1
|
Bai X, Dee R, Mangum KD, Mack CP, Taylor JM. RhoA signaling and blood pressure: The consequence of failing to “Tone it Down”. World J Hypertens 2016; 6:18-35. [DOI: 10.5494/wjh.v6.i1.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled high blood pressure is a major risk factor for heart attack, stroke, and kidney failure and contributes to an estimated 25% of deaths worldwide. Despite numerous treatment options, estimates project that reasonable blood pressure (BP) control is achieved in only about half of hypertensive patients. Improvements in the detection and management of hypertension will undoubtedly be accomplished through a better understanding of the complex etiology of this disease and a more comprehensive inventory of the genes and genetic variants that influence BP regulation. Recent studies (primarily in pre-clinical models) indicate that the small GTPase RhoA and its downstream target, Rho kinase, play an important role in regulating BP homeostasis. Herein, we summarize the underlying mechanisms and highlight signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations. Finally, we summarize the current (albeit limited) clinical data on the efficacy of targeting the RhoA pathway in hypertensive patients.
Collapse
|
2
|
Ando K, Kondo F, Yamaguchi N, Tachi M, Fukayama M, Yoshikawa K, Gosho M, Fujiwara Y, Okada S. Centrally administered isoproterenol induces sympathetic outflow via brain prostaglandin E2-mediated mechanisms in rats. Auton Neurosci 2014; 189:1-7. [PMID: 25549851 DOI: 10.1016/j.autneu.2014.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 01/27/2023]
Abstract
Brain β-adrenoceptor stimulation can induce elevations of plasma levels of noradrenaline. However, there have been no detailed studies related to signaling pathways downstream of β-adrenoceptors responsible for central sympathetic outflow. In the present study, we pharmacologically examined the possibility that centrally administered isoproterenol can induce elevations of plasma noradrenaline levels in a brain prostaglandin-dependent manner. In addition, we also examined whether or not intracerebroventricular administration of isoproterenol could release endogenously synthesized prostaglandin (PG) E2 in the hypothalamic paraventricular nucleus (PVN) by using the brain microdialysis technique combined with liquid chromatography-ion trap tandem mass spectrometry (LC-ITMS(n)). Under urethane anesthesia, a femoral venous line was inserted for infusion of saline and a femoral arterial line was inserted for collecting blood samples. Next, animals were placed in a stereotaxic apparatus for application of test agents. Catecholamines in the plasma were extracted by alumina absorption and were assayed by high-performance liquid chromatography with electrochemical detection. Quantification of PGE2 in rat PVN microdialysates was performed by the LC-ITMS(n) method. We demonstrated that centrally administered isoproterenol-induced elevations of plasma noradrenaline could be mediated via activation of β-adrenoceptors and the downstream phospholipase A2-cyclooxygenase pathway. Furthermore, PGE2 in the PVN and the PGE2 receptor EP3 subtype appear to play an important role in the process. Our results suggest that central isoproterenol-induced sympathetic outflow is mediated via brain PGE2 in a PGE2 receptor EP3 subtype-dependent manner.
Collapse
Affiliation(s)
- Kazuo Ando
- Department of Anesthesiology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Fumio Kondo
- Department of Pharmacology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masahiko Tachi
- Department of Pharmacology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Minoru Fukayama
- Advanced Medical Research Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kazuhiro Yoshikawa
- Advanced Medical Research Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Masahiko Gosho
- Advanced Medical Research Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yoshihiro Fujiwara
- Department of Anesthesiology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Shoshiro Okada
- Department of Pharmacology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan.
| |
Collapse
|
3
|
Loirand G, Pacaud P. Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension. Small GTPases 2014; 5:1-10. [PMID: 25496262 DOI: 10.4161/sgtp.28846] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proper regulation of arterial blood pressure is essential to allow permanent adjustment of nutrient and oxygen supply to organs and tissues according to their need. This is achieved through highly coordinated regulation processes controlling vascular resistance through modulation of arterial smooth muscle contraction, cardiac output, and kidney function. Members of the Rho family of small GTPases, in particular RhoA and Rac1, have been identified as key signaling molecules playing important roles in several different steps of these regulatory processes. Here, we review the current state of knowledge regarding the involvement of Rho GTPase signaling in the control of blood pressure and the pathogenesis of hypertension. We describe how knockout models in mouse, genetic, and pharmacological studies in human have been useful to address this question.
Collapse
Key Words
- AT1 receptor, type 1 Ang II receptor
- Ang II, angiotensine II
- ENaCs, epithelial Na+ channels
- Et-1, endothelin-1
- GAPs, GTPase-activating proteins
- GEFs, exchange factors
- GTPase activating proteins
- GTPases
- MLC, 20 kDa-myosin light chain
- MLCK, MLC kinase
- MLCP, MLC phosphatase
- NA, noradrenaline
- NHE3, sodium-hydrogen exchanger isoform 3.
- NO, nitric oxide
- NTS, nucleus tractus solitaries
- PDE5, type 5 phosphodiesterase
- PKG, cGMP-dependent protein kinase
- Rock, Rho-kinase
- SHR, spontaneously hypertensive rats
- SHRSP, stroke-prone SHR
- TxA2, thromboxane A2
- artery
- blood pressure
- cardiovascular
- eNOS, endothelial NO synthase
- exchange factors
- signal transduction
- small G proteins
- smooth muscle
- vasoconstriction
Collapse
|
4
|
Hamlyn JM, Linde CI, Gao J, Huang BS, Golovina VA, Blaustein MP, Leenen FHH. Neuroendocrine humoral and vascular components in the pressor pathway for brain angiotensin II: a new axis in long term blood pressure control. PLoS One 2014; 9:e108916. [PMID: 25275393 PMCID: PMC4183521 DOI: 10.1371/journal.pone.0108916] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/26/2014] [Indexed: 11/29/2022] Open
Abstract
Central nervous system (CNS) administration of angiotensin II (Ang II) raises blood pressure (BP). The rise in BP reflects increased sympathetic outflow and a slower neuromodulatory pressor mechanism mediated by CNS mineralocorticoid receptors (MR). We investigated the hypothesis that the sustained phase of hypertension is associated also with elevated circulating levels of endogenous ouabain (EO), and chronic stimulation of arterial calcium transport proteins including the sodium-calcium exchanger (NCX1), the type 6 canonical transient receptor potential protein (TRPC6), and the sarcoplasmic reticulum calcium ATPase (SERCA2). Wistar rats received a chronic intra-cerebroventricular infusion of vehicle (C) or Ang II (A, 2.5 ng/min, for 14 days) alone or combined with the MR blocker, eplerenone (A+E, 5 µg/day), or the aldosterone synthase inhibitor, FAD286 (A+F, 25 µg/day). Conscious mean BP increased (P<0.05) in A (123±4 mm Hg) vs all other groups. Blood, pituitary and adrenal samples were taken for EO radioimmunoassay (RIA), and aortas for NCX1, TRPC6 and SERCA2 immunoblotting. Central infusion of Ang II raised plasma EO (0.58±0.08 vs C 0.34±0.07 nM (P<0.05), but not in A + E and A + F groups as confirmed by off-line liquid chromatography (LC)-RIA and LC-multistage mass spectrometry. Two novel isomers of EO were elevated by Ang II; the second less polar isomer increased >50-fold in the A+F group. Central Ang II increased arterial expression of NCX1, TRPC6 and SERCA2 (2.6, 1.75 and 3.7-fold, respectively; P<0.01)) but not when co-infused with E or F. Adrenal and pituitary EO were unchanged. We conclude that brain Ang II activates a CNS-humoral axis involving plasma EO. The elevated EO reprograms peripheral ion transport pathways known to control arterial Na+ and Ca2+ homeostasis; this increases contractility and augments sympathetic effects. The new axis likely contributes to the chronic pressor effect of brain Ang II.
Collapse
Affiliation(s)
- John M. Hamlyn
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
- * E-mail:
| | - Cristina I. Linde
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Junjie Gao
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Bing S. Huang
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Vera A. Golovina
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Mordecai P. Blaustein
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | | |
Collapse
|
5
|
Jia Y, Mingo GG, Hunter JC, Lieber GB, Palamanda JR, Mei H, Boyce CW, Koss MC, Yu Y, Cicmil M, Hey JA, McLeod RL. Pharmacological evaluation of selective α2c-adrenergic agonists in experimental animal models of nasal congestion. J Pharmacol Exp Ther 2014; 349:75-84. [PMID: 24492651 DOI: 10.1124/jpet.113.210666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nasal congestion is one of the most troublesome symptoms of many upper airways diseases. We characterized the effect of selective α2c-adrenergic agonists in animal models of nasal congestion. In porcine mucosa tissue, compound A and compound B contracted nasal veins with only modest effects on arteries. In in vivo experiments, we examined the nasal decongestant dose-response characteristics, pharmacokinetic/pharmacodynamic relationship, duration of action, potential development of tolerance, and topical efficacy of α2c-adrenergic agonists. Acoustic rhinometry was used to determine nasal cavity dimensions following intranasal compound 48/80 (1%, 75 µl). In feline experiments, compound 48/80 decreased nasal cavity volume and minimum cross-sectional areas by 77% and 40%, respectively. Oral administration of compound A (0.1-3.0 mg/kg), compound B (0.3-5.0 mg/kg), and d-pseudoephedrine (0.3 and 1.0 mg/kg) produced dose-dependent decongestion. Unlike d-pseudoephedrine, compounds A and B did not alter systolic blood pressure. The plasma exposure of compound A to produce a robust decongestion (EC(80)) was 500 nM, which related well to the duration of action of approximately 4.0 hours. No tolerance to the decongestant effect of compound A (1.0 mg/kg p.o.) was observed. To study the topical efficacies of compounds A and B, the drugs were given topically 30 minutes after compound 48/80 (a therapeutic paradigm) where both agents reversed nasal congestion. Finally, nasal-decongestive activity was confirmed in the dog. We demonstrate that α2c-adrenergic agonists behave as nasal decongestants without cardiovascular actions in animal models of upper airway congestion.
Collapse
Affiliation(s)
- Yanlin Jia
- Departments of In Vivo Pharmacology (G.G.M., J.C.H., G.B.L., M.C., J.A.H., R.L.M.) and Immunology (Y.J.), Merck Research Laboratories, Boston, Massachusetts; Departments of Pharmacokinetics (J.R.P., H.M.) and Chemistry (C.W.B.), Merck Research Laboratories, Rahway, New Jersey; and Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma (M.C.K., Y.Y.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Priviero FBM, Teixeira CE, Toque HAF, Claudino MA, Webb RC, De Nucci G, Zanesco A, Antunes E. Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade. Clin Exp Pharmacol Physiol 2007; 33:448-55. [PMID: 16700877 DOI: 10.1111/j.1440-1681.2006.04386.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Propranolol has been prescribed successfully to patients with cardiovascular diseases, but the exact mechanisms by which it reduces peripheral vascular resistance have been poorly investigated. 2. The present study was designed to investigate the relaxing effects of propranolol in the rat isolated aorta and mesenteric artery, focusing on the contribution of the nitric oxide (NO)-cGMP pathway and calcium entry blockade. Relaxation responses to propranolol were obtained in precontracted rat aortic and mesenteric artery rings. 3. DL-Propranolol (10-100 micromol/L) produced concentration-dependent relaxations in the aorta and mesenteric artery rings with intact endothelium. The isomers D- and L-propranolol produced relaxation responses that were equipotent to the racemic mixture. 4. Metoprolol (10-100 micromol/L) produced slight relaxations, whereas atenolol (10-100 micromol/L) had no relaxant activity. 5. The NO inhibitor N(G)-nitro-L-arginine methyl ester (100 micromol/L) and the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (1 micromol/L), as well as removal of the endothelium, significantly reduced the relaxation responses induced by the lower concentrations of propranolol without affecting maximal responses. In addition, DL-propranolol markedly increased cGMP levels in endothelium-intact preparations. 6. In Ca(2+)-free Krebs' solution, DL-propranolol (10-100 micromol/L) caused marked rightward shift in the concentration-response curves to CaCl(2), with a decrease of maximal responses in tissues with either intact or denuded endothelium. Nifedipine (1 micromol/L) in combination with DL-propranolol virtually abolished the CaCl(2)-induced contractile responses. 7. The relaxation responses induced by DL-propranolol were significantly reduced in aortic and mesenteric rings precontracted with phorbol-12,13-dibutyrate (1 micromol/L). 8. In conclusion, DL-propranolol relaxes arterial smooth muscle by mechanisms involving activation of the NO-cGMP pathway and calcium influx blockade, independent of beta-adrenoceptor blockade.
Collapse
Affiliation(s)
- Fernanda B M Priviero
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Watanabe Y, Huang YS, Simmons VA, Horrobin DF. The effect of dietary n-6 and n-3 polyunsaturated fatty acids on blood pressure and tissue fatty acid composition in spontaneously hypertensive rats. Lipids 1989; 24:638-44. [PMID: 2779368 DOI: 10.1007/bf02535081] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Effects of dietary n-6 and n-3 fatty acids (FAs) on blood pressure (BP) and tissue phospholipid (PL) FA composition in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats were compared. Male weanling SHR and WKY were fed a fat-free semisynthetic diet supplemented with 10% (w/w) fats containing (a) 78% 18:2n-6 (LA-rich), (b) 20% LA and 55% 18:3n-3 (LN-rich), or (c) 11% LA and 3% LN (CON) for seven weeks. Dietary fats did not affect the BP elevation, but significantly altered the FA composition of brain, adrenal gland, renal medulla and cortex PL in SHR. The LA-rich diet increased n-6 FA while it reduced n-3 FA levels. The levels of 20:4n-6 were not significantly different between animals fed the LA-rich and the CON diets. LN-rich diet increased the levels of n-3 FAs, while it reduced those of n-6 FAs. However, the extent of change was significantly less in SHR than in WKY. In all dietary groups, SHR, as compared to WKY, had a relatively higher level of the 2 series prostaglandin (PG) precursor, 20:4n-6, and a relatively lower level of the 1 and 3 series PG precursors, 20:3n-6 and 20:5n-3. The possibility that the unbalanced eicosanoid FA precursor levels might contribute to the development of hypertension in this animal model is discussed.
Collapse
Affiliation(s)
- Y Watanabe
- Efamol Research Institute, Kentville, Nova Scotia, Canada
| | | | | | | |
Collapse
|