1
|
Li Q, Pan Z, Zhang Z, Tang H, Cai J, Zeng X, Li Z. β-Glucan content increase in Waxy-mutated barley is closely associated with positive stress responses and is regulated by ASR1. Carbohydr Polym 2025; 347:122536. [PMID: 39486912 DOI: 10.1016/j.carbpol.2024.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 11/04/2024]
Abstract
Mixed-linkage (1,3; 1,4)-β-D-glucan (MLG) impacts the food and industrial end-uses of barley, but the molecular mechanism of variations in MLG content remains unclear. MLG content usually increases in Waxy-mutated barley. This study applied transcriptomic, proteomic, and metabolomic analyses to Waxy-mutated recombinant inbred lines with higher MLG content and wild-type lines with lower MLG content, and identified candidate genes and pathways regulating MLG content through combining preliminary gene function analysis. MLG biosynthesis differed significantly during late grain development in the Waxy-mutated and wild-type barley lines. The MLG increase was closely associated with strongly active sugar and starch metabolism and stress-responsive plant hormones, particularly abscisic acid (ABA) signaling process. Stress-responsive transcript factors ILR3, BTF3, RGGA, and PR13 protein bind to CslF6, which is critical for barley MLG biosynthesis, and the stress-responsive gene ASR1 also had a positive effect on MLG increase. Waxy mutation enhances barley stress responses by activating ABA- or other stress-responsive plant hormones signaling processes, which facilitates MLG biosynthesis. This study provides a new approach for elucidating the variations in MLG content of barley grains.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China.
| | - Zhihui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Hongmei Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Jingchi Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; University of the Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100039, People's Republic of China
| | - Xingquan Zeng
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Qu J, Liu G, Zheng H, Wang X, Zhang H, Gou X, Xu S, Xue J. Deciphering the Genetic Basis of Kernel Composition in a Maize Association Panel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20182-20193. [PMID: 39196892 DOI: 10.1021/acs.jafc.4c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The primary objective in contemporary maize breeding is to pursue high quality alongside high yield. Deciphering the genetic basis of natural variation in starch, protein, oil, and fiber contents is essential for manipulating kernel composition, thereby enhancing the kernel quality and meeting growing demands. Here, we identified 12 to 88 statistically significant loci associated with kernel composition traits through a genome-wide association study (GWAS) using a panel of 212 diverse inbred lines. A regional association study pinpointed numerous causal candidate genes at these loci. Coexpression and protein-protein interaction network analyses of candidate genes revealed several causal genes directly or indirectly involved in the metabolic processes related to kernel composition traits. Subsequent mutant experiment revealed that nonsense mutations in ZmTIFY12 affect starch, protein, and fiber content, whereas nonsense mutations in ZmTT12 affect starch, protein, and oil content. These findings provide valuable guidance for improving kernel quality in maize breeding efforts.
Collapse
Affiliation(s)
- Jianzhou Qu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gengyu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hongyun Zheng
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiaoyue Wang
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Zhang
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaonan Gou
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shutu Xu
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiquan Xue
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Osman R, Bossu M, Dauvillée D, Spriet C, Liu C, Zeeman SC, D'Hulst C, Bompard C. LIKE EARLY STARVATION 1 interacts with amylopectin during starch biosynthesis. PLANT PHYSIOLOGY 2024; 195:1851-1865. [PMID: 38573555 DOI: 10.1093/plphys/kiae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Starch is the major energy storage compound in plants. Both transient starch and long-lasting storage starch accumulate in the form of insoluble, partly crystalline granules. The structure of these granules is related to the structure of the branched polymer amylopectin: linear chains of glucose units organized in double helices that align to form semicrystalline lamellae, with branching points located in amorphous regions between them. EARLY STARVATION 1 (ESV1) and LIKE EARLY STARVATION 1 (LESV) proteins are involved in the maintenance of starch granule structure and in the phase transition of amylopectin, respectively, in Arabidopsis (Arabidopsis thaliana). These proteins contain a conserved tryptophan-rich C-terminal domain folded into an antiparallel β-sheet, likely responsible for binding of the proteins to starch, and different N-terminal domains whose structure and function are unknown. In this work, we combined biochemical and biophysical approaches to analyze the structures of LESV and ESV1 and their interactions with the different starch polyglucans. We determined that both proteins interact with amylopectin but not with amylose and that only LESV is capable of interacting with amylopectin during starch biosynthesis. While the C-terminal domain interacts with amylopectin in its semicrystalline form, the N-terminal domain of LESV undergoes induced conformational changes that are probably involved in its specific function of mediating glucan phase transition. These results clarify the specific mechanism of action of these 2 proteins in the biosynthesis of starch granules.
Collapse
Affiliation(s)
- Rayan Osman
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Mélanie Bossu
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - David Dauvillée
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Corentin Spriet
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Lille F-59000, France
| | - Chun Liu
- Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich
| | - Christophe D'Hulst
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Coralie Bompard
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
4
|
Sharma V, Fandade V, Kumar P, Parveen A, Madhawan A, Bathla M, Mishra A, Sharma H, Rishi V, Satbhai SB, Roy J. Protein targeting to starch 1, a functional protein of starch biosynthesis in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2022; 109:101-113. [PMID: 35332427 DOI: 10.1007/s11103-022-01260-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
TaPTST1, a wheat homolog of AtPTST1 containing CBM can interact with GBSSI and regulate starch metabolism in wheat endosperm. In cereal endosperm, native starch comprising amylose and amylopectin is synthesized by the coordinated activities of several pathway enzymes. Amylose in starch influences its physio-chemical properties resulting in several human health benefits. The Granule-Bound Starch Synthase I (GBSSI) is the most abundant starch-associated protein. GBSSI lacks dedicated Carbohydrate-binding module (CBM). Previously, Protein Targeting To Starch 1 (PTST1) was identified as a crucial protein for the localization of GBSSI to the starch granules in Arabidopsis. The function of its homologous protein in the wheat endosperm is not known. In this study, TaPTST1, an AtPTST1 homolog, containing a CBM and a coiled-coil domain was identified in wheat. Protein-coding nucleotide sequence of TaPTST1 from Indian wheat variety 'C 306' was cloned and characterized. Homology modelling and molecular docking suggested the potential interaction of TaPTST1 with glucans and GBSSI. The TaPTST1 expression was higher in wheat grain than the other tissues, suggesting a grain-specific function. In vitro binding assays demonstrated different binding affinities of TaPTST1 for native starch, amylose, and amylopectin. Furthermore, the immunoaffinity pull-down assay revealed that TaPTST1 directly interacts with GBSSI, and the interaction is mediated by a coiled-coil domain. The direct protein-protein interaction was further confirmed by bimolecular fluorescence complementation assay (BiFC) in planta. Based on our findings we postulate a functional role for TaPTST1 in starch metabolism by targeting GBSSI to starch granules in wheat endosperm.
Collapse
Affiliation(s)
- Vinita Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER) Mohali, Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Vikas Fandade
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Prashant Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Afsana Parveen
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Akansha Madhawan
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Manik Bathla
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Ankita Mishra
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER) Mohali, Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India.
| |
Collapse
|
5
|
Zi Y, Cheng D, Li H, Guo J, Ju W, Wang C, Humphreys DG, Liu A, Cao X, Liu C, Liu J, Zhao Z, Song J. Effects of the different waxy proteins on starch biosynthesis, starch physicochemical properties and Chinese noodle quality in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:23. [PMID: 37309456 PMCID: PMC10248619 DOI: 10.1007/s11032-022-01292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Noodles are an important food in Asia. Wheat starch is the most important component in Chinese noodles. Loss of the waxy genes leads to lower activity of starch synthesis enzymes and decreased amylose content that further affects starch properties and noodle quality. To study the effects of different waxy (Wx) protein subunits on starch biosynthesis and processing quality, the high-yielding wheat cultivar Jimai 22 was treated with the mutagen ethyl methane sulfonate (EMS) to produce a population of Wx lines and chosen 7 Wx protein combinations. The amylose content increased but swelling power decreased as the number of Wx proteins increased. Both GBSS activity and gene expression were the lowest for the waxy mutant, followed by the mutants with 1 Wx protein. The combinations of these mutant alleles lead to reductions in both RNA expression and protein levels. Noodles made from materials with 2 Wx protein subunits had the highest score, which agreed with peak viscosity. The influence of the Wx-B1 protein on amylose synthesis and noodle quality was the highest, whereas the influence of Wx-A1 protein was the lowest. Mutants with lower amylose content caused by the absence of 1 subunit, especially the Wx-B1 subunit, had superior noodle quality. Additionally, the identified mutant lines can be used as intermediate materials to improve wheat quality. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01292-x.
Collapse
Affiliation(s)
- Yan Zi
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Dungong Cheng
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Haosheng Li
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Jun Guo
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Wei Ju
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Canguo Wang
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - D. G. Humphreys
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, K.W. Neatby Building, 960 Carling Avenue, Ottawa, K1A 06C ON UK
| | - Aifeng Liu
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Xinyou Cao
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Cheng Liu
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Jianjun Liu
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Zhendong Zhao
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Jianmin Song
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| |
Collapse
|
6
|
Komarnytsky S, Retchin S, Vong CI, Lila MA. Gains and Losses of Agricultural Food Production: Implications for the Twenty-First Century. Annu Rev Food Sci Technol 2021; 13:239-261. [PMID: 34813357 DOI: 10.1146/annurev-food-082421-114831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The world food supply depends on a diminishing list of plant crops and animal livestock to not only feed the ever-growing human population but also improve its nutritional state and lower the disease burden. Over the past century or so, technological advances in agricultural and food processing have helped reduce hunger and poverty but have not adequately addressed sustainability targets. This has led to an erosion of agricultural biodiversity and balanced diets and contributed to climate change and rising rates of chronic metabolic diseases. Modern food supply chains have progressively lost dietary fiber, complex carbohydrates, micronutrients, and several classes of phytochemicals with high bioactivity and nutritional relevance. This review introduces the concept of agricultural food systems losses and focuses on improved sources of agricultural diversity, proteins with enhanced resilience, and novel monitoring, processing, and distribution technologies that are poised to improve food security, reduce food loss and waste, and improve health profiles in the near future. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina; .,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Sophia Retchin
- Kenan-Flagler Business School, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chi In Vong
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina; .,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina; .,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
7
|
Renk JS, Gilbert AM, Hattery TJ, O'Connor CH, Monnahan PJ, Anderson N, Waters AJ, Eickholt DP, Flint-Garcia SA, Yandeau-Nelson MD, Hirsch CN. Genetic control of kernel compositional variation in a maize diversity panel. THE PLANT GENOME 2021; 14:e20115. [PMID: 34197039 DOI: 10.1002/tpg2.20115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Maize (Zea mays L.) is a multi-purpose row crop grown worldwide, which, over time, has often been bred for increased yield at the detriment of lower composition grain quality. Some knowledge of the genetic factors that affect quality traits has been discovered through the study of classical maize mutants; however, much of the underlying genetic control of these traits and the interaction between these traits remains unknown. To better understand variation that exists for grain compositional traits in maize, we evaluated 501 diverse temperate maize inbred lines in five unique environments and predicted 16 compositional traits (e.g., carbohydrates, protein, and starch) based on the output of near-infrared (NIR) spectroscopy. Phenotypic analysis found substantial variation for compositional traits and the majority of variation was explained by genetic and environmental factors. Correlations and trade-offs among traits in different maize types (e.g., dent, sweetcorn, and popcorn) were explored, and significant differences and meaningful correlations were detected. In total, 22.9-71.0% of the phenotypic variation across these traits could be explained using 2,386,666 single nucleotide polymorphism (SNP) markers generated from whole-genome resequencing data. A genome-wide association study (GWAS) was conducted using these same markers and found 72 statistically significant SNPs for 11 compositional traits. This study provides valuable insights in the phenotypic variation and genetic control underlying compositional traits that can be used in breeding programs for improving maize grain quality.
Collapse
Affiliation(s)
- Jonathan S Renk
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Amanda M Gilbert
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Travis J Hattery
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Christine H O'Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Patrick J Monnahan
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | - Sherry A Flint-Garcia
- United States Department of Agriculture, Agricultural Research Service, Columbia, MO, 65211, USA
| | - Marna D Yandeau-Nelson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
8
|
Genetic and Environmental Variation in Starch Content, Starch Granule Distribution and Starch Polymer Molecular Characteristics of French Bread Wheat. Foods 2021; 10:foods10020205. [PMID: 33498368 PMCID: PMC7909431 DOI: 10.3390/foods10020205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/08/2023] Open
Abstract
This study investigates genetic and environmental variation in starch content and characteristics of 14 French bread cultivars. Understanding the impact of these factors on wheat quality is important for processors and especially bakers to maintain and meet the requirements of industrial specifications. Different traits were evaluated: starch content, distribution of starch granules, percentage of amylose and amylopectin and their molecular characteristics (weight-average molar mass, number-average molar mass, polydispersity and gyration radius). Genetic, environment and their interaction had significant effects on all parameters. The relative magnitude of variance attributed to growth conditions, for most traits, was substantially higher (21% to 95%) than that attributed to either genotype (2% to 73%) or G × E interaction (2% to 17%). The largest environmental contribution (95%) to total variance was found for starch dispersity. The highest genetic influence was found for the percentage of A-type starch granules. G × E interaction had relatively little influence (≈7%) on total phenotypic variance. All molecular characteristics were much more influenced by environment than the respective percentages of amylose and amylopectin were. This huge difference in variance between factors obviously revealed the importance of the effect of growing conditions on characteristics of cultivars.
Collapse
|
9
|
Seung D. Amylose in starch: towards an understanding of biosynthesis, structure and function. THE NEW PHYTOLOGIST 2020; 228:1490-1504. [PMID: 32767769 DOI: 10.1111/nph.16858] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
10
|
Hou J, Liu Y, Hao C, Li T, Liu H, Zhang X. Starch Metabolism in Wheat: Gene Variation and Association Analysis Reveal Additive Effects on Kernel Weight. FRONTIERS IN PLANT SCIENCE 2020; 11:562008. [PMID: 33123177 PMCID: PMC7573188 DOI: 10.3389/fpls.2020.562008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Kernel weight is a key determinant of yield in wheat (Triticum aestivum L.). Starch consists of amylose and amylopectin and is the major constituent of mature grain. Therefore, starch metabolism in the endosperm during grain filling can influence kernel weight. In this study, we sequenced 87 genes involved in starch metabolism from 300 wheat accessions and detected 8,141 polymorphic sites. We also characterized yield-related traits across different years in these accessions. Although the starch contents fluctuated, thousand kernel weight (TKW) showed little variation. Polymorphisms in six genes were significantly associated with TKW. These genes were located on chromosomes 2A, 2B, 4A, and 7A; none were associated with starch content or amylose content. Variations of 15 genes on chromosomes 1A and 7A formed haplotype blocks in 26 accessions. Notably, accessions with higher TKWs had more of the favorable haplotypes. We thus conclude that these haplotypes contribute additive effects to TKW.
Collapse
Affiliation(s)
- Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
11
|
Luo J, Butardo VM, Yang Q, Konik-Rose C, Colgrave ML, Millar A, Jobling SA, Li Z. The impact of the indica rice SSIIa allele on the apparent high amylose starch from rice grain with downregulated japonica SBEIIb. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2961-2974. [PMID: 32651668 DOI: 10.1007/s00122-020-03649-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/01/2020] [Indexed: 05/24/2023]
Abstract
Catalytically active indica SSIIa allele in high amylose rice with down-regulated japonica SBEIIb can increase starch content and modify the starch structure and properties without changing its amylose content. Rice (Oryza sativa) genotypes with inactive starch synthase IIa (SSIIa) with recessive variants of starch branching enzyme IIb (SBEIIb) exhibit a range of alterations in grain phenotype, starch granule morphology, starch granule bound proteins, starch structure, and functional properties. However, the interactions between the two enzymes have not been thoroughly investigated yet. We analysed recombinant rice lines having down-regulated SBEIIb expression (SBEIIbDR) with either indica or japonica type SSIIa (SSIIaind or SSIIajap). In SBEIIbDR rice starch granules, the increased abundance of two protein bands (SSI and SSIIa) was found with eight additional protein bands not generally associated with starch granules. The amount of SSIIa was higher in SSIIaindSBEIIbDR than SSIIajapSBEIIbDR, which indicated that indica type SSIIa, possibly in the monomer form, was extensively involved in starch biosynthesis in the SBEIIbDR endosperm. Furthermore, SSIIaindSBEIIbDR grains had higher total starch content and higher starch swelling power than SSIIajapSBEIIbDR lines, but the amylopectin gelatinization temperatures and enthalpy and the apparent amylose content remained similar. In summary, this work suggests that SSIIaind can partly compensate for the alteration of starch synthesis resulting from the SBEIIb down-regulation in japonica background without reducing its amylose content. The study provides insight into the starch structural and textural improvements of high amylose starch.
Collapse
Affiliation(s)
- Jixun Luo
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Vito M Butardo
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Qiang Yang
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | | | | | - Anthony Millar
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Stephen A Jobling
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Zhongyi Li
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
12
|
Lancíková V, Hricová A. Digital Absolute Gene Expression Analysis of Essential Starch-Related Genes in a Radiation Developed Amaranthus cruentus L. Variety in Comparison with Real-Time PCR. PLANTS 2020; 9:plants9080966. [PMID: 32751665 PMCID: PMC7464018 DOI: 10.3390/plants9080966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
We investigated the expression pattern of four major starch genes at different seed developmental stages in the radiation-bred amaranth variety “Pribina” (Amaranthus cruentus L.) and corresponding control genotype “Ficha” (Amaranthus cruentus L.). Two platforms were used and compared for the gene expression analysis of GBSSI, SSSI, SBE, and DBE amaranth genes, including a standard quantitative real-time PCR (qPCR) technique and relatively novel droplet digital PCR (ddPCR) assay. In our conditions, both methods showed great accuracy and revealed higher expression of the investigated genes in the mutant variety than in the control genotype. Here we report for the first time, a ddPCR gene expression assay for the cultivated grain amaranth, as the most important group of the species in the genus Amaranthus.
Collapse
|
13
|
Qi X, Wu H, Jiang H, Zhu J, Huang C, Zhang X, Liu C, Cheng B. Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Dong Q, Xu Q, Kong J, Peng X, Zhou W, Chen L, Wu J, Xiang Y, Jiang H, Cheng B. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:407-415. [PMID: 31128711 DOI: 10.1016/j.plantsci.2019.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 05/23/2023]
Abstract
Starch content and composition are major determinants of yield and quality in maize. In recent years, the major genes for starch metabolism have been cloned in this species. However, the role of transcription factors in regulating the starch metabolism pathway remains unclear. The ZmbZIP22 gene encodes a bZIP transcription factor. In our study, plants overexpressing ZmbZIP22 showed reductions in the size of starch granules, the size and weight of seeds, reduced amylose content, and alterations in the chemical structure of starch granules. Also, overexpression of ZmbZIP22 resulted in increases in the contents of soluble sugars and reducing sugars in transgenic rice and maize. ZmbZIP22 promotes the transcription of starch metabolism genes by binding to their promoters. Screening by yeast one-hybrid assays indicated a possible interaction between ZmbZIP22 and the promoters of eight key starch enzyme genes. Collectively, our results indicated that ZmbZIP22 functions as a negative regulator of starch synthesis, and suggest that this occurs through the regulation of key sugar and starch metabolism genes in maize.
Collapse
Affiliation(s)
- Qing Dong
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China; Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Qianqian Xu
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Jingjing Kong
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaojian Peng
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Zhou
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Long Chen
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
15
|
Cakir B, Tian L, Crofts N, Chou HL, Koper K, Ng CY, Tuncel A, Gargouri M, Hwang SK, Fujita N, Okita TW. Re-programming of gene expression in the CS8 rice line over-expressing ADPglucose pyrophosphorylase induces a suppressor of starch biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1073-1088. [PMID: 30523657 DOI: 10.1111/tpj.14180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 05/02/2023]
Abstract
The CS8 transgenic rice (Oryza sativa L.) lines expressing an up-regulated glgC gene produced higher levels of ADPglucose (ADPglc), the substrate for starch synthases. However, the increase in grain weight was much less than the increase in ADPglc levels suggesting one or more downstream rate-limiting steps. Endosperm starch levels were not further enhanced in double transgenic plants expressing both glgC and the maize brittle-1 gene, the latter responsible for transport of ADPglc into the amyloplast. These studies demonstrate that critical processes within the amyloplast stroma restrict maximum carbon flow into starch. RNA-seq analysis showed extensive re-programming of gene expression in the CS8 with 2073 genes up-regulated and 140 down-regulated. One conspicuous gene, up-regulated ~15-fold, coded for a biochemically uncharacterized starch binding domain-containing protein (SBDCP1) possessing a plastid transit peptide. Confocal microscopy and transmission electron microscopy analysis confirmed that SBDCP1 was located in the amyloplasts. Reciprocal immunoprecipitation and pull-down assays indicated an interaction between SBDCP1 and starch synthase IIIa (SSIIIa), which was down-regulated at the protein level in the CS8 line. Furthermore, binding by SBDCP1 inhibited SSIIIa starch polymerization activity in a non-competitive manner. Surprisingly, artificial microRNA gene suppression of SBDCP1 restored protein expression levels of SSIIIa in the CS8 line resulting in starch with lower amylose content and increased amylopectin chains with a higher degree of polymerization. Collectively, our results support the involvement of additional non-enzymatic factors such as SBDCP in starch biosynthesis.
Collapse
Affiliation(s)
- Bilal Cakir
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Naoko Crofts
- Faculty of Bioresource Science, Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, 010-0195, Japan
| | - Hong-Li Chou
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Kaan Koper
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Chun-Yeung Ng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Aytug Tuncel
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Seon-Kap Hwang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Naoko Fujita
- Faculty of Bioresource Science, Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, 010-0195, Japan
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
16
|
Molecular analysis of mutant granule-bound starch synthase-I ( waxy1) gene in diverse waxy maize inbreds. 3 Biotech 2019; 9:3. [PMID: 30555769 DOI: 10.1007/s13205-018-1530-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Waxy corn is popular beacuse of its high amylopectin due to mutation in granule-bound starch synthase-I or Waxy1 (Wx1) gene. Here, we characterized the wx1 allele among 24 diverse waxy inbreds using gene-based markers. A total of 29 alleles with average of 1.81 alleles/locus were observed. Major allele frequency varied from 0.42 to 1.00, with mean of 0.74. The polymorphism information content ranged from 0.00 to 0.56 (average 0.24). Three simple sequence repeat markers, viz., phi027, phi022 and phi061 were more polymorphic in the study. The mean heterozygosity was 0.04, which indicated attainment of higher levels of homozygosity. Dissimilarity coefficient varied from 0.00 to 0.90 with average of 0.51. Seventeen diverse haplotypes of wx1 allele were observed that was consistent with the pedigree. Cluster analyses grouped 24 genotypes into two main clusters each having sub-clusters. The information generated here possesses great potential for improvement of high amylopectin in maize through marker-assisted selection. This is the first report of molecular dissection of wx1 gene among the novel waxy inbreds developed in India.
Collapse
|
17
|
Hsieh CF, Liu W, Whaley JK, Shi YC. Structure, properties, and potential applications of waxy tapioca starches – A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Wu J, Chen L, Chen M, Zhou W, Dong Q, Jiang H, Cheng B. The DOF-Domain Transcription Factor ZmDOF36 Positively Regulates Starch Synthesis in Transgenic Maize. FRONTIERS IN PLANT SCIENCE 2019; 10:465. [PMID: 31031791 PMCID: PMC6474321 DOI: 10.3389/fpls.2019.00465] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/28/2019] [Indexed: 05/06/2023]
Abstract
Starch synthesis is a complex process that influences crop yield and grain quality in maize. Many key enzymes have been identified in starch biosynthesis; however, the regulatory mechanisms have not been fully elucidated. In this study, we identified a DOF family gene, ZmDOF36, through transcriptome sequencing analysis. Real-time PCR indicated that ZmDOF36 was highly expressed in maize endosperm, with lower expression in leaves and tassels. ZmDOF36 is a typical DOF transcription factor (TF) that is localized to the nucleus and possesses transcriptional activation activity, and its transactivation domain is located in the C-terminus (amino acids 227-351). Overexpression of ZmDOF36 can increase starch content and decrease the contents of soluble sugars and reducing sugars. In addition, abnormal starch structure in transgenic maize was also observed by scanning electron microscopy (SEM). Furthermore, the expression levels of starch synthesis-related genes were up-regulated in ZmDOF36-expressing transgenic maize. ZmDOF36 was also shown to bind directly to the promoters of six starch biosynthesis genes, ZmAGPS1a, ZmAGPL1, ZmGBSSI, ZmSSIIa, ZmISA1, and ZmISA3 in yeast one-hybrid assays. Transient expression assays showed that ZmDOF36 can activate the expression of ZmGBSSI and ZmISA1 in tobacco leaves. Collectively, the results presented here suggest that ZmDOF36 acts as an important regulatory factor in starch synthesis, and could be helpful in devising strategies for modulating starch production in maize endosperm.
Collapse
|
19
|
Li C, Huang Y, Huang R, Wu Y, Wang W. The genetic architecture of amylose biosynthesis in maize kernel. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:688-695. [PMID: 28796926 PMCID: PMC5787843 DOI: 10.1111/pbi.12821] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/14/2017] [Accepted: 08/05/2017] [Indexed: 05/18/2023]
Abstract
Starch is the most abundant storage carbohydrate in maize kernel. The content of amylose and amylopectin confers unique properties in food processing and industrial application. Thus, the resurgent interest has been switched to the study of individual amylose or amylopectin rather than total starch, whereas the enzymatic machinery for amylose synthesis remains elusive. We took advantage of the phenotype of amylose content and the genotype of 9,007,194 single nucleotide polymorphisms from 464 inbred maize lines. The genome-wide association study identified 27 associated loci involving 39 candidate genes that were linked to amylose content including transcription factors, glycosyltransferases, glycosidases, as well as hydrolases. Except the waxy gene that encodes the granule-bound starch synthase, the remaining candidate genes were located in the upstream pathway of amylose synthesis, while the downstream members were already known from prior studies. The linked candidate genes could be transferred to manipulate amylose content and thus add value to maize kernel in the breeding programme.
Collapse
Affiliation(s)
- Changsheng Li
- College of Agriculture and BiologyShanghai Jiaotong UniversityShanghaiChina
- College of AgronomyShenyang Agriculture UniversityShenyangChina
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yongcai Huang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Ruidong Huang
- College of AgronomyShenyang Agriculture UniversityShenyangChina
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Wenqin Wang
- College of Agriculture and BiologyShanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
20
|
Abstract
The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.
Collapse
|
21
|
Wang Y, Li Y, Zhang H, Zhai H, Liu Q, He S. A soluble starch synthase I gene, IbSSI, alters the content, composition, granule size and structure of starch in transgenic sweet potato. Sci Rep 2017; 7:2315. [PMID: 28539660 PMCID: PMC5443758 DOI: 10.1038/s41598-017-02481-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/11/2017] [Indexed: 11/09/2022] Open
Abstract
Soluble starch synthase I (SSI) is a key enzyme in the biosynthesis of plant amylopectin. In this study, the gene named IbSSI, was cloned from sweet potato, an important starch crop. A high expression level of IbSSI was detected in the leaves and storage roots of the sweet potato. Its overexpression significantly increased the content and granule size of starch and the proportion of amylopectin by up-regulating starch biosynthetic genes in the transgenic plants compared with wild-type plants (WT) and RNA interference plants. The frequency of chains with degree of polymerization (DP) 5-8 decreased in the amylopectin fraction of starch, whereas the proportion of chains with DP 9-25 increased in the IbSSI-overexpressing plants compared with WT plants. Further analysis demonstrated that IbSSI was responsible for the synthesis of chains with DP ranging from 9 to 17, which represents a different chain length spectrum in vivo from its counterparts in rice and wheat. These findings suggest that the IbSSI gene plays important roles in determining the content, composition, granule size and structure of starch in sweet potato. This gene may be utilized to improve the content and quality of starch in sweet potato and other plants.
Collapse
Affiliation(s)
- Yannan Wang
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Shaozhen He
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
22
|
Jourda C, Cardi C, Gibert O, Giraldo Toro A, Ricci J, Mbéguié-A-Mbéguié D, Yahiaoui N. Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:1778. [PMID: 27994606 PMCID: PMC5133247 DOI: 10.3389/fpls.2016.01778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/11/2016] [Indexed: 05/24/2023]
Abstract
Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage.
Collapse
Affiliation(s)
- Cyril Jourda
- CIRAD, UMR AGAPMontpellier, France
- CIRAD, UMR PVBMTSaint-Pierre, France
| | | | - Olivier Gibert
- CIRAD, UMR QUALISUDMontpellier, France
- CIRAD, UMR QUALISUDJakarta, Indonesia
| | | | | | | | | |
Collapse
|
23
|
Ahmed Z, Tetlow IJ, Falk DE, Liu Q, Emes MJ. Resistant Starch Content Is Related to Granule Size in Barley. Cereal Chem 2016. [DOI: 10.1094/cchem-02-16-0025-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zaheer Ahmed
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
| | - Ian J. Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Duane E. Falk
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Qiang Liu
- Agriculture and Agri-Food Canada, Food Research Program, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada
| | - Michael J. Emes
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
24
|
Chen GX, Zhou JW, Liu YL, Lu XB, Han CX, Zhang WY, Xu YH, Yan YM. Biosynthesis and Regulation of Wheat Amylose and Amylopectin from Proteomic and Phosphoproteomic Characterization of Granule-binding Proteins. Sci Rep 2016; 6:33111. [PMID: 27604546 PMCID: PMC5015113 DOI: 10.1038/srep33111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/14/2016] [Indexed: 11/09/2022] Open
Abstract
Waxy starch has an important influence on the qualities of breads. Generally, grain weight and yield in waxy wheat (Triticum aestivum L.) are significantly lower than in bread wheat. In this study, we performed the first proteomic and phosphoproteomic analyses of starch granule-binding proteins by comparing the waxy wheat cultivar Shannong 119 and the bread wheat cultivar Nongda 5181. These results indicate that reduced amylose content does not affect amylopectin synthesis, but it causes significant reduction of total starch biosynthesis, grain size, weight and grain yield. Two-dimensional differential in-gel electrophoresis identified 40 differentially expressed protein (DEP) spots in waxy and non-waxy wheats, which belonged mainly to starch synthase (SS) I, SS IIa and granule-bound SS I. Most DEPs involved in amylopectin synthesis showed a similar expression pattern during grain development, suggesting relatively independent amylose and amylopectin synthesis pathways. Phosphoproteome analysis of starch granule-binding proteins, using TiO2 microcolumns and LC-MS/MS, showed that the total number of phosphoproteins and their phosphorylation levels in ND5181 were significantly higher than in SN119, but proteins controlling amylopectin synthesis had similar phosphorylation levels. Our results revealed the lack of amylose did not affect the expression and phosphorylation of the starch granule-binding proteins involved in amylopectin biosynthesis.
Collapse
Affiliation(s)
- Guan-Xing Chen
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Jian-Wen Zhou
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yan-Lin Liu
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiao-Bing Lu
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Cai-Xia Han
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Wen-Ying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, 434025 Jingzhou, China
| | - Yan-Hao Xu
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, 434025 Jingzhou, China
| | - Yue-Ming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, 434025 Jingzhou, China
| |
Collapse
|
25
|
Yangcheng H, Blanco M, Gardner C, Li X, Jane JL. Dosage effects of Waxy gene on the structures and properties of corn starch. Carbohydr Polym 2016; 149:282-8. [DOI: 10.1016/j.carbpol.2016.04.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
26
|
Wang FF, Liu TT, Li QF, An YL, Xie CP, Sun X, Liu K, Deng ZY, Tian JC, Chen JS. QTL mapping of the pasting properties of wheat flour treated by papain digestion. STARCH-STARKE 2016. [DOI: 10.1002/star.201600077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fang-fang Wang
- State Key Laboratory of Crop Biology; Group of Wheat Quality Breeding; College of Agronomy; Shandong Agricultural University; Shandong P. R. China
| | - Tong-tong Liu
- State Key Laboratory of Crop Biology; Group of Wheat Quality Breeding; College of Agronomy; Shandong Agricultural University; Shandong P. R. China
| | - Qing-fang Li
- State Key Laboratory of Crop Biology; Group of Wheat Quality Breeding; College of Agronomy; Shandong Agricultural University; Shandong P. R. China
| | - Yu-ling An
- State Key Laboratory of Crop Biology; Group of Wheat Quality Breeding; College of Agronomy; Shandong Agricultural University; Shandong P. R. China
| | - Chu-peng Xie
- State Key Laboratory of Crop Biology; Group of Wheat Quality Breeding; College of Agronomy; Shandong Agricultural University; Shandong P. R. China
| | - Xiaoxiao Sun
- State Key Laboratory of Crop Biology; Group of Wheat Quality Breeding; College of Agronomy; Shandong Agricultural University; Shandong P. R. China
| | - Kai Liu
- State Key Laboratory of Crop Biology; Group of Wheat Quality Breeding; College of Agronomy; Shandong Agricultural University; Shandong P. R. China
| | - Zhi-ying Deng
- State Key Laboratory of Crop Biology; Group of Wheat Quality Breeding; College of Agronomy; Shandong Agricultural University; Shandong P. R. China
| | - Ji-chun Tian
- State Key Laboratory of Crop Biology; Group of Wheat Quality Breeding; College of Agronomy; Shandong Agricultural University; Shandong P. R. China
| | - Jian-sheng Chen
- State Key Laboratory of Crop Biology; Group of Wheat Quality Breeding; College of Agronomy; Shandong Agricultural University; Shandong P. R. China
| |
Collapse
|
27
|
Yasui Y, Hirakawa H, Ueno M, Matsui K, Katsube-Tanaka T, Yang SJ, Aii J, Sato S, Mori M. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Res 2016; 23:215-24. [PMID: 27037832 PMCID: PMC4909311 DOI: 10.1093/dnares/dsw012] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/20/2016] [Indexed: 01/14/2023] Open
Abstract
Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits.
Collapse
Affiliation(s)
- Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mariko Ueno
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Katsuhiro Matsui
- NARO Kyushu Okinawa Agricultural Research Center, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Tomoyuki Katsube-Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Soo Jung Yang
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Jotaro Aii
- Faculty of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, Akiha-ku, Niigata 956-8603, Japan
| | - Shingo Sato
- Faculty of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, Akiha-ku, Niigata 956-8603, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308 Suematsu, Nonoichi, Ishikawa 912-8836, Japan
| |
Collapse
|
28
|
Bryant RJ, M. Yeater K, McClung AM. Effect of Nitrogen Rate and the Environment on Physicochemical Properties of Selected High-Amylose Rice Cultivars. Cereal Chem 2015. [DOI: 10.1094/cchem-02-15-0035-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rolfe J. Bryant
- Retired from U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, U.S.A. Mention of a trademark or proprietary product in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA
| | | | - Anna M. McClung
- USDA, ARS, Dale Bumpers National Rice Research Center, 2890 Hwy 130 E., Stuttgart, AR 72160, U.S.A
| |
Collapse
|
29
|
Luo J, Jobling SA, Millar A, Morell MK, Li Z. Allelic effects on starch structure and properties of six starch biosynthetic genes in a rice recombinant inbred line population. RICE (NEW YORK, N.Y.) 2015; 8:15. [PMID: 25844120 PMCID: PMC4385112 DOI: 10.1186/s12284-015-0046-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/28/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND The genetic diversity of six starch biosynthetic genes (Wx, SSI, SSIIa, SBEI, SBEIIa and SBEIIb) in indica and japonica rices opens an opportunity to produce a new variety with more favourable grain starch quality. However, there is limited information about the effects of these six gene allele combinations on starch structure and properties. A recombinant inbred line population from a cross between indica and japonica varieties offers opportunities to combine specific alleles of the six genes. RESULTS The allelic (indica vs japonica) effects of six starch biosynthetic genes on starch structure, functional properties, and abundance of granule bound proteins in rice grains were investigated in a common genetic background using a recombinant inbred line population. The indica Wx (Wxi) allele played a major role while indica SSI (SSIi), japonica SSIIa (SSIIaj) and indica SBEI (SBEIi) alleles had minor roles on the increase of amylose content. SSIIaj and japonica SBEIIb (SBEIIbj) alleles had a major and a minor role on high ratio of ∑DP ≤ 10 to ∑DP ≤ 24 fractions (RCL10/24), respectively. Both major alleles (Wxi and SSIIaj) reduced peak viscosity (PV), onset, peak and end gelatinization temperatures (GTs) of amylopectin, and increased amylose-lipid complex dissociation enthalpy compared with their counterpart-alleles, respectively. SBEIIai and SBEIIbj decreased PV, whereas SSIi and SBEIIbj decreased FV. SBEIi reduced setback viscosity and gelatinization enthalpy. RCL10/24 of chain length distribution in amylopectin is negatively correlated with PV and BD of paste property and GTs of thermal properties. We also report RILs with superior starch properties combining Wxi, SSIj, SSIIaj, SBEIi and SBEIIbj alleles. Additionally, a clear relation is drawn to starch biosynthetic gene alleles, starch structure, properties, and abundance of granule bound starch biosynthetic enzymes inside starch granules. CONCLUSIONS Rice Wxi and SSIIaj alleles play major roles, while SSIi, SBEIi, SBEIIai and SBEIIbj alleles have minor roles in the determination of starch properties between indica and japonica rice through starch structural modification. The combination of these alleles is a key factor for starch quality improvement in rice breeding programs. RCL10/24 value is critical for starch structure and property determination.
Collapse
Affiliation(s)
- Jixun Luo
- />CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
- />College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200 Australia
| | - Stephen A Jobling
- />CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
| | - Anthony Millar
- />College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200 Australia
| | - Matthew K Morell
- />CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
- />International Rice Research Institute, Maligaya, Muñoz, Nueva Ecija Philippines
| | - Zhongyi Li
- />CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
| |
Collapse
|
30
|
Brown DC, Cepeda-Cornejo V, Maughan PJ, Jellen EN. Characterization of the Granule-Bound Starch Synthase I Gene in Chenopodium. THE PLANT GENOME 2015; 8:eplantgenome2014.09.0051. [PMID: 33228284 DOI: 10.3835/plantgenome2014.09.0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 06/11/2023]
Abstract
Chenopodium L. is a relatively under-studied genus that includes the cultivated seed crop quinoa (C. quinoa Willd.). Quinoa is an allotetraploid (2n = 4x = 36, AABB genomes) that is cultivated by subsistence farmers and commercial growers in the Andean regions of South America. Approximately 60% of a quinoa seed is starch, a glucose polymer that is an important carbohydrate energy source in the human diet. Seed starch is normally composed of amylose and amylopectin in a 1:3 ratio. The accumulation of the amylose fraction of starch is controlled by a single dominant gene in quinoa, GBSSI. We report the sequencing and characterization of the GBSSI gene in 18 accessions of Chenopodium, including Andean quinoa and the related Mesoamerican chenopod domesticate, C. berlandieri subsp. nuttalliae Saff. Two distinct homeologs (GBSSIa and GBSSIb) were identified in the tetraploid accessions, and 19 different alleles were identified, including three null mutants-one in an accession of quinoa and two in a waxy landrace of C. berlandieri subsp. nuttalliae. Expression analysis of the null mutants revealed that GBSSIa and GBSSIb were both strongly expressed late in seed development. GBSSI sequences were used to analyze the phylogenetic relationships between quinoa and other members of the Chenopodium genus. This study and the discovery of Chenopodium GBSSI null-mutants will assist in the development of new Chenopodium crops with novel starches.
Collapse
Affiliation(s)
- Douglass C Brown
- Dep. of Plant and Wildlife Sciences 4105 LSB, Brigham Young Univ., Provo, UT, 84602
| | - Veronica Cepeda-Cornejo
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270, Guadalajara, Jalisco, México
| | - Peter J Maughan
- Dep. of Plant and Wildlife Sciences 4105 LSB, Brigham Young Univ., Provo, UT, 84602
| | - Eric N Jellen
- Dep. of Plant and Wildlife Sciences 4105 LSB, Brigham Young Univ., Provo, UT, 84602
| |
Collapse
|
31
|
Luo J, Jobling SA, Millar A, Morell MK, Li Z. Allelic effects on starch structure and properties of six starch biosynthetic genes in a rice recombinant inbred line population. RICE (NEW YORK, N.Y.) 2015; 8:15. [PMID: 25844120 DOI: 10.1186./s12284-015-0046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/28/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND The genetic diversity of six starch biosynthetic genes (Wx, SSI, SSIIa, SBEI, SBEIIa and SBEIIb) in indica and japonica rices opens an opportunity to produce a new variety with more favourable grain starch quality. However, there is limited information about the effects of these six gene allele combinations on starch structure and properties. A recombinant inbred line population from a cross between indica and japonica varieties offers opportunities to combine specific alleles of the six genes. RESULTS The allelic (indica vs japonica) effects of six starch biosynthetic genes on starch structure, functional properties, and abundance of granule bound proteins in rice grains were investigated in a common genetic background using a recombinant inbred line population. The indica Wx (Wxi) allele played a major role while indica SSI (SSIi), japonica SSIIa (SSIIaj) and indica SBEI (SBEIi) alleles had minor roles on the increase of amylose content. SSIIaj and japonica SBEIIb (SBEIIbj) alleles had a major and a minor role on high ratio of ∑DP ≤ 10 to ∑DP ≤ 24 fractions (RCL10/24), respectively. Both major alleles (Wxi and SSIIaj) reduced peak viscosity (PV), onset, peak and end gelatinization temperatures (GTs) of amylopectin, and increased amylose-lipid complex dissociation enthalpy compared with their counterpart-alleles, respectively. SBEIIai and SBEIIbj decreased PV, whereas SSIi and SBEIIbj decreased FV. SBEIi reduced setback viscosity and gelatinization enthalpy. RCL10/24 of chain length distribution in amylopectin is negatively correlated with PV and BD of paste property and GTs of thermal properties. We also report RILs with superior starch properties combining Wxi, SSIj, SSIIaj, SBEIi and SBEIIbj alleles. Additionally, a clear relation is drawn to starch biosynthetic gene alleles, starch structure, properties, and abundance of granule bound starch biosynthetic enzymes inside starch granules. CONCLUSIONS Rice Wxi and SSIIaj alleles play major roles, while SSIi, SBEIi, SBEIIai and SBEIIbj alleles have minor roles in the determination of starch properties between indica and japonica rice through starch structural modification. The combination of these alleles is a key factor for starch quality improvement in rice breeding programs. RCL10/24 value is critical for starch structure and property determination.
Collapse
Affiliation(s)
- Jixun Luo
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia ; College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200 Australia
| | - Stephen A Jobling
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
| | - Anthony Millar
- College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200 Australia
| | - Matthew K Morell
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia ; International Rice Research Institute, Maligaya, Muñoz, Nueva Ecija Philippines
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
| |
Collapse
|
32
|
Baranov YO, Slischuk GI, Volkova NE, Sivolap YM. Bioinformatic analysis of maize granule-bound starch synthase gene. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
FASAHAT PARVIZ, RAHMAN SADEQUR, RATNAM WICKNESWARI. Genetic controls on starch amylose content in wheat and rice grains. J Genet 2014; 93:279-92. [DOI: 10.1007/s12041-014-0325-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Tracking sulfur and phosphorus within single starch granules using synchrotron X-ray microfluorescence mapping. Biochim Biophys Acta Gen Subj 2014; 1840:113-9. [DOI: 10.1016/j.bbagen.2013.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/24/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022]
|
35
|
Wang X, Feng B, Xu Z, Sestili F, Zhao G, Xiang C, Lafiandra D, Wang T. Identification and characterization of granule bound starch synthase I (GBSSI) gene of tartary buckwheat (Fagopyrum tataricum Gaertn.). Gene 2013; 534:229-35. [PMID: 24211386 DOI: 10.1016/j.gene.2013.10.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/08/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is increasingly considered as an important functional food material because of its rich nutraceutical compounds. Reserve starch is the major component of tartary buckwheat seed. However, the gene sequences and the molecular mechanism of tartary buckwheat starch synthesis are unknown so far. In this study, the complete genomic sequence and full-size cDNA coding tartary buckwheat granule-bound starch synthase I (FtGBSSI), which is responsible for amylose synthesis, were isolated and analyzed. The genomic sequence of the FtGBSSI contained 3947 nucleotides and was composed of 14 exons and 13 introns. The cDNA coding sequence of FtGBSSI shared 63.3%-75.1% identities with those of dicots and 56.6%-57.5% identities with monocots (Poaceae). In deduced amino acid sequence of FtGBSSI, eight motifs conserved among plant starch synthases were identified. A cleavage at the site IVC↓G of FtGBSSI protein produces the chloroplast transit sequence of 78 amino acids and the mature protein of 527 amino acids. The FtGBSSI mature protein showed an identity of 73.4%-77.8% with dicot plants, and 67.6%-70.4% with monocot plants (Poaceae). The mature protein was composed of 20 α-helixes and 16 β-strands, and folds into two main domains, N- and C-terminal domains. The critical residues which are involved in ADP and sugar binding were predicted. These results will be useful to modulate starch composition of buckwheat kernels with the aim to produce novel improved varieties in future breeding programs.
Collapse
Affiliation(s)
- Xun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Francesco Sestili
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Viterbo, Italy
| | - Guojun Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chao Xiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Domenico Lafiandra
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Viterbo, Italy
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
36
|
Ketthaisong D, Suriharn B, Tangwongchai R, Lertrat K. Changes in physicochemical properties of waxy corn starches at different stages of harvesting. Carbohydr Polym 2013; 98:241-8. [DOI: 10.1016/j.carbpol.2013.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/10/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
|
37
|
Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res 2013; 22:1133-42. [DOI: 10.1007/s11248-013-9717-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/28/2013] [Indexed: 12/22/2022]
|
38
|
Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules. Biochem J 2012; 448:373-87. [DOI: 10.1042/bj20120573] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The sugary-2 mutation in maize (Zea mays L.) is a result of the loss of catalytic activity of the endosperm-specific SS (starch synthase) IIa isoform causing major alterations to amylopectin architecture. The present study reports a biochemical and molecular analysis of an allelic variant of the sugary-2 mutation expressing a catalytically inactive form of SSIIa and sheds new light on its central role in protein–protein interactions and determination of the starch granule proteome. The mutant SSIIa revealed two amino acid substitutions, one being a highly conserved residue (Gly522→Arg) responsible for the loss of catalytic activity and the inability of the mutant SSIIa to bind to starch. Analysis of protein–protein interactions in sugary-2 amyloplasts revealed the same trimeric assembly of soluble SSI, SSIIa and SBE (starch-branching enzyme) IIb found in wild-type amyloplasts, but with greatly reduced activities of SSI and SBEIIb. Chemical cross-linking studies demonstrated that SSIIa is at the core of the complex, interacting with SSI and SBEIIb, which do not interact directly with each other. The sugary-2 mutant starch granules were devoid of amylopectin-synthesizing enzymes, despite the fact that the respective affinities of SSI and SBEIIb from sugary-2 for amylopectin were the same as observed in wild-type. The data support a model whereby granule-bound proteins involved in amylopectin synthesis are partitioned into the starch granule as a result of their association within protein complexes, and that SSIIa plays a crucial role in trafficking SSI and SBEIIb into the granule matrix.
Collapse
|
39
|
Abstract
Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions.
Collapse
Affiliation(s)
- Sebastian Streb
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Samuel C. Zeeman
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
40
|
Farinha AP, Irar S, de Oliveira E, Oliveira MM, Pagès M. Novel clues on abiotic stress tolerance emerge from embryo proteome analyses of rice varieties with contrasting stress adaptation. Proteomics 2011; 11:2389-405. [DOI: 10.1002/pmic.201000570] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 01/01/2023]
|
41
|
CHEN JS, DENG ZY, WU P, TIAN JC, XIE QG. Effect of Gluten on Pasting Properties of Wheat Starch. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60283-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Debiton C, Bancel E, Chambon C, Rhazi L, Branlard G. Effect of the three waxy null alleles on enzymes associated to wheat starch granules using proteomic approach. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Marsolais F, Pajak A, Yin F, Taylor M, Gabriel M, Merino DM, Ma V, Kameka A, Vijayan P, Pham H, Huang S, Rivoal J, Bett K, Hernández-Sebastià C, Liu Q, Bertrand A, Chapman R. Proteomic analysis of common bean seed with storage protein deficiency reveals up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and down-regulation of the secretory pathway. J Proteomics 2010; 73:1587-600. [DOI: 10.1016/j.jprot.2010.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 02/04/2023]
|
44
|
Ding XZ, Wang BG, Gao QH, Zhang Q, Yan GQ, Duan K, Huang JH. Molecular diversity and differential expression of starch-synthesis genes in developing kernels of three maize inbreds. PLANT CELL REPORTS 2009; 28:1487-1495. [PMID: 19633858 DOI: 10.1007/s00299-009-0748-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/01/2009] [Accepted: 07/10/2009] [Indexed: 05/28/2023]
Abstract
The maize genome remains abundant in molecular diversity, and the rich genetic diversity of maize starch-synthesis genes is crucial for controlling various grain traits. To explore the unique mechanism controlling the advantageous waxy trait and characterize the molecular feature of genes relevant to starch composition in two elite waxy inbreds, expression profiling combined with gene organization analysis was performed in them as compared to one normal inbred. Genotype-specific expression patterns were observed for most genes studied. The waxy inbreds were shown to contain mutations in multiple starch-synthesis genes, namely gbssI (wx), gbssIIb and isa2 (potentially isa3 too).The mis-splicing events directly accounted for wx loss of function. Contrarily, disruption of 5' and 3' transcript sequence may contribute to the absence of GbssIIb and Isa2 transcripts in waxy inbreds, respectively. Besides, the splicing of Sugary1 transcript was developmentally regulated in the normal inbred, and DNA polymorphisms were detected within SSIIIb-1 gene in waxy inbreds.
Collapse
Affiliation(s)
- Xiang-Zhen Ding
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Biological Technique, Shanghai Academy of Agricultural Sciences (SAAS), Beidi Road 2901, Minhang Zone, 201106 Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Utrilla-Coello RG, Agama-Acevedo E, de la Rosa APB, Martinez-Salgado JL, Rodriguez-Ambriz SL, Bello-Perez LA. Blue maize: morphology and starch synthase characterization of starch granule. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2009; 64:18-24. [PMID: 19153833 DOI: 10.1007/s11130-008-0106-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of pigmented maize varieties has increased due to their high anthocyanins content, but very few studies are reported about the starch properties of these grains. The aim of this work was to isolate the starch granules from pigmented blue maize and carry out the morphological, physicochemical, and biochemical characterization studies. The proximate composition of starch granules showed high protein contents, after purification, the blue maize starch presented lower protein amount than starch from white maize (control). Although the purity of starch granules was increased, the damaged starch (determined for the Maltase cross absence) was also increased. Scanning electron microscopy showed the presence of some pores and channels in the blue maize starch. The electrophoretic protein profiles showed differences in the bands that correspond to the enzymes involved in the starch biosynthesis; these differences could explain the variation in morphological characteristics of blue maize starches against starch from white maize.
Collapse
Affiliation(s)
- Rubi G Utrilla-Coello
- Centro de Desarrollo de Productos Bióticos del IPN., Km 8.5 carr Yautepec-Jojutla, colonia San Isidro, P.O. Box 24, 62731, Yautepec, Morelos, Mexico
| | | | | | | | | | | |
Collapse
|
47
|
Grimaud F, Rogniaux H, James MG, Myers AM, Planchot V. Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3395-406. [PMID: 18653693 PMCID: PMC2529236 DOI: 10.1093/jxb/ern198] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/09/2008] [Accepted: 06/24/2008] [Indexed: 05/20/2023]
Abstract
In addition to the exclusively granule-bound starch synthase GBSSI, starch granules also bind significant proportions of other starch biosynthetic enzymes, particularly starch synthases (SS) SSI and SSIIa, and starch branching enzyme (BE) BEIIb. Whether this association is a functional aspect of starch biosynthesis, or results from non-specific entrapment during amylopectin crystallization, is not known. This study utilized genetic, immunological, and proteomic approaches to investigate comprehensively the proteome and phosphoproteome of Zea mays endosperm starch granules. SSIII, BEI, BEIIa, and starch phosphorylase were identified as internal granule-associated proteins in maize endosperm, along with the previously identified proteins GBSS, SSI, SSIIa, and BEIIb. Genetic analyses revealed three instances in which granule association of one protein is affected by the absence of another biosynthetic enzyme. First, eliminating SSIIa caused reduced granule association of SSI and BEIIb, without affecting GBSS abundance. Second, eliminating SSIII caused the appearance of two distinct electrophoretic mobility forms of BEIIb, whereas only a single migration form of BEIIb was observed in wild type or any other mutant granules examined. Third, eliminating BEIIb caused significant increases in the abundance of BEI, BEIIa, SSIII, and starch phosphorylase in the granule, without affecting SSI or SSIIa. Analysis of the granule phosphoproteome with a phosphorylation-specific dye indicated that GBSS, BEIIb, and starch phosphorylase are all phosphorylated as they occur in the granule. These results suggest the possibility that starch metabolic enzymes located in granules are regulated by post-translational modification and/or protein-protein interactions.
Collapse
Affiliation(s)
- Florent Grimaud
- Institut National de la Recherche Agronomique, Unité de Recherche Biopolymères, Interactions, Assemblages, BP 71627, F-44316 Nantes Cedex 03, France
| | - Hélène Rogniaux
- Institut National de la Recherche Agronomique, Unité de Recherche Biopolymères, Interactions, Assemblages, BP 71627, F-44316 Nantes Cedex 03, France
| | - Martha G. James
- Department of Biochemistry, Biophysics, and Molecular Biology, 1210 Molecular Biology Building, Iowa State University, Ames, IA 50011 USA
| | - Alan M. Myers
- Department of Biochemistry, Biophysics, and Molecular Biology, 1210 Molecular Biology Building, Iowa State University, Ames, IA 50011 USA
| | - Véronique Planchot
- Institut National de la Recherche Agronomique, Unité de Recherche Biopolymères, Interactions, Assemblages, BP 71627, F-44316 Nantes Cedex 03, France
| |
Collapse
|
48
|
|
49
|
Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics 2008; 178:2373-87. [PMID: 18245855 DOI: 10.1534/genetics.108.087205] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The endosymbiosis event resulting in the plastid of photosynthetic eukaryotes was accompanied by the appearance of a novel form of storage polysaccharide in Rhodophyceae, Glaucophyta, and Chloroplastida. Previous analyses indicated that starch synthesis resulted from the merging of the cyanobacterial and the eukaryotic storage polysaccharide metabolism pathways. We performed a comparative bioinformatic analysis of six algal genome sequences to investigate this merger. Specifically, we analyzed two Chlorophyceae, Chlamydomonas reinhardtii and Volvox carterii, and four Prasinophytae, two Ostreococcus strains and two Micromonas pusilla strains. Our analyses revealed a complex metabolic pathway whose intricacies and function seem conserved throughout the green lineage. Comparison of this pathway to that recently proposed for the Rhodophyceae suggests that the complexity that we observed is unique to the green lineage and was generated when the latter diverged from the red algae. This finding corresponds well with the plastidial location of starch metabolism in Chloroplastidae. In contrast, Rhodophyceae and Glaucophyta produce and store starch in the cytoplasm and have a lower complexity pathway. Cytoplasmic starch synthesis is currently hypothesized to represent the ancestral state of storage polysaccharide metabolism in Archaeplastida. The retargeting of components of the cytoplasmic pathway to plastids likely required a complex stepwise process involving several rounds of gene duplications. We propose that this relocation of glucan synthesis to the plastid facilitated evolution of chlorophyll-containing light-harvesting complex antennae by playing a protective role within the chloroplast.
Collapse
|
50
|
Fujita N, Goto S, Yoshida M, Suzuki E, Nakamura Y. The Function of Rice Starch Synthase I Expressed in Escherichia coli. J Appl Glycosci (1999) 2008. [DOI: 10.5458/jag.55.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|