1
|
Salt Shock Responses of Microcystis Revealed through Physiological, Transcript, and Metabolomic Analyses. Toxins (Basel) 2020; 12:toxins12030192. [PMID: 32197406 PMCID: PMC7150857 DOI: 10.3390/toxins12030192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 02/04/2023] Open
Abstract
The transfer of Microcystis aeruginosa from freshwater to estuaries has been described worldwide and salinity is reported as the main factor controlling the expansion of M. aeruginosa to coastal environments. Analyzing the expression levels of targeted genes and employing both targeted and non-targeted metabolomic approaches, this study investigated the effect of a sudden salt increase on the physiological and metabolic responses of two toxic M. aeruginosa strains separately isolated from fresh and brackish waters, respectively, PCC 7820 and 7806. Supported by differences in gene expressions and metabolic profiles, salt tolerance was found to be strain specific. An increase in salinity decreased the growth of M. aeruginosa with a lesser impact on the brackish strain. The production of intracellular microcystin variants in response to salt stress correlated well to the growth rate for both strains. Furthermore, the release of microcystins into the surrounding medium only occurred at the highest salinity treatment when cell lysis occurred. This study suggests that the physiological responses of M. aeruginosa involve the accumulation of common metabolites but that the intraspecific salt tolerance is based on the accumulation of specific metabolites. While one of these was determined to be sucrose, many others remain to be identified. Taken together, these results provide evidence that M. aeruginosa is relatively salt tolerant in the mesohaline zone and microcystin (MC) release only occurs when the capacity of the cells to deal with salt increase is exceeded.
Collapse
|
2
|
Aikawa S, Nishida A, Hasunuma T, Chang JS, Kondo A. Short-Term Temporal Metabolic Behavior in Halophilic Cyanobacterium Synechococcus sp. Strain PCC 7002 after Salt Shock. Metabolites 2019; 9:metabo9120297. [PMID: 31817542 PMCID: PMC6950573 DOI: 10.3390/metabo9120297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
In response to salt stress, cyanobacteria increases the gene expression of Na+/H+ antiporter and K+ uptake system proteins and subsequently accumulate compatible solutes. However, alterations in the concentrations of metabolic intermediates functionally related to the early stage of the salt stress response have not been investigated. The halophilic cyanobacterium Synechococcus sp. PCC 7002 was subjected to salt shock with 0.5 and 1 M NaCl, then we performed metabolomics analysis by capillary electrophoresis/mass spectrometry (CE/MS) and gas chromatography/mass spectrometry (GC/MS) after cultivation for 1, 3, 10, and 24 h. Gene expression profiling using a microarray after 1 h of salt shock was also conducted. We observed suppression of the Calvin cycle and activation of glycolysis at both NaCl concentrations. However, there were several differences in the metabolic changes after salt shock following exposure to 0.5 M and 1 M NaCl: (i): the main compatible solute, glucosylglycerol, accumulated quickly at 0.5 M NaCl after 1 h but increased gradually for 10 h at 1 M NaCl; (ii) the oxidative pentose phosphate pathway and the tricarboxylic acid cycle were activated at 0.5 M NaCl; and (iii) the multi-functional compound spermidine greatly accumulated at 1 M NaCl. Our results show that Synechococcus sp. PCC 7002 acclimated to different levels of salt through a salt stress response involving the activation of different metabolic pathways.
Collapse
Affiliation(s)
- Shimpei Aikawa
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan; (S.A.); (A.K.)
| | - Atsumi Nishida
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan;
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan; (S.A.); (A.K.)
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Correspondence: ; Tel.: +81-78-803-6356
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan; (S.A.); (A.K.)
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan;
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
3
|
Keshari N, Gugger M, Zhu T, Lu X. Compatible solutes profiling and carbohydrate feedstock from diversified cyanobacteria. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Physiological and Metabolic Responses of Freshwater and Brackish-Water Strains of Microcystis aeruginosa Acclimated to a Salinity Gradient: Insight into Salt Tolerance. Appl Environ Microbiol 2019; 85:AEM.01614-19. [PMID: 31444201 DOI: 10.1128/aem.01614-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 12/24/2022] Open
Abstract
Proliferation of microcystin (MC)-producing Microcystis aeruginosa in brackish waters has been described in several locations and represents a new concern for public and environmental health. While the impact of a sudden salinity increase on M. aeruginosa physiology has been studied, less is known about the mechanisms involved in salt tolerance after acclimation. This study aims to compare the physiological responses of two strains of M. aeruginosa (PCC 7820 and PCC 7806), which were isolated from contrasted environments, to increasing salinities. After acclimation, growth and MC production rates were determined and metabolomic analyses were conducted. For both strains, salinity decreased the biovolume, growth, and MC production rates and induced the accumulation of polyunsaturated lipids identified as monogalactosyldiacylglycerol. The distinct salt tolerances (7.5 and 16.9) obtained between the freshwater (PCC 7820) and the brackish-water (PCC 7806) strains suggested different strategies to cope with the osmotic pressure, as revealed by targeted and untargeted metabolomic analyses. An accumulation of trehalose as the main compatible solute was obtained in the freshwater strain, while sucrose was mainly accumulated in the brackish one. Moreover, distinct levels of glycine betaine and proline accumulation were noted. Altogether, metabolomic analysis illustrated a strain-specific response to salt tolerance, involving compatible solute production.IMPORTANCE Blooms of Microcystis aeruginosa and the production of microcystins are major issues in eutrophic freshwater bodies. Recently, an increasing number of proliferations of M. aeruginosa in brackish water has been documented. The occurrence of both M. aeruginosa and microcystins in coastal areas represents a new threat for human and environmental health. In order to better describe the mechanisms involved in Microcystis sp. proliferation in brackish water, this study used two M. aeruginosa strains isolated from fresh and brackish waters. High salinity reduced the growth rate and microcystin production rate of M. aeruginosa In order to cope with higher salinities, the strains accumulated different cyanobacterial compatible solutes, as well as unsaturated lipids, explaining their distinct salt tolerance.
Collapse
|
5
|
Kirsch F, Pade N, Klähn S, Hess WR, Hagemann M. The glucosylglycerol-degrading enzyme GghA is involved in acclimation to fluctuating salinities by the cyanobacterium Synechocystis sp. strain PCC 6803. MICROBIOLOGY-SGM 2017; 163:1319-1328. [PMID: 28857041 DOI: 10.1099/mic.0.000518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ggpS gene, which encodes the key enzyme for the synthesis of the compatible solute glucosylglycerol (GG), has a promoter region that overlaps with the upstream-located gene slr1670 in the cyanobacterium Synechocystissp. PCC 6803. Like ggpS, the slr1670 gene is salt-induced and encodes a putative glucosylhydrolase. A mutant strain with a slr1670 deletion was generated and found to be unable to adapt the internal GG concentrations in response to changes in external salinities. Whereas cells of the wild-type reduced the internal pool of GG when exposed to gradual and abrupt hypo-osmotic treatments, or when the compatible solute trehalose was added to the growth medium, the internal GG pool of ∆slr1670 mutant cells remained unchanged. These findings indicated that the protein Slr1670 is involved in GG breakdown. The biochemical activity of this GG-hydrolase enzyme was verified using recombinant Slr1670 protein, which split GG into glucose and glycerol. These results validate that Slr1670, which was named GghA, acts as a GG hydrolase. GghA is involved in GG turnover in fluctuating salinities, and similar proteins are found in the genomes of other GG-synthesizing cyanobacteria.
Collapse
Affiliation(s)
- Friedrich Kirsch
- University of Rostock, Institute for Biowissenschaften, Abt. Pflanzenphysiologie, A.-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Nadin Pade
- University of Rostock, Institute for Biowissenschaften, Abt. Pflanzenphysiologie, A.-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- University of Rostock, Institute for Biowissenschaften, Abt. Pflanzenphysiologie, A.-Einstein-Str. 3, D-18059 Rostock, Germany
| |
Collapse
|
6
|
Baran R, Lau R, Bowen BP, Diamond S, Jose N, Garcia-Pichel F, Northen TR. Extensive Turnover of Compatible Solutes in Cyanobacteria Revealed by Deuterium Oxide (D 2O) Stable Isotope Probing. ACS Chem Biol 2017; 12:674-681. [PMID: 28068058 DOI: 10.1021/acschembio.6b00890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyanobacteria are important primary producers of organic matter in diverse environments on a global scale. While mechanisms of CO2 fixation are well understood, the distribution of the flow of fixed organic carbon within individual cells and complex microbial communities is less well characterized. To obtain a general overview of metabolism, we describe the use of deuterium oxide (D2O) to measure deuterium incorporation into the intracellular metabolites of two physiologically diverse cyanobacteria: a terrestrial filamentous strain (Microcoleus vaginatus PCC 9802) and a euryhaline unicellular strain (Synechococcus sp. PCC 7002). D2O was added to the growth medium during different phases of the diel cycle. Incorporation of deuterium into metabolites at nonlabile positions, an indicator of metabolite turnover, was assessed using liquid chromatography mass spectrometry. Expectedly, large differences in turnover among metabolites were observed. Some metabolites, such as fatty acids, did not show significant turnover over 12-24 h time periods but did turn over during longer time periods. Unexpectedly, metabolites commonly regarded to act as compatible solutes, including glutamate, glucosylglycerol, and a dihexose, showed extensive turnover compared to most other metabolites already after 12 h, but only during the light phase in the cycle. The observed extensive turnover is surprising considering the conventional view on compatible solutes as biosynthetic end points given the relatively slow growth and constant osmotic conditions. This suggests the possibility of a metabolic sink for some compatible solutes (e.g., into glycogen) that allows for rapid modulation of intracellular osmolarity. To investigate this, uniformly 13C-labeled Synechococcus sp. PCC 7002 were exposed to 12C glucosylglycerol. Following metabolite extraction, amylase treatment of methanol-insoluble polymers revealed 12C labeling of glycogen. Overall, our work shows that D2O probing is a powerful method for analysis of cyanobacterial metabolism including discovery of novel metabolic processes.
Collapse
Affiliation(s)
- Richard Baran
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca Lau
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin P. Bowen
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Spencer Diamond
- Center
for Circadian Biology and Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Nick Jose
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ferran Garcia-Pichel
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Trent R. Northen
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Joint Genome Institute, Walnut Creek, California 94598, United States
| |
Collapse
|
7
|
|
8
|
Baran R, Bowen BP, Northen TR. Untargeted metabolic footprinting reveals a surprising breadth of metabolite uptake and release by Synechococcus sp. PCC 7002. MOLECULAR BIOSYSTEMS 2011; 7:3200-6. [DOI: 10.1039/c1mb05196b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Abstract
Compatible solutes are a functional group of small, highly soluble organic molecules that demonstrate compatibility in high amounts with cellular metabolism. The accumulation of compatible solutes is often observed during the acclimation of organisms to adverse environmental conditions, particularly to salt and drought stress. Among cyanobacteria, sucrose, trehalose, glucosylglycerol and glycine betaine are used as major compatible solutes. Interestingly, a close correlation has been discovered between the final salt tolerance limit and the primary compatible solute in these organisms. In addition to the dominant compatible solutes, many strains accumulate mixtures of these compounds, including minor compounds such as glucosylglycerate or proline as secondary or tertiary solutes. In particular, the accumulation of sucrose and trehalose results in an increase in tolerance to general stresses such as desiccation and high temperatures. During recent years, the biochemical and molecular basis of compatible solute accumulation has been characterized using cyanobacterial model strains that comprise different salt tolerance groups. Based on these data, the distribution of genes involved in compatible solute synthesis among sequenced cyanobacterial genomes is reviewed, and thereby, the major compatible solutes and potential salt tolerance of these strains can be predicted. Knowledge regarding cyanobacterial salt tolerance is not only useful to characterize strain-specific adaptations to ecological niches, but it can also be used to generate cells with increased tolerance to adverse environmental conditions for biotechnological purposes.
Collapse
Affiliation(s)
- Stephan Klähn
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Rostock, Germany
| | | |
Collapse
|
10
|
Singh NK, Dhar DW. Cyanobacterial Reclamation of Salt-Affected Soil. GENETIC ENGINEERING, BIOFERTILISATION, SOIL QUALITY AND ORGANIC FARMING 2010. [DOI: 10.1007/978-90-481-8741-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Asthana RK, Srivastava S, Singh AP, Kayastha AM, Singh SP. Identification of maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase enzymes catalysing trehalose biosynthesis in Anabaena 7120 exposed to NaCl stress. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1030-7. [PMID: 16173464 DOI: 10.1016/j.jplph.2004.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Anabaena 7120 cells were exposed to NaCl (25-175 mM) stress. Maximum growth was recorded in media containing 150mM NaCl. Short-term exposure (48h) of the cyanobacterial biomass to 150mM NaCl, induced highest trehalose level (37mM). Control cells lacking NaCl did not show any trace of trehalose as ascertained by NMR and HPLC analysis. Trehalose biosynthesis observed with NaCl plus high temperature (40 degrees C) indicated that its production was specifically triggered by NaCl, not temperature. The increase in trehalose level during NaCl stress was the result of overexpression of the trehalose-forming enzymes maltooligosyltrehalose synthase (MTSase), EC 5.4.99.15 (114kDa) and maltooligosyltrehalose trehalohydrolase (MTHase), EC 3.2.1.141 (68 kDa) as evidenced by SDS-PAGE analysis. To our knowledge this is the first report of induced trehalose biosynthesis in Anabaena 7120 during salt-stress, accompanied by identification of MTSase and MTHase enzymes on gel. It is suggested that Anabaena 7120 cells synthesize the osmolyte trehalose to withstand osmotic fluctuations.
Collapse
Affiliation(s)
- Ravi K Asthana
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India.
| | | | | | | | | |
Collapse
|
12
|
Nitta K, Kaneko Y, Kojima K, Fukuzawa H, Kosaka H, Nakamoto H. Comparative analysis of the hspA mutant and wild-type Synechocystis sp. strain PCC 6803 under salt stress: evaluation of the role of hspA in salt-stress management. Arch Microbiol 2004; 182:487-97. [PMID: 15483753 DOI: 10.1007/s00203-004-0733-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 08/31/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
DNA microarray analysis has previously revealed that hspA, which encodes a small heat-shock protein, is the second most highly expressed gene under salt stress in Synechocystis sp. strain PCC 6803. Consequently, an hspA deletion mutant was studied under various salt stresses in order to identify a potential role of HspA in salt stress management. The mutant had a growth disadvantage under moderate salt stress. It lost the ability to develop tolerance to a lethal salt treatment by a moderate salt pre-treatment when the tolerance was evaluated by cell survival and the level of major soluble proteins, phycocyanins, while the wild-type acquired tolerance. Under various salt stresses, the mutant failed to undergo the ultrastructural changes characteristic of wild-type cells. The mutant, which showed higher survival than the wild-type after a direct shift to lethal salt conditions, accumulated higher levels of groESL1 and groEL2 transcripts and the corresponding proteins, GroES, GroEL1, and GroEL2, suggesting a role for these heat-shock proteins in conferring basal salt tolerance. Under salt stress, heat-shock genes, such as hspA, groEL2, and dnaK2, were transcriptionally induced and greatly stabilized, indicating a transcriptional and post-transcriptional mechanism of acclimation to salt stress involving these heat-shock genes.
Collapse
|
13
|
Miao X, Wu Q, Wu G, Zhao N. Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp PCC 6803. FEMS Microbiol Lett 2003; 218:71-7. [PMID: 12583900 DOI: 10.1111/j.1574-6968.2003.tb11500.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The agp gene encoding the ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis and glucosylglycerol formation. By in vitro DNA recombination technology, a mutant with partial deletion of agp gene in the cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutant could not synthesize glycogen or the osmoprotective substance glucosylglycerol. In the mutant cells grown in the medium containing 0.9 M NaCl for 96 h, no glucosylglycerol was detected and the total amount of sucrose was 29 times of that of in wild-type cells. Furthermore, the agp deletion mutant could tolerate up to 0.9 M salt concentration. Our results suggest that sucrose might act as a similar potent osmoprotectant as glucosylglycerol in cyanobacterium Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Xiaoling Miao
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | | | | | |
Collapse
|
14
|
Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N. Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. PLANT PHYSIOLOGY 2001; 125:1842-53. [PMID: 11299364 PMCID: PMC88840 DOI: 10.1104/pp.125.4.1842] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Revised: 10/07/2000] [Accepted: 11/16/2000] [Indexed: 05/18/2023]
Abstract
In this study, the tolerance to salt stress of the photosynthetic machinery was examined in relation to the effects of the genetic enhancement of the unsaturation of fatty acids in membrane lipids in wild-type and desA+ cells of Synechococcus sp. PCC 7942. Wild-type cells synthesized saturated and mono-unsaturated fatty acids, whereas desA+ cells, which had been transformed with the desA gene for the Delta12 acyl-lipid desaturase of Synechocystis sp. PCC 6803, also synthesized di-unsaturated fatty acids. Incubation of wild-type and desA+ cells with 0.5 M NaCl resulted in the rapid loss of the activities of photosystem I, photosystem II, and the Na+/H+ antiport system both in light and in darkness. However, desA+ cells were more tolerant to salt stress and osmotic stress than the wild-type cells. The extent of the recovery of the various photosynthetic activities from the effects of 0.5 M NaCl was much greater in desA+ cells than in wild-type cells. The photosystem II activity of thylakoid membranes from desA+ cells was more resistant to 0.5 M NaCl than that of membranes from wild-type cells. These results demonstrated that the genetically engineered increase in unsaturation of fatty acids in membrane lipids significantly enhanced the tolerance of the photosynthetic machinery to salt stress. The enhanced tolerance was due both to the increased resistance of the photosynthetic machinery to the salt-induced damage and to the increased ability of desA+ cells to repair the photosynthetic and Na+/H+ antiport systems.
Collapse
Affiliation(s)
- S I Allakhverdiev
- Department of Regulation Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
15
|
Pandey U, Singh SP. Host-phage interactions under osmotic stress in Nostoc muscorum. J Basic Microbiol 1995. [DOI: 10.1002/jobm.3620350609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Schubert H, Hagemann M. Salt effects on 77K fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb03817.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Fulda S, Hagemann M, Libbert E. Release of glucosylglycerol from the cyanobacterium Synechocystis spec. SAG 92.79 by hypoosmotic shock. Arch Microbiol 1990. [DOI: 10.1007/bf00249013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Anaerovibrio glycerini sp. nov., an anaerobic bacterium fermenting glycerol to propionate, cell matter, and hydrogen. Arch Microbiol 1989. [DOI: 10.1007/bf00446932] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Hagemann M, Erdmann N, Wittenburg E. Studies Concerning Enzyme Activities in Salt-loaded Cells of the Cyanobacterium Microcystis firma. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/s0015-3796(89)80127-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Vonshak A, Guy R, Guy M. The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 1988. [DOI: 10.1007/bf00422279] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|