1
|
The Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis. mBio 2020; 11:mBio.03197-19. [PMID: 32184253 PMCID: PMC7078482 DOI: 10.1128/mbio.03197-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.
Collapse
|
2
|
Sauls JT, Cox SE, Do Q, Castillo V, Ghulam-Jelani Z, Jun S. Control of Bacillus subtilis Replication Initiation during Physiological Transitions and Perturbations. mBio 2019; 10:e02205-19. [PMID: 31848269 PMCID: PMC6918070 DOI: 10.1128/mbio.02205-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis and Escherichia coli are evolutionarily divergent model organisms whose analysis has enabled elucidation of fundamental differences between Gram-positive and Gram-negative bacteria, respectively. Despite their differences in cell cycle control at the molecular level, the two organisms follow the same phenomenological principle, known as the adder principle, for cell size homeostasis. We thus asked to what extent B. subtilis and E. coli share common physiological principles in coordinating growth and the cell cycle. We measured physiological parameters of B. subtilis under various steady-state growth conditions with and without translation inhibition at both the population and single-cell levels. These experiments revealed core physiological principles shared between B. subtilis and E. coli Specifically, both organisms maintain an invariant cell size per replication origin at initiation, under all steady-state conditions, and even during nutrient shifts at the single-cell level. Furthermore, the two organisms also inherit the same "hierarchy" of physiological parameters. On the basis of these findings, we suggest that the basic principles of coordination between growth and the cell cycle in bacteria may have been established early in evolutionary history.IMPORTANCE High-throughput, quantitative approaches have enabled the discovery of fundamental principles describing bacterial physiology. These principles provide a foundation for predicting the behavior of biological systems, a widely held aspiration. However, these approaches are often exclusively applied to the best-known model organism, E. coli In this report, we investigate to what extent quantitative principles discovered in Gram-negative E. coli are applicable to Gram-positive B. subtilis We found that these two extremely divergent bacterial species employ deeply similar strategies in order to coordinate growth, cell size, and the cell cycle. These similarities mean that the quantitative physiological principles described here can likely provide a beachhead for others who wish to understand additional, less-studied prokaryotes.
Collapse
Affiliation(s)
- John T Sauls
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Sarah E Cox
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Quynh Do
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Victoria Castillo
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Zulfar Ghulam-Jelani
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Suckjoon Jun
- Department of Physics, University of California, San Diego, La Jolla, California, USA
- Section of Molecular Biology, Division of Biology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Lee S, Wu LJ, Errington J. Microfluidic time-lapse analysis and reevaluation of the Bacillus subtilis cell cycle. Microbiologyopen 2019; 8:e876. [PMID: 31197963 PMCID: PMC6813450 DOI: 10.1002/mbo3.876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
Recent studies taking advantage of automated single-cell time-lapse analysis have reignited interest in the bacterial cell cycle. Several studies have highlighted alternative models, such as Sizer and Adder, which differ essentially in relation to whether cells can measure their present size or their amount of growth since birth. Most of the recent work has been done with Escherichia coli. We set out to study the well-characterized Gram-positive bacterium, Bacillus subtilis, at the single-cell level, using an accurate fluorescent marker for division as well as a marker for completion of chromosome replication. Our results are consistent with the Adder model in both fast and slow growth conditions tested, and with Sizer but only at the slower growth rate. We also find that cell size variation arises not only from the expected variation in size at division but also that division site offset from mid-cell contributes to a significant degree. Finally, although traditional cell cycle models imply a strong connection between the termination of a round of replication and subsequent division, we find that at the single-cell level these events are largely disconnected.
Collapse
Affiliation(s)
- Seoungjun Lee
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical SchoolNewcastle UniversityNewcastle‐upon‐TyneUK
- Present address:
Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical SchoolNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical SchoolNewcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
4
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
5
|
Schwabe A, Bruggeman FJ. Contributions of cell growth and biochemical reactions to nongenetic variability of cells. Biophys J 2015; 107:301-313. [PMID: 25028872 DOI: 10.1016/j.bpj.2014.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 11/25/2022] Open
Abstract
Cell-to-cell variability in the molecular composition of isogenic, steady-state growing cells arises spontaneously from the inherent stochasticity of intracellular biochemical reactions and cell growth. Here, we present a general decomposition of the total variance in the copy number per cell of a particular molecule. It quantifies the individual contributions made by processes associated with cell growth, biochemical reactions, and their control. We decompose the growth contribution further into variance contributions of random partitioning of molecules at cell division, mother-cell heterogeneity, and variation in cell-cycle progression. The contribution made by biochemical reactions is expressed in variance generated by molecule synthesis, degradation, and their regulation. We use this theory to study the influence of different growth and reaction-related processes, such as DNA replication, variable molecule-partitioning probability, and synthesis bursts, on stochastic cell-to-cell variability. Using simulations, we characterize the impact of noise in the generation-time on cell-to-cell variability. This article offers a widely-applicable theory on the influence of biochemical reactions and cellular growth on the phenotypic variability of growing, isogenic cells. The theory aids the design and interpretation of experiments involving single-molecule counting or real-time imaging of fluorescent reporter constructs.
Collapse
Affiliation(s)
- Anne Schwabe
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Nath A, Datta S, Chowdhury R, Bhattacharjee C. Fermentative production of intracellular β-galactosidase by Bacillus safensis (JUCHE 1) growing on lactose and glucose—Modeling and experimental. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Schiefer A, Vollmer J, Lämmer C, Specht S, Lentz C, Ruebsamen-Schaeff H, Brötz-Oesterhelt H, Hoerauf A, Pfarr K. The ClpP peptidase of Wolbachia endobacteria is a novel target for drug development against filarial infections. J Antimicrob Chemother 2013; 68:1790-800. [PMID: 23584755 DOI: 10.1093/jac/dkt105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Filarial infections causing lymphatic filariasis or onchocerciasis (river blindness) can be treated with antibiotics (e.g. doxycycline) targeting the essential endosymbiotic Wolbachia bacteria. The depletion of Wolbachia inhibits worm development and causes worm death. Available antibiotics have restrictions for use in children and pregnant or breastfeeding women. Therefore, alternative antibiotics are needed that can be given to all members of the population and that are active with a shorter therapy time. Antibiotics of the acyldepsipeptide class have been shown to inhibit the growth of bacteria by overactivating the peptidase ClpP. The novel mode of action of this class of antibiotics could lead to faster killing of intracellular bacteria. OBJECTIVES To characterize acyldepsipeptide activity against the Wolbachia ClpP. METHODS The activity of acyldepsipeptides was investigated against Wolbachia in vitro in insect cells and also against worms in culture. In addition, structural effects were investigated by fluorescence microscopy and electron microscopy. The activity of ClpP was also investigated in vitro. RESULTS We show that acyldepsipeptides are active against recombinant Wolbachia ClpP and endobacteria resident within insect cells in vitro, and some derivatives were also active against filarial worms in culture. As a consequence of treatment, the worms became immotile and died, the latter confirmed by a viability assay. CONCLUSIONS The mode of action of the acyldepsipeptides in Wolbachia is the dysregulation of ClpP, causing the uncontrolled degradation of proteins, including the cell division protein FtsZ. Our results demonstrate that wolbachial ClpP is a target for further antifilarial antibiotic discovery.
Collapse
Affiliation(s)
- Andrea Schiefer
- Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cellular architecture mediates DivIVA ultrastructure and regulates min activity in Bacillus subtilis. mBio 2011; 2:mBio.00257-11. [PMID: 22108385 PMCID: PMC3225972 DOI: 10.1128/mbio.00257-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED The assembly of the cell division machinery at midcell is a critical step of cytokinesis. Many rod-shaped bacteria position septa using nucleoid occlusion, which prevents division over the chromosome, and the Min system, which prevents division near the poles. Here we examined the in vivo assembly of the Bacillus subtilis MinCD targeting proteins DivIVA, a peripheral membrane protein that preferentially localizes to negatively curved membranes and resembles eukaryotic tropomyosins, and MinJ, which recruits MinCD to DivIVA. We used structured illumination microscopy to demonstrate that both DivIVA and MinJ localize as double rings that flank the septum and first appear early in septal biosynthesis. The subsequent recruitment of MinCD to these double rings would separate the Min proteins from their target, FtsZ, spatially regulating Min activity and allowing continued cell division. Curvature-based localization would also provide temporal regulation, since DivIVA and the Min proteins would localize to midcell after the onset of division. We use time-lapse microscopy and fluorescence recovery after photobleaching to demonstrate that DivIVA rings are highly stable and are constructed from newly synthesized DivIVA molecules. After cell division, DivIVA rings appear to collapse into patches at the rounded cell poles of separated cells, with little or no incorporation of newly synthesized subunits. Thus, changes in cell architecture mediate both the initial recruitment of DivIVA to sites of cell division and the subsequent collapse of these rings into patches (or rings of smaller diameter), while curvature-based localization of DivIVA spatially and temporally regulates Min activity. IMPORTANCE The Min systems of Escherichia coli and Bacillus subtilis both inhibit FtsZ assembly, but one key difference between these two species is that whereas the E. coli Min proteins localize to the poles, the B. subtilis proteins localize to nascent division sites by interaction with DivIVA and MinJ. It is unclear how MinC activity at midcell is regulated to prevent it from interfering with FtsZ engaged in medial cell division. We used superresolution microscopy to demonstrate that DivIVA and MinJ, which localize MinCD, assemble double rings that flank active division sites and septa. This curvature-based localization mechanism holds MinCD away from the FtsZ ring at midcell, and we propose that this spatial organization is the primary mechanism by which MinC activity is regulated to allow division at midcell. Curvature-based localization also conveys temporal regulation, since it ensures that MinC localizes after the onset of division.
Collapse
|
9
|
Abstract
Many RNAs, proteins, and organelles are present in such low numbers per cell that random segregation of individual copies causes large "partitioning errors" at cell division. Even symmetrically dividing cells can then by chance produce daughters with very different composition. The size of the errors depends on the segregation mechanism: Control systems can reduce low-abundance errors, but the segregation process can also be subject to upstream sources of randomness or spatial heterogeneities that create large errors despite high abundances. Here we mathematically demonstrate how partitioning errors arise for different types of segregation mechanisms and how errors can be greatly increased by upstream heterogeneity but remarkably hard to avoid through controlled partitioning. We also show that seemingly straightforward experiments cannot be straightforwardly interpreted because very different mechanisms produce identical fits and present an approach to deal with this problem by adding binomial counting noise and testing for convexity or concavity in the partitioning error as a function of the binomial thinning parameter. The results lay a conceptual groundwork for more effective studies of heterogeneity among growing and dividing cells, whether in microbes or in differentiating tissues.
Collapse
Affiliation(s)
- Dann Huh
- Department of Systems Biology, Harvard University, Boston, MA 02115; and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Johan Paulsson
- Department of Systems Biology, Harvard University, Boston, MA 02115; and
| |
Collapse
|
10
|
Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J Bacteriol 2008; 190:8204-14. [PMID: 18931118 DOI: 10.1128/jb.00752-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous work, random genome deletion mutants of Corynebacterium glutamicum R were generated using the insertion sequence (IS) element IS31831 and the Cre/loxP excision system. One of these mutants, C. glutamicum strain RD41, resulting from the deletion of a 10.1-kb genomic region (DeltacgR_1595 through cgR_1604) from the WT strain, showed cell elongation, and several lines appeared on the cell surface (bamboo shape). The morphological changes were suppressed by overexpression of cgR_1596. Single disruption of cgR_1596 in WT C. glutamicum R resulted in morphological changes similar to those observed in the RD41 strain. CgR_1596 has a predicted secretion signal peptide in the amino-terminal region and a predicted NlpC/P60 domain, which is conserved in cell wall hydrolases, in the carboxyl-terminal region. In C. glutamicum R, CgR_0802, CgR_1596, CgR_2069, and CgR_2070 have the NlpC/P60 domain; however, only simultaneous disruption of cgR_1596 and cgR_2070, and not cgR_2070 single disruption, resulted in cell growth delay and more severe morphological changes than disruption of cgR_1596. Transmission electron microscopy revealed multiple septa within individual cells of cgR_1596 single and cgR_1596-cgR_2070 double disruptants. Taken together, these results suggest that cgR_1596 and cgR_2070 are involved in cell separation and cell growth in C. glutamicum.
Collapse
|
11
|
Sharpe ME, Hauser PM, Sharpe RG, Errington J. Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol 1998; 180:547-55. [PMID: 9457856 PMCID: PMC106920 DOI: 10.1128/jb.180.3.547-555.1998] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fluorescence microscopic methods have been used to characterize the cell cycle of Bacillus subtilis at four different growth rates. The data obtained have been used to derive models for cell cycle progression. Like that of Escherichia coli, the period required by B. subtilis for chromosome replication at 37 degrees C was found to be fairly constant (although a little longer, at about 55 min), as was the cell mass at initiation of DNA replication. The cell cycle of B. subtilis differed from that of E. coli in that changes in growth rate affected the average cell length but not the width and also in the relative variability of period between termination of DNA replication and septation. Overall movement of the nucleoid was found to occur smoothly, as in E. coli, but other aspects of nucleoid behavior were consistent with an underlying active partitioning machinery. The models for cell cycle progression in B. subtilis should facilitate the interpretation of data obtained from the recently introduced cytological methods for imaging the assembly and movement of proteins involved in cell cycle dynamics.
Collapse
Affiliation(s)
- M E Sharpe
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
12
|
Doyle RJ, Koch AL. The functions of autolysins in the growth and division of Bacillus subtilis. Crit Rev Microbiol 1987; 15:169-222. [PMID: 3123142 DOI: 10.3109/10408418709104457] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Some bacteria, such as streptococci, exhibit growth from discrete and well-defined zones. In Streptococcus faecalis, growth zones can be observed in the electron microscope, and the position of the zone can be used as a marker for cell cycle events. Growth of the cell surface of Bacillus subtilis appears to be by a much different mechanism from that of streptococci. Cell elongation takes place by the insertion at many sites in the cell cylinder of peptidoglycan components. The insertion occurs on the inner face of the wall, and upon cross linking, the new wall material becomes stress bearing and older wall is pushed to the surface. When old wall reaches the surface, it becomes susceptible to excision by autolysins, resulting in wall turnover; cell elongation, due to the stretching of the cross-linked peptidoglycan, therefore, accompanies turnover and does not require a specialized growth zone.
Collapse
Affiliation(s)
- R J Doyle
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Kentucky
| | | |
Collapse
|
13
|
Burdett ID, Kirkwood TB, Whalley JB. Growth kinetics of individual Bacillus subtilis cells and correlation with nucleoid extension. J Bacteriol 1986; 167:219-30. [PMID: 3087953 PMCID: PMC212864 DOI: 10.1128/jb.167.1.219-230.1986] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The growth rate of individual cells of Bacillus subtilis (doubling time, 120 min) has been calculated by using a modification of the Collins-Richmond principle which allows the growth rate of mononucleate, binucleate, and septate cells to be calculated separately. The standard Collins-Richmond equation represents a weighted average of the growth rate calculated from these three major classes. Both approaches strongly suggest that the rate of length extension is exponential. By preparing critical-point-dried cells, in which major features of the cell such as nucleoids and cross-walls can be seen, it has also been possible to examine whether nucleoid extension is coupled to length extension. Growth rates for nucleoid movement are parallel to those of total length extension, except possibly in the case of septate cells. Furthermore, by calculating the growth rate of various portions of the cell surface, it appears likely that the limits of the site of cylindrical envelope assembly lie between the distal tips of the nucleoid; the old poles show zero growth rate. Coupling of nucleoid extension with increase of cell length is envisaged as occurring through an exponentially increasing number of DNA-surface attachment sites occupying most of the available surface.
Collapse
|
14
|
Callister H, McGinness T, Wake RG. Timing and other features of the action of the ts1 division initiation gene product of Bacillus subtilis. J Bacteriol 1983; 154:537-46. [PMID: 6404883 PMCID: PMC217498 DOI: 10.1128/jb.154.2.537-546.1983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The ts1 division initiation mutation of Bacillus subtilis 160 was transferred into a thymine-requiring strain of B. subtilis 168. Aspects of the role and timing of the action of the ts1 gene product in relation to septum formation were studied by comparing the behavior of this new strain with that of the isogenic wild type after outgrowth of germinated spores. The ts1 gene product was shown to be required for the asymmetric division which occurs in the absence of chromosome replication, in addition to normal division septation. The time interval between completion of the action of the ts1 gene product and initiation of the first central division septum was estimated to be less than 4 min at 34 degrees C, and it is possible that an active ts1 gene product is required until the commencement of septal growth. Recovery of septa after transfer of outgrown spores (filaments) from the nonpermissive to the permissive temperature was also examined. During recovery, septa formed at sites which were discrete fractional lengths of the filaments, with the first septum located at the most polar of these sites. The data have been interpreted in terms of the formation of potential division sites at the nonpermissive temperature and the preferred utilization, upon recovery, of the most recently formed site. Recovery of septa at the permissive temperature occurred in the absence of DNA synthesis but was blocked completely by inhibitors of RNA and protein synthesis. It is possible that the only protein synthesis required for recovery of septa is that of the ts1 gene product itself.
Collapse
|
15
|
|
16
|
Trueba FJ, Neijssel OM, Woldringh CL. Generality of the growth kinetics of the average individual cell in different bacterial populations. J Bacteriol 1982; 150:1048-55. [PMID: 6804435 PMCID: PMC216321 DOI: 10.1128/jb.150.3.1048-1055.1982] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The kinetics of growth of all the cells in a population is reflected in the shape of the size distribution of the population. To ascertain whether the kinetics of growth of the average individual cell is similar for different strains or growth conditions, we compared the shape of normalized size distributions obtained from steady-state populations. Significant differences in the size distributions were found, but these could be ascribed either to the precision achieved at division or to a constriction period which is long relative to the total cell cycle time. The remaining difference is quite small. Thus, without establishing the pattern itself, it is concluded that the basic course of growth is very similar for the various Escherichia coli strains examined and probably also for other rod-shaped bacteria. The effects of differences in culture technique (batch or chemostat culture), growth rate, and differences among strains were not found to influence the shape of the size distributions and hence the growth kinetics in a direct manner; small differences were found, but only when the precision at division or the fraction of constricted cells (long constriction period) were different as well.
Collapse
|
17
|
Aldea M, Herrero E, Trueba FJ. Constancy of diameter through the cell cycle ofSalmonella typhimurium LT2. Curr Microbiol 1982. [DOI: 10.1007/bf01568969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Trueba FJ. On the precision and accuracy achieved by Escherichia coli cells at fission about their middle. Arch Microbiol 1982; 131:55-9. [PMID: 7039546 DOI: 10.1007/bf00451499] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Length and width of each of the prospective siblings of constricted Escherichia coli cells from different strains and culture conditions were measured from electron micrographs. The data were statistically analyzed to investigate how equally the length and volume of one cell was divided into two. The analysis showed that, for all cultures. bipartition is unbiased or very nearly so, i.e. sibling cells were on the average equally long and large. The precision of bipartition attained by the cells was usually high; it was related to the average cell shape (length/width): slender E. coli cells divided into two less precisely than squat cells, Absolute size, growth rate and strain specificity affected the precision of bipartition only indirectly, i.e. in as much as they influenced cell shape.
Collapse
|
19
|
Prösch S, Hecker M, Mach H, Mach F. Zellteilung und Makromolekülsynthesenin auswachsenden Sporen einer temperatursensitiven filamentösen Mutante vonBacillus subtilis. ACTA ACUST UNITED AC 1982. [DOI: 10.1002/jobm.3630221005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Abstract
Extensive measurements of steady-state populations of several Escherichia coli strains have consistently indicated that cell diameter decreases with increasing cell length. This was observed both after electron microscopy of air-dried cells and after phase-contrast microscopy of living cells. The analysis was made by considering separately the unconstricted cells and three classes (slight, medium, and deep) of constricted cells in the population. During slow growth, cells with the average newborn length were up to 8% thicker than unconstricted cells twice as long. This decrease in diameter is less at higher growth rates. Despite the small changes and the large variation of the diameter in any particular length class, significant negative correlations between diameter and length were obtained. Cell diameter increases again at the end of the cell cycle as indicated by an increase of average diameter in the three consecutive classes of constriction.
Collapse
|