interaction was detected with transcripts of the genes trnK, rps16 and trnH, but not with the 3' terminal region of trnQ RNA. The transacting component required for specific complex formation is probably a single 54 kDa polypeptide. The protein-binding region of the rps16 3' terminal region was mapped and compared with that of the trnK transcript determined previously. Both regions reveal a conserved 7-mer UUUAUCU followed by a stretch of U residues. Deletion of the trnK 3' U cluster resulted in more than 80% reduction in the binding activity, and after deletion of both the U stretch and the 7-mer motif no binding at all was detectable. RNase protection experiments indicate that the protein-binding regions of both the rps16 and trnK transcripts correlate with the positions of in vivo 3' ends, suggesting an essential role for the 54 kDa binding protein in RNA 3' end formation. In the case of the trnK gene, evidence was obtained for read-through transcripts that extend into the psbA coding region, thus pointing to the possibility of trnK-psbA cotranscription.
Collapse
|
24
|
Tiller K, Eisermann A, Link G. The chloroplast transcription apparatus from mustard (Sinapis alba L.). Evidence for three different transcription factors which resemble bacterial sigma factors. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 198:93-9. [PMID: 2040293 DOI: 10.1111/j.1432-1033.1991.tb15990.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A chloroplast protein fraction with sigma-like activity [Bülow, S. & Link, G. (1988) Plant Mol. Biol. 10, 349-357], was further purified and characterized. Chromatography on heparin-Sepharose, DEAE-Sepharose and Sephacryl S-300 led to the separation of three sigma-like factors (SLF) polypeptides with Mr 67,000 (SLF67), 52,000 (SLF52) and 29,000 (SLF29). None of these polypeptides bind to DNA itself, but each one confers enhanced binding and transcriptional activity when added to Escherichia coli RNA-polymerase core enzyme and DNA fragments carrying a chloroplast promoter. SLF67, SLF52, and SLF29 differ in their ionic-strength requirements for activity. They each mediate the binding to promoters of the chloroplast genes psbA, trnQ, and rps16, with different efficiencies. It is suggested that chloroplast transcription in vivo might be controlled at least in part by these functionally distinct factors.
Collapse
Affiliation(s)
- K Tiller
- Plant Cell Physiology and Molecular Biology, University of Bochum, Federal Republic of Germany
| | | | | |
Collapse
|
25
|
Neuhaus H, Link G. The chloroplast psbK operon from mustard (Sinapis alba L.): multiple transcripts during seedling development and evidence for divergent overlapping transcription. Curr Genet 1990; 18:377-83. [PMID: 2253275 DOI: 10.1007/bf00318220] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mustard chloroplasts genes psbK and psbI are co-transcribed, giving rise to precursor transcripts of several size classes, which are processed to the monocistronic mature RNAs. The psbK and psbI coding regions are flanked by the two tRNA genes trnS-GCU and trnQ-UUG on the opposite DNA strand. Transcript mapping indicates that the (primary) psbK-psbI transcript overlaps the complete trnS-GCU and trnQ-UUG transcripts. The transcription start site of the psbK operon appears to overlap that of the rps16 gene. During seedling development, the psbK and psbI precursors and mature transcripts all become detectable between 30 and 48 h after sowing and then remain at constant levels without much difference either in light or in darkness.
Collapse
Affiliation(s)
- H Neuhaus
- Ruhr-Universität Bochum, Fakultät für Biologie, Federal Republic of Germany
| | | |
Collapse
|
26
|
A ribosomal protein is encoded in the chloroplast DNA in a lower plant but in the nucleus in angiosperms. Isolation of the spinach L21 protein and cDNA clone with transit and an unusual repeat sequence. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)46277-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Fiebig C, Neuhaus H, Teichert J, Röcher W, Degenhardt J, Link G. Temporal and spatial pattern of plastid gene expression during crucifer seedling development and embryogenesis. PLANTA 1990; 181:191-198. [PMID: 24196735 DOI: 10.1007/bf02411537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1989] [Accepted: 01/06/1990] [Indexed: 06/02/2023]
Abstract
Several genes which are located close together on mustard (Sinapis alba L.) chloroplast DNA have been found to differ in their temporal mode of expression throughout seedling development. One predominant expression program, exemplified by thepsbA gene, is characterized by an early (light-independent) rise in transcript levels, followed by subsequent further accumulation to levels which are much higher in the light than in darkness (development of 'competence' for photocontrol). Other genes located next to thepsb A gene show transient or constitutive modes of expression, with no light-dark difference in transcript levels throughout seedling development. The characteristics of light-responsive expression were shown for the nuclearrbcS gene family inBrassica napus L. andSinapis alba L. cotyledons. The spatial distribution ofrbcS andpsbA transcripts across sections of crucifer cotyledons appeared to be relatively uniform, but restricted to photosynthetically active cells. Finally, assessment of these transcripts in immature seeds and embryos ofCapsella bursa-pastoris has provided in-situ evidence for tissuespecific gene expression during early development.
Collapse
Affiliation(s)
- C Fiebig
- Arbeitsgruppe Pflanzliche Zellphysiologie und Molekularbiologie, Ruhr-Universität Bochum, D-4630, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Berends Sexton T, Jones JT, Mullet JE. Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU). Curr Genet 1990; 17:445-54. [PMID: 1694111 DOI: 10.1007/bf00334526] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 6.25 kbp barley plastid DNA region located between psbA and psbD-psbC were sequenced and RNAs produced from this DNA were analyzed. TrnK(UUU), rps16 and trnQ(UUG) were located upstream of psbA. These genes were transcribed from the same DNA strand as psbA and multiple RNAs hybridized to them. TrnK and rsp16 contained introns; a 504 amino acid open reading frame (ORF504) was located within the trnK intron. Between trnQ and psbD-psbC was a 2.24 kbp region encoding psbK, psbI and trnS(GCU). PsbK and psbI are encoded on the same DNA strand as psbD-psbC whereas trnS(GCU) is transcribed from the opposite strand. Two large RNAs accumulate in barley etioplasts which contain psbK, psbI, anti-sense trnS(GCU) and psbD-psbC sequences. Other RNAs encode psbK and psbI only, or psbK only. The divergent trnS(GCU) located upstream of psbD-psbC and a second divergent trnS(UGA) located downstream of psbD-psbC were both expressed. Furthermore, RNA complementary to psbK and psbI mRNA was detected, suggesting that transcription from divergent overlapping transcription units may modulate expression from this DNA region.
Collapse
Affiliation(s)
- T Berends Sexton
- M. D. Anderson Hospital, Department of Tumor Biology, Houston, TX 77030
| | | | | |
Collapse
|
29
|
Neuhaus H, Pfannschmidt T, Link G. Nucleotide sequence of the chloroplast psbI and trnS-GCU genes from mustard (Sinapis alba). Nucleic Acids Res 1990; 18:368. [PMID: 2183183 PMCID: PMC330283 DOI: 10.1093/nar/18.2.368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- H Neuhaus
- Arbeitsgruppe Pflanzliche Zellphysiologie und Molekularbiologie, Ruhr-Universität Bochum, FRG
| | | | | |
Collapse
|
30
|
|