1
|
Maksymchuk N, Sakurai A, Cox DN, Cymbalyuk GS. Cold-Temperature Coding with Bursting and Spiking Based on TRP Channel Dynamics in Drosophila Larva Sensory Neurons. Int J Mol Sci 2023; 24:14638. [PMID: 37834085 PMCID: PMC10572325 DOI: 10.3390/ijms241914638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Temperature sensation involves thermosensitive TRP (thermoTRP) and non-TRP channels. Drosophila larval Class III (CIII) neurons serve as the primary cold nociceptors and express a suite of thermoTRP channels implicated in noxious cold sensation. How CIII neurons code temperature remains unclear. We combined computational and electrophysiological methods to address this question. In electrophysiological experiments, we identified two basic cold-evoked patterns of CIII neurons: bursting and spiking. In response to a fast temperature drop to noxious cold, CIII neurons distinctly mark different phases of the stimulus. Bursts frequently occurred along with the fast temperature drop, forming a peak in the spiking rate and likely coding the high rate of the temperature change. Single spikes dominated at a steady temperature and exhibited frequency adaptation following the peak. When temperature decreased slowly to the same value, mainly spiking activity was observed, with bursts occurring sporadically throughout the stimulation. The spike and the burst frequencies positively correlated with the rate of the temperature drop. Using a computational model, we explain the distinction in the occurrence of the two CIII cold-evoked patterns bursting and spiking using the dynamics of a thermoTRP current. A two-parameter activity map (Temperature, constant TRP current conductance) marks parameters that support silent, spiking, and bursting regimes. Projecting on the map the instantaneous TRP conductance, governed by activation and inactivation processes, reflects temperature coding responses as a path across silent, spiking, or bursting domains on the map. The map sheds light on how various parameter sets for TRP kinetics represent various types of cold-evoked responses. Together, our results indicate that bursting detects the high rate of temperature change, whereas tonic spiking could reflect both the rate of change and magnitude of steady cold temperature.
Collapse
Affiliation(s)
- Natalia Maksymchuk
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Gennady S. Cymbalyuk
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
- Department of Biology, Georgia State University, Atlanta, GA 30302-5030, USA
| |
Collapse
|
2
|
Braun HA. Stochasticity Versus Determinacy in Neurobiology: From Ion Channels to the Question of the "Free Will". Front Syst Neurosci 2021; 15:629436. [PMID: 34122020 PMCID: PMC8190656 DOI: 10.3389/fnsys.2021.629436] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
If one accepts that decisions are made by the brain and that neuronal mechanisms obey deterministic physical laws, it is hard to deny what some brain researchers postulate, such as "We do not do what we want, but we want what we do" and "We should stop talking about freedom. Our actions are determined by physical laws." This point of view has been substantially supported by spectacular neurophysiological experiments demonstrating action-related brain activity (readiness potentials, blood oxygen level-dependent signals) occurring up to several seconds before an individual becomes aware of his/her decision to perform the action. This report aims to counter the deterministic argument for the absence of free will by using experimental data, supplemented by computer simulations, to demonstrate that biological systems, specifically brain functions, are built on principle randomness, which is introduced already at the lowest level of neuronal information processing, the opening and closing of ion channels. Switching between open and closed states follows physiological laws but also makes use of randomness, which is apparently introduced by Brownian motion - principally unavoidable under all life-compatible conditions. Ion-channel stochasticity, manifested as noise, function is not smoothed out toward higher functional levels but can even be amplified by appropriate adjustment of the system's non-linearities. Examples shall be given to illustrate how stochasticity can propagate from ion channels to single neuron action potentials to neuronal network dynamics to the interactions between different brain nuclei up to the control of autonomic functions. It is proposed that this intrinsic stochasticity helps to keep the brain in a flexible state to explore diverse alternatives as a prerequisite of free decision-making.
Collapse
Affiliation(s)
- Hans Albert Braun
- Neurodynamics Group, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
3
|
Korogod SM, Maksymchuk NV, Demianenko LE, Vlasov OO, Cymbalyuk GS. Adverse Modulation of the Firing Patterns of Cold Receptors by Volatile Anesthetics Affecting Activation of TRPM8 Channels: a Modeling Study. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Effects of thermal stimulation on neurons and astrocytes cultured from the rat median preoptic nucleus. Neuroreport 2019; 29:1468-1472. [PMID: 30222723 DOI: 10.1097/wnr.0000000000001134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Warming or cooling of the median preoptic nucleus (MnPO) in-vivo evokes appropriate thermoregulatory responses. In the present study, we aimed to investigate whether single neurons (and astrocytes) of primary rat MnPO cell cultures maintain properties, which are consistent with their putative role within the central thermoregulatory structures. Using the fura-2 ratio imaging technique, we therefore measured changes of intracellular Ca concentrations ([Ca]i) in neurons of rat MnPO primary cultures stimulated by rapid cooling from 37 to 25°C, or warming from 37 to 45°C, or glutamate, the transmitter which transfers thermal information to MnPO neurons. In the first experiment, we tested the responses to external cooling in a group of 212 neurons. Overall, 165 of these neurons were responsive to stimulation with glutamate; just four of them responded to the cold-stimulus with an increase of [Ca]i, and only one of these neurons was responsive to stimulation with menthol. In the second experiment, 24 of 327 neurons and 23 of 241 astrocytes responded to external warming with quick and pronounced Ca signals. Another 33 (10%) neurons showed a moderate and slowly developing increase of [Ca]i during the warming, which reflected the temperature changes in the chamber. These data correspond to properties of MnPO neurons upon thermal stimulation obtained by other experimental approaches. Primary cultures derived from the rat MnPO can thus be used to investigate neuronal thermosensitive properties and their possible modulation by other stimuli.
Collapse
|
5
|
Leisengang S, Ott D, Murgott J, Gerstberger R, Rummel C, Roth J. Primary Cultures from Rat Dorsal Root Ganglia: Responses of Neurons and Glial Cells to Somatosensory or Inflammatory Stimulation. Neuroscience 2018; 394:1-13. [PMID: 30342197 DOI: 10.1016/j.neuroscience.2018.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/11/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
Primary cultures of rat dorsal root ganglia (DRG) consist of neurons, satellite glial cells and a moderate number of macrophages. Measurements of increased intracellular calcium [Ca2+]i induced by stimuli, have revealed that about 70% of DRG neurons are capsaicin-responsive nociceptors, while 10% responded to cooling and or menthol (putative cold sensors). Cultivation of DRG in the presence of a moderate dose of lipopolysaccharide (LPS, 1 µg/ml) enhanced capsaicin-induced Ca2+ signals. We therefore investigated further properties of DRG primary cultures stimulated with 10 µg/ml LPS for a short period. Exposure to LPS for 2 h resulted in pronounced release of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) into the supernatants of DRG cultures, increased expression of both cytokines in the DRG cells and increased TNF immunoreactivity predominantly in macrophages. We further observed an accumulation of the inflammatory transcription factors NF-IL6 and STAT3 in the nuclei of LPS-exposed DRG neurons and macrophages. In the presence of the cytotoxic agent cisplatin (5 or 10 µg/ml), the number of macrophages was decreased significantly, the growth of satellite glial cells was markedly suppressed, but the vitality and stimulus-induced Ca2+ signals of DRG neurons were not impaired. Under these conditions the LPS-induced production and expression of TNF-α and IL-6 were blunted. Our data suggest a potential role for macrophages and satellite glial cells in the initiation of inflammatory processes that develop in sensory ganglia upon injury or exposure to pathogens.
Collapse
Affiliation(s)
- Stephan Leisengang
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Daniela Ott
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Jolanta Murgott
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Rüdiger Gerstberger
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Christoph Rummel
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany; Center for Mind, Brain and Behavior CMBB, Philipps-Universität of Marburg & Justus-Liebig-University of Giessen, Germany
| | - Joachim Roth
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany; Center for Mind, Brain and Behavior CMBB, Philipps-Universität of Marburg & Justus-Liebig-University of Giessen, Germany.
| |
Collapse
|
6
|
Barlow BM, Joos B, Trinh AK, Longtin A. Cooling reverses pathological bifurcations to spontaneous firing caused by mild traumatic injury. CHAOS (WOODBURY, N.Y.) 2018; 28:106328. [PMID: 30384659 DOI: 10.1063/1.5040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Mild traumatic injury can modify the key sodium (Na+) current underlying the excitability of neurons. It causes the activation and inactivation properties of this current to become shifted to more negative trans-membrane voltages. This so-called coupled left shift (CLS) leads to a chronic influx of Na+ into the cell that eventually causes spontaneous or "ectopic" firing along the axon, even in the absence of stimuli. The bifurcations underlying this enhanced excitability have been worked out in full ionic models of this effect. Here, we present computational evidence that increased temperature T can exacerbate this pathological state. Conversely, and perhaps of clinical relevance, mild cooling is shown to move the naturally quiescent cell further away from the threshold of ectopic behavior. The origin of this stabilization-by-cooling effect is analyzed by knocking in and knocking out, one at a time, various processes thought to be T-dependent. The T-dependence of the Na+ current, quantified by its Q 10-Na factor, has the biggest impact on the threshold, followed by Q 10-pump of the sodium-potassium exchanger. Below the ectopic boundary, the steady state for the gating variables and the resting potential are not modified by temperature, since our model separately tallies the Na+ and K+ ions including their separate leaks through the pump. When only the gating kinetics are considered, cooling is detrimental, but in the full T-dependent model, it is beneficial because the other processes dominate. Cooling decreases the pump's activity, and since the pump hyperpolarizes, less hyperpolarization should lead to more excitability and ectopic behavior. But actually the opposite happens in the full model because decreased pump activity leads to smaller gradients of Na+ and K+, which in turn decreases the driving force of the Na+ current.
Collapse
Affiliation(s)
- B M Barlow
- Department of Physics, Centre for Neural Dynamics, University of Ottawa, 150 Louis Pasteur Priv., Ottawa, Ontario K1N6N5, Canada
| | - B Joos
- Department of Physics, Centre for Neural Dynamics, University of Ottawa, 150 Louis Pasteur Priv., Ottawa, Ontario K1N6N5, Canada
| | - A K Trinh
- Department of Physics, Centre for Neural Dynamics, University of Ottawa, 150 Louis Pasteur Priv., Ottawa, Ontario K1N6N5, Canada
| | - A Longtin
- Department of Physics, Centre for Neural Dynamics, University of Ottawa, 150 Louis Pasteur Priv., Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
7
|
Liljenström H. Modeling effects of neural fluctuations and inter-scale interactions. CHAOS (WOODBURY, N.Y.) 2018; 28:106319. [PMID: 30384657 DOI: 10.1063/1.5044510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
One of the greatest challenges to science, in particular, to neuroscience, is to understand how processes at different levels of organization are related to each other. In connection with this problem is the question of the functional significance of fluctuations, noise, and chaos. This paper deals with three related issues: (1) how processes at different organizational levels of neural systems might be related, (2) the functional significance of non-linear neurodynamics, including oscillations, chaos, and noise, and (3) how computational models can serve as useful tools in elucidating these types of issues. In order to capture and describe phenomena at different micro (molecular), meso (cellular), and macro (network) scales, the computational models need to be of appropriate complexity making use of available experimental data. I exemplify by two major types of computational models, those of Hans Braun and colleagues and those of my own group, which both aim at bridging gaps between different levels of neural systems. In particular, the constructive role of noise and chaos in such systems is modelled and related to functions, such as sensation, perception, learning/memory, decision making, and transitions between different (un-)conscious states. While there is, in general, a focus on upward causation, I will also discuss downward causation, where higher level activity may affect the activity at lower levels, which should be a condition for any functional role of consciousness and free will, often considered to be problematic to science.
Collapse
Affiliation(s)
- Hans Liljenström
- Biometry and Systems Analysis, ET, SLU, Uppsala, Sweden and Agora for Biosystems, Sigtuna, Sweden
| |
Collapse
|
8
|
Tchaptchet A. Activity patterns with silent states in a heterogeneous network of gap-junction coupled Huber-Braun model neurons. CHAOS (WOODBURY, N.Y.) 2018; 28:106327. [PMID: 30384629 DOI: 10.1063/1.5040266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
A mathematical model of a network of nearest neighbor gap-junction coupled neurons has been used to examine the impact of neuronal heterogeneity on the networks' activity during increasing coupling strength. Heterogeneity has been introduced by Huber-Braun model neurons with randomization of the temperature as a scaling factor. This leads to neurons of an enormous diversity of impulse pattern, including burst discharges, chaotic activity, and two different types of tonic firing-all of them experimentally observed in the peripheral as well as central nervous system. When the network is composed of all these types of neurons, randomly selected, a particular phenomenon can be observed. At a certain coupling strength, the network goes into a completely silent state. Examination of voltage traces and inter-spike intervals of individual neurons suggests that all neurons, irrespective of their original pattern, go through a well-known bifurcation scenario, resembling those of single neurons especially on external current injection. All the originally spontaneously firing neurons can achieve constant membrane potentials at which all intrinsic and gap-junction currents are balanced. With limited diversity, i.e., taking out neurons of specific patterns from the lower and upper temperature range, spontaneous firing can be reinstalled with further increasing coupling strength, especially when the tonic firing regimes are missing. Reinstalled firing develops from slowly increasing subthreshold oscillations leading to tonic firing activity with already fairly well synchronized action potentials, while the subthreshold potentials can still be significantly different. Full in phase synchronization is not achieved. Additional studies are needed elucidating the underlying mechanisms and the conditions under which such particular transitions can appear.
Collapse
Affiliation(s)
- Aubin Tchaptchet
- Institute of Physiology, Faculty of Medicine, Philipps University of Marburg, 35037 Marburg, Germany
| |
Collapse
|
9
|
Xu K, Maidana JP, Caviedes M, Quero D, Aguirre P, Orio P. Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model. Front Comput Neurosci 2017; 11:12. [PMID: 28344550 PMCID: PMC5344906 DOI: 10.3389/fncom.2017.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activated Potassium current and a hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action potentials in a periodic fashion. Depending on the parameters, this model can generate a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here we show that the transitions between different firing patterns are often accompanied by a range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the Lyapunov exponent and Lempel-Ziv's complexity of the ISI time series. The four-variable slow system (without spiking) also generates chaotic behavior, and bifurcation analysis shows that this is often originated by period doubling cascades. Either with or without spikes, chaos is no longer generated when the Ih is removed from the system. As the model is biologically plausible with biophysically meaningful parameters, we propose it as a useful tool to understand chaotic dynamics in neurons.
Collapse
Affiliation(s)
- Kesheng Xu
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Jean P Maidana
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Mauricio Caviedes
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Daniel Quero
- Departamento de Matemática, Universidad Técnica Federico Santa María Valparaíso, Chile
| | - Pablo Aguirre
- Departamento de Matemática, Universidad Técnica Federico Santa María Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de ValparaísoValparaíso, Chile; Facultad de Ciencias, Instituto de Neurociencia, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
10
|
A Coupled Phase-Temperature Model for Dynamics of Transient Neuronal Signal in Mammals Cold Receptor. JOURNAL OF BIOPHYSICS 2016; 2016:2754249. [PMID: 27774102 PMCID: PMC5059653 DOI: 10.1155/2016/2754249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 11/17/2022]
Abstract
We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process.
Collapse
|
11
|
Olivares E, Salgado S, Maidana JP, Herrera G, Campos M, Madrid R, Orio P. TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor. PLoS One 2015; 10:e0139314. [PMID: 26426259 PMCID: PMC4591370 DOI: 10.1371/journal.pone.0139314] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022] Open
Abstract
Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization.
Collapse
Affiliation(s)
- Erick Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Simón Salgado
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Jean Paul Maidana
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Gaspar Herrera
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Matías Campos
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodolfo Madrid
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail:
| |
Collapse
|
12
|
Ott D, Simm B, Pollatzek E, Gerstberger R, Rummel C, Roth J. Prostaglandin D2 modulates calcium signals induced by prostaglandin E2 in neurons of rat dorsal root ganglia. Neurosci Lett 2015; 597:159-63. [DOI: 10.1016/j.neulet.2015.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/29/2022]
|
13
|
Abstract
Eye pain is an unpleasant sensory and emotional experience including sensory-discriminative, emotional, cognitive, and behavioral components and supported by distinct, interconnected peripheral and central nervous system elements. Normal or physiological pain results of the stimulation by noxious stimuli of sensory axons of trigeminal ganglion (TG) neurons innervating the eye. These are functionally heterogeneous. Mechano-nociceptors are only excited by noxious mechanical forces. Polymodal nociceptors also respond to heat, exogenous irritants, and endogenous inflammatory mediators, whereas cold thermoreceptors detect moderate temperature changes. Their distinct sensitivity to stimulating forces is determined by the expression of specific classes of ion channels: Piezo2 for mechanical forces, TRPV1 and TRPA1 for heat and chemical agents, and TRPM8 for cold. Pricking pain is evoked by mechano-nociceptors, while polymodal nociceptors are responsible of burning and stinging eye pain; sensations of dryness appear to be mainly evoked by cold thermoreceptors. Mediators released by local inflammation, increase the excitability of eye polymodal nociceptors causing their sensitization and the augmented pain sensations. During chronic inflammation, additional, long-lasting changes in the expression and function of stimulus-transducing and voltage-sensitive ion channels develop, thereby altering polymodal terminal's excitability and evoking chronic inflammatory pain. When trauma, infections, or metabolic processes directly damage eye nerve terminals, these display aberrant impulse firing due to an abnormal expression of transducing and excitability-modulating ion channels. This malfunction evokes 'neuropathic pain' which may also result from abnormal function of higher brain structures where ocular TG neurons project. Eye diseases or ocular surface surgery cause different levels of inflammation and/or nerve injury, which in turn activate sensory fibers of the eye in a variable degree. When inflammation dominates (allergic or actinic kerato-conjunctivitis), polymodal nociceptors are primarily stimulated and sensitized, causing pain. In uncomplicated photorefractive surgery and moderate dry eye, cold thermoreceptors appear to be mainly affected, evoking predominant sensations of unpleasant dryness.
Collapse
Affiliation(s)
- Carlos Belmonte
- />Instituto de Neurociencias, Universidad Miguel Hernández-CSIC San Juan de Alicante, Avenida de la Universidad, s/n, 03202 Alicante, Spain
- />Instituto Fernandez Vega, Fundación de Investigación Oftalmológica, Av Doctores Fernández Vega, 34, 33012 Oviedo, Asturias Spain
| | - M. Carmen Acosta
- />Instituto de Neurociencias, Universidad Miguel Hernández-CSIC San Juan de Alicante, Avenida de la Universidad, s/n, 03202 Alicante, Spain
| | - Jesus Merayo-Lloves
- />Instituto Fernandez Vega, Fundación de Investigación Oftalmológica, Av Doctores Fernández Vega, 34, 33012 Oviedo, Asturias Spain
| | - Juana Gallar
- />Instituto de Neurociencias, Universidad Miguel Hernández-CSIC San Juan de Alicante, Avenida de la Universidad, s/n, 03202 Alicante, Spain
| |
Collapse
|
14
|
Orio P, Parra A, Madrid R, González O, Belmonte C, Viana F. Role of Ih in the firing pattern of mammalian cold thermoreceptor endings. J Neurophysiol 2012; 108:3009-23. [DOI: 10.1152/jn.01033.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian peripheral cold thermoreceptors respond to cooling of their sensory endings with an increase in firing rate and modification of their discharge pattern. We recently showed that cultured trigeminal cold-sensitive (CS) neurons express a prominent hyperpolarization-activated current ( Ih), mainly carried by HCN1 channels, supporting subthreshold resonance in the soma without participating in the response to acute cooling. However, peripheral pharmacological blockade of Ih, or characterization of HCN1−/− mice, reveals a deficit in acute cold detection. Here we investigated the role of Ih in CS nerve endings, where cold sensory transduction actually takes place. Corneal CS nerve endings in mice show a rhythmic spiking activity at neutral skin temperature that switches to bursting mode when the temperature is lowered. Ih blockers ZD7288 and ivabradine alter firing patterns of CS nerve endings, lengthening interspike intervals and inducing bursts at neutral skin temperature. We characterized the CS nerve endings from HCN1−/− mouse corneas and found that they behave similar to wild type, although with a lower slope in the firing frequency vs. temperature relationship, thus explaining the deficit in cold perception of HCN1−/− mice. The firing pattern of nerve endings from HCN1−/− mice was also affected by ZD7288, which we attribute to the presence of HCN2 channels in the place of HCN1. Mathematical modeling shows that the firing phenotype of CS nerve endings from HCN1−/− mice can be reproduced by replacing HCN1 channels with the slower HCN2 channels rather than by abolishing Ih. We propose that Ih carried by HCN1 channels helps tune the frequency of the oscillation and the length of bursts underlying regular spiking in cold thermoreceptors, having important implications for neural coding of cold sensation.
Collapse
Affiliation(s)
- Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV) and Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrés Parra
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; and
| | - Omar González
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
- Fundación de Investigación Oftalmológica, Instituto Fernandez-Vega, Oviedo, Spain
| | - Carlos Belmonte
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| |
Collapse
|
15
|
Ouzzahra Y, Havenith G, Redortier B. Regional distribution of thermal sensitivity to cold at rest and during mild exercise in males. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Functional profiling of neurons through cellular neuropharmacology. Proc Natl Acad Sci U S A 2012; 109:1388-95. [PMID: 22307590 DOI: 10.1073/pnas.1118833109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a functional profiling strategy to identify and characterize subtypes of neurons present in a peripheral ganglion, which should be extendable to neurons in the CNS. In this study, dissociated dorsal-root ganglion neurons from mice were exposed to various pharmacological agents (challenge compounds), while at the same time the individual responses of >100 neurons were simultaneously monitored by calcium imaging. Each challenge compound elicited responses in only a subset of dorsal-root ganglion neurons. Two general types of challenge compounds were used: agonists of receptors (ionotropic and metabotropic) that alter cytoplasmic calcium concentration (receptor-agonist challenges) and compounds that affect voltage-gated ion channels (membrane-potential challenges). Notably, among the latter are K-channel antagonists, which elicited unexpectedly diverse types of calcium responses in different cells (i.e., phenotypes). We used various challenge compounds to identify several putative neuronal subtypes on the basis of their shared and/or divergent functional, phenotypic profiles. Our results indicate that multiple receptor-agonist and membrane-potential challenges may be applied to a neuronal population to identify, characterize, and discriminate among neuronal subtypes. This experimental approach can uncover constellations of plasma membrane macromolecules that are functionally coupled to confer a specific phenotypic profile on each neuronal subtype. This experimental platform has the potential to bridge a gap between systems and molecular neuroscience with a cellular-focused neuropharmacology, ultimately leading to the identification and functional characterization of all neuronal subtypes at a given locus in the nervous system.
Collapse
|
17
|
Latorre R, Brauchi S, Madrid R, Orio P. A cool channel in cold transduction. Physiology (Bethesda) 2012; 26:273-85. [PMID: 21841075 DOI: 10.1152/physiol.00004.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8), a calcium-permeable cation channel activated by cold, cooling compounds and voltage, is the main molecular entity responsible for detection of cold temperatures in the somatosensory system. Here, we review the biophysical properties, physiological role, and near-membrane trafficking of this exciting polymodal ion channel.
Collapse
Affiliation(s)
- Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
18
|
Braun HA, Schwabedal J, Dewald M, Finke C, Postnova S, Huber MT, Wollweber B, Schneider H, Hirsch MC, Voigt K, Feudel U, Moss F. Noise-induced precursors of tonic-to-bursting transitions in hypothalamic neurons and in a conductance-based model. CHAOS (WOODBURY, N.Y.) 2011; 21:047509. [PMID: 22225383 DOI: 10.1063/1.3671326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The dynamics of neurons is characterized by a variety of different spiking patterns in response to external stimuli. One of the most important transitions in neuronal response patterns is the transition from tonic firing to burst discharges, i.e., when the neuronal activity changes from single spikes to the grouping of spikes. An increased number of interspike-interval sequences of specific temporal correlations was detected in anticipation of temperature induced tonic-to-bursting transitions in both, experimental impulse recordings from hypothalamic brain slices and numerical simulations of a stochastic model. Analysis of the modelling data elucidates that the appearance of such patterns can be related to particular system dynamics in the vicinity of the period-doubling bifurcation. It leads to a nonlinear response on de- and hyperpolarizing perturbations introduced by noise. This explains why such particular patterns can be found as reliable precursors of the neurons' transition to burst discharges.
Collapse
Affiliation(s)
- Hans A Braun
- Institute of Physiology, Neurodynamics Group, University of Marburg, Deutschhaus str. 2, D-35037 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
|
21
|
Finke C, Freund JA, Rosa E, Braun HA, Feudel U. On the role of subthreshold currents in the Huber-Braun cold receptor model. CHAOS (WOODBURY, N.Y.) 2010; 20:045107. [PMID: 21198119 DOI: 10.1063/1.3527989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We study the role of the strength of subthreshold currents in a four-dimensional Hodgkin-Huxley-type model of mammalian cold receptors. Since a total diminution of subthreshold activity corresponds to a decomposition of the model into a slow, subthreshold, and a fast, spiking subsystem, we first elucidate their respective dynamics separately and draw conclusions about their role for the generation of different spiking patterns. These results motivate a numerical bifurcation analysis of the effect of varying the strength of subthreshold currents, which is done by varying a suitable control parameter. We work out the key mechanisms which can be attributed to subthreshold activity and furthermore elucidate the dynamical backbone of different activity patterns generated by this model.
Collapse
Affiliation(s)
- Christian Finke
- ICBM, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26111 Oldenburg, Germany.
| | | | | | | | | |
Collapse
|
22
|
Alekseev SI, Gordiienko OV, Radzievsky AA, Ziskin MC. Millimeter wave effects on electrical responses of the sural nerve in vivo. Bioelectromagnetics 2010; 31:180-90. [PMID: 19771548 DOI: 10.1002/bem.20547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Millimeter wave (MMW, 42.25 GHz)-induced changes in electrical activity of the murine sural nerve were studied in vivo using external electrode recordings. MMW were applied to the receptive field of the sural nerve in the hind paw. We found two types of responses of the sural nerve to MMW exposure. First, MMW exposure at the incident power density >/=45 mW/cm(2) inhibited the spontaneous electrical activity. Exposure with lower intensities (10-30 mW/cm(2)) produced no detectable changes in the firing rate. Second, the nerve responded to the cessation of MMW exposure with a transient increase in the firing rate. The effect lasted 20-40 s. The threshold intensity for this effect was 160 mW/cm(2). Radiant heat exposure reproduced only the inhibitory effect of MMW but not the transient excitatory response. Depletion of mast cells by compound 48/80 eliminated the transient response of the nerve. It was suggested that the cold sensitive fibers were responsible for the inhibitory effect of MMW and radiant heat exposures. However, the receptors and mechanisms involved in inducing the transient response to MMW exposure are not clear. The hypothesis of mast cell involvement was discussed.
Collapse
Affiliation(s)
- Stanislav I Alekseev
- Center for Biomedical Physics, Temple University Medical School, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
23
|
Postnova S, Finke C, Jin W, Schneider H, Braun HA. A computational study of the interdependencies between neuronal impulse pattern, noise effects and synchronization. ACTA ACUST UNITED AC 2009; 104:176-89. [PMID: 19948218 DOI: 10.1016/j.jphysparis.2009.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alterations of individual neurons dynamics and associated changes of the activity pattern, especially the transition from tonic firing (single-spikes) to bursts discharges (impulse groups), play an important role for neuronal information processing and synchronization in many physiological processes (sensory encoding, information binding, hormone release, sleep-wake cycles) as well as in disease (Parkinson, epilepsy). We have used Hodgkin-Huxley-type model neurons with subthreshold oscillations to examine the impact of noise on neuronal encoding and thereby have seen significant differences depending on noise implementation as well as on the neuron's dynamic state. The importance of the individual neurons' dynamics is further elucidated by simulation studies with electrotonically coupled model neurons which revealed mutual interdependencies between the alterations of the network's coupling strength and neurons' activity patterns with regard to synchronization. Remarkably, a pacemaker-like activity pattern which revealed to be much more noise sensitive than the bursting patterns also requires much higher coupling strengths for synchronization. This seemingly simple pattern is obviously governed by more complex dynamics than expected from a conventional pacemaker which may explain why neurons more easily synchronize in the bursting than in the tonic firing mode.
Collapse
Affiliation(s)
- Svetlana Postnova
- Institute of Physiology, Philipps University of Marburg, Deutschhaustrasse 2, Marburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Orio P, Madrid R, de la Peña E, Parra A, Meseguer V, Bayliss DA, Belmonte C, Viana F. Characteristics and physiological role of hyperpolarization activated currents in mouse cold thermoreceptors. J Physiol 2009; 587:1961-76. [PMID: 19273581 PMCID: PMC2689336 DOI: 10.1113/jphysiol.2008.165738] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/05/2009] [Indexed: 01/12/2023] Open
Abstract
Hyperpolarization-activated currents (I(h)) are mediated by the expression of combinations of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel subunits (HCN1-4). These cation currents are key regulators of cellular excitability in the heart and many neurons in the nervous system. Subunit composition determines the gating properties and cAMP sensitivity of native I(h) currents. We investigated the functional properties of I(h) in adult mouse cold thermoreceptor neurons from the trigeminal ganglion, identified by their high sensitivity to moderate cooling and responsiveness to menthol. All cultured cold-sensitive (CS) neurons expressed a fast activating I(h), which was fully blocked by extracellular Cs(+) or ZD7288 and had biophysical properties consistent with those of heteromeric HCN1-HCN2 channels. In CS neurons from HCN1(-/-) animals, I(h) was greatly reduced but not abolished. We find that I(h) activity is not essential for the transduction of cold stimuli in CS neurons. Nevertheless, I(h) has the potential to shape the excitability of CS neurons. First, I(h) blockade caused a membrane hyperpolarization in CS neurons of about 5 mV. Furthermore, impedance power analysis showed that all CS neurons had a prominent subthreshold membrane resonance in the 5-7 Hz range, completely abolished upon blockade of I(h) and absent in HCN1 null mice. This frequency range matches the spontaneous firing frequency of cold thermoreceptor terminals in vivo. Behavioural responses to cooling were reduced in HCN1 null mice and after peripheral pharmacological blockade of I(h) with ZD7288, suggesting that I(h) plays an important role in peripheral sensitivity to cold.
Collapse
Affiliation(s)
- Patricio Orio
- Universidad Miguel Hernández, Instituto de Neurociencias de Alicante, Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Masoller C, Torrent MC, García-Ojalvo J. Interplay of subthreshold activity, time-delayed feedback, and noise on neuronal firing patterns. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:041907. [PMID: 18999455 DOI: 10.1103/physreve.78.041907] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/23/2008] [Indexed: 05/27/2023]
Abstract
Feedback connections and noise are ubiquitous features of neuronal networks and affect in a determinant way the patterns of neural activity. Here we study how the subthreshold dynamics of a neuron interacts with time-delayed feedback and noise. We use a Hodgkin-Huxley-type model of a thermoreceptor neuron and assume the feedback to be linear, corresponding effectively to a recurrent electrical connection via gap junctions. This type of feedback can model electrical autapses, which connect the terminal fibers of a neuron's axon with dendrites from the same neuron. Thus the delay in the feedback loop is due basically to the axonal propagation time. We chose model parameters for which the neuron displays, in the absence of feedback and noise, only subthreshold oscillations. These oscillations, however, take the neuron close to the firing threshold, such that small perturbations can drive it above the level for generation of action potentials. The resulting interplay between weak delayed feedback, noise, and the subthreshold intrinsic activity is nontrivial. For negative feedback, depending on the delay, the firing rate can be lower than in the noise-free situation. This is due to the fact that noise inhibits feedback-induced spikes by driving the neuronal oscillations away from the firing threshold. For positive feedback, there are regions of delay values where the noise-induced spikes are inhibited by the feedback; in this case, it is the feedback that drives the neuronal oscillations away from the threshold. Our study contributes to a better understanding of the role of electrical self-connections in the presence of noise and subthreshold activity.
Collapse
Affiliation(s)
- Cristina Masoller
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, E-08222 Terrassa, Barcelona, Spain
| | | | | |
Collapse
|
27
|
An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior. Proc Natl Acad Sci U S A 2008; 105:11002-7. [PMID: 18667708 DOI: 10.1073/pnas.0805004105] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans navigates thermal gradients by using a behavioral strategy that is regulated by a memory of its cultivation temperature (T(c)). At temperatures above or around the T(c), animals respond to temperature changes by modulating the rate of stochastic reorientation events. The bilateral AFD neurons have been implicated as thermosensory neurons, but additional thermosensory neurons are also predicted to play a role in regulating thermotactic behaviors. Here, we show that the AWC olfactory neurons respond to temperature. Unlike AFD neurons, which respond to thermal stimuli with continuous, graded calcium signals, AWC neurons exhibit stochastic calcium events whose frequency is stimulus-correlated in a T(c)-dependent manner. Animals lacking the AWC neurons or with hyperactive AWC neurons exhibit defects in the regulation of reorientation rate in thermotactic behavior. Our observations suggest that the AFD and AWC neurons encode thermal stimuli via distinct strategies to regulate C. elegans thermotactic behavior.
Collapse
|
28
|
Propagation effects of current and conductance noise in a model neuron with subthreshold oscillations. Math Biosci 2008; 214:109-21. [PMID: 18457848 DOI: 10.1016/j.mbs.2008.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 11/20/2022]
Abstract
We have examined the effects of current and conductance noise in a single-neuron model which can generate a variety of physiologically important impulse patterns. Current noise enters the membrane equation directly while conductance noise is propagated through the activation variables. Additive Gaussian white noise which is implemented as conductance noise appears in the voltage equations as an additive and a multiplicative term. Moreover, the originally white noise is turned into colored noise. The noise correlation time is a function of the system's control parameters which may explain the different effects of current and conductance noise in different dynamic states. We have found the most significant, qualitative differences between different noise implementations in a pacemaker-like, tonic firing regime at the transition to chaotic burst discharges. This reflects a dynamic state of high physiological relevance.
Collapse
|
29
|
Huber MT, Braun HA. Conductance versus current noise in a neuronal model for noisy subthreshold oscillations and related spike generation. Biosystems 2007; 89:38-43. [PMID: 17275992 DOI: 10.1016/j.biosystems.2006.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 05/26/2006] [Indexed: 11/17/2022]
Abstract
Biological systems are notoriously noisy. Noise, therefore, also plays an important role in many models of neural impulse generation. Noise is not only introduced for more realistic simulations but also to account for cooperative effects between noisy and nonlinear dynamics. Often, this is achieved by a simple noise term in the membrane equation (current noise). However, there are ongoing discussions whether such current noise is justified or whether rather conductance noise should be introduced because it is closer to the natural origin of noise. Therefore, we have compared the effects of current and conductance noise in a neuronal model for subthreshold oscillations and action potential generation. We did not see any significant differences in the model behavior with respect to voltage traces, tuning curves of interspike intervals, interval distributions or frequency responses when the noise strength is adjusted. These findings indicate that simple current noise can give reasonable results in neuronal simulations with regard to physiological relevant noise effects.
Collapse
Affiliation(s)
- Martin Tobias Huber
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmannstrasse 8, D-35033 Marburg, Germany.
| | | |
Collapse
|
30
|
Postnova S, Voigt K, Braun HA. Neural synchronization at tonic-to-bursting transitions. J Biol Phys 2007; 33:129-43. [PMID: 19669545 PMCID: PMC2646392 DOI: 10.1007/s10867-007-9048-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/11/2007] [Indexed: 11/29/2022] Open
Abstract
We studied the synchronous behavior of two electrically-coupled model neurons as a function of the coupling strength when the individual neurons are tuned to different activity patterns that ranged from tonic firing via chaotic activity to burst discharges. We observe asynchronous and various synchronous states such as out-of-phase, in-phase and almost in-phase chaotic synchronization. The highest variety of synchronous states occurs at the transition from tonic firing to chaos where the highest coupling strength is also needed for in-phase synchronization which is, essentially, facilitated towards the bursting range. This demonstrates that tuning of the neuron's internal dynamics can have significant impact on the synchronous states especially at the physiologically relevant tonic-to-bursting transitions.
Collapse
|
31
|
|
32
|
Madrid R, Donovan-Rodríguez T, Meseguer V, Acosta MC, Belmonte C, Viana F. Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J Neurosci 2006; 26:12512-25. [PMID: 17135413 PMCID: PMC6674899 DOI: 10.1523/jneurosci.3752-06.2006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) is the best molecular candidate for innocuous cold detection by peripheral thermoreceptor terminals. To dissect out the contribution of this cold- and menthol-gated, nonselective cation channel to cold transduction, we identified BCTC [N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide] as a potent and full blocker of recombinant TRPM8 channels. In cold-sensitive trigeminal ganglion neurons of mice and guinea pig, responses to menthol were abolished by BCTC. In contrast, the effect of BCTC on cold-evoked responses was variable but showed a good correlation with the presence or lack of menthol sensitivity in the same neuron, suggesting a specific blocking action of BCTC on TRPM8 channels. The biophysical properties of native cold-gated currents (I(cold)), and the currents blocked by BCTC were nearly identical, consistent with a role of this channel in cold sensing at the soma. The temperature activation threshold of native TRPM8 channels was significantly warmer than those reported in previous expression studies. The effect of BCTC on native I(cold) was characterized by a dose-dependent shift in the temperature threshold of activation. The role of TRPM8 in transduction was further investigated in the guinea pig cornea, a peripheral territory densely innervated with cold thermoreceptors. All cold-sensitive terminals were activated by menthol, suggesting the functional expression of TRPM8 channels in their membrane. However, the spontaneous activity and firing pattern characteristic of cold thermoreceptors was totally immune to TRPM8 channel blockade with BCTC or SKF96365 (1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride). Cold-evoked responses in corneal terminals were also essentially unaffected by these drugs, whereas responses to menthol were completely abolished. The minor impairment in the ability to transduce cold stimuli by peripheral corneal thermoreceptors during TRPM8 blockade unveils an overlapping functional role for various thermosensitive mechanisms in these nerve terminals.
Collapse
Affiliation(s)
- Rodolfo Madrid
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| | - Tansy Donovan-Rodríguez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| | - Victor Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| | - Mari Carmen Acosta
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| | - Carlos Belmonte
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| | - Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain
| |
Collapse
|
33
|
Brazhe NA, Brazhe AR, Pavlov AN, Erokhova LA, Yusipovich AI, Maksimov GV, Mosekilde E, Sosnovtseva OV. Unraveling cell processes: interference imaging interwoven with data analysis. J Biol Phys 2006; 32:191-208. [PMID: 19669463 PMCID: PMC2651520 DOI: 10.1007/s10867-006-9012-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/20/2006] [Indexed: 10/23/2022] Open
Abstract
The paper presents results on the application of interference microscopy and wavelet-analysis for cell visualization and studies of cell dynamics. We demonstrate that interference imaging of erythrocytes can reveal reorganization of the cytoskeleton and inhomogenity in the distribution of hemoglobin, and that interference imaging of neurons can show intracellular compartmentalization and submembrane structures. We investigate temporal and spatial variations of the refractive index for different cell types: isolated neurons, mast cells and erythrocytes. We show that the refractive dynamical properties differ from cell type to cell type and depend on the cellular compartment. Our results suggest that low frequency variations (0.1-0.6 Hz) result from plasma membrane processes and that higher frequency variations (20-26 Hz) are related to the movement of vesicles. Using double-wavelet analysis, we study the modulation of the 1 Hz rhythm in neurons and reveal its changes under depolarization and hyperpolarization of the plasma membrane. We conclude that interference microscopy combined with wavelet analysis is a useful technique for non-invasive cell studies, cell visualization, and investigation of plasma membrane properties.
Collapse
Affiliation(s)
- N. A. Brazhe
- Biophysics Department, Biological Faculty, Moscow State University, Vorobievy gory 1, Building 12, 119992 Moscow, Russia
| | - A. R. Brazhe
- Biophysics Department, Biological Faculty, Moscow State University, Vorobievy gory 1, Building 12, 119992 Moscow, Russia
| | - A. N. Pavlov
- Physics Department, Saratov State University, Astrakhanskaya Street 83, 410026 Saratov, Russia
| | - L. A. Erokhova
- Biophysics Department, Biological Faculty, Moscow State University, Vorobievy gory 1, Building 12, 119992 Moscow, Russia
| | - A. I. Yusipovich
- Biophysics Department, Biological Faculty, Moscow State University, Vorobievy gory 1, Building 12, 119992 Moscow, Russia
| | - G. V. Maksimov
- Biophysics Department, Biological Faculty, Moscow State University, Vorobievy gory 1, Building 12, 119992 Moscow, Russia
| | - E. Mosekilde
- Department of Physics, The Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - O. V. Sosnovtseva
- Department of Physics, The Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
34
|
Brock J, Acosta MC, Al Abed A, Pianova S, Belmonte C. Barium ions inhibit the dynamic response of guinea-pig corneal cold receptors to heating but not to cooling. J Physiol 2006; 575:573-81. [PMID: 16793903 PMCID: PMC1819461 DOI: 10.1113/jphysiol.2006.110130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 06/19/2006] [Indexed: 12/29/2022] Open
Abstract
An in vitro preparation of the guinea-pig cornea was used to study the effects of the K+ channel blockers 4-aminopyridine (4-AP), tetraethylammonium (TEA) and Ba2+ on nerve terminal impulses (NTIs) recorded extracellularly from cold sensory receptors. These receptors have an ongoing discharge of NTIs that is increased by cooling and decreased by heating. The K+ channel blocker 4-AP reduced the negative amplitude of the diphasic (positive-negative) NTIs, whereas TEA and Ba2+ prolonged the duration of the negative component. As the shape of the NTI is determined by the first derivative (dV/dt) of the membrane voltage change, these changes in the negative component are consistent with the blockade of K+ channels that contribute to action potential repolarization. Only TEA changed the basal activity of the receptors, increasing the likelihood of burst discharges. Ba2+ selectively reduced the response of the receptors to heating, whereas neither 4-AP nor TEA modified the response to heating or to cooling. The findings indicate that K+ channels blocked by 4-AP, TEA and Ba2+ contribute to action potential repolarization in corneal cold receptors, and that ionic mechanisms that underlie the reduction in NTI frequency in response to heating differ from those that increase activity in response to cooling.
Collapse
Affiliation(s)
- James Brock
- Prince of Wales Medical Research Institute, Barker St, Randwick, NSW 2031, Australia.
| | | | | | | | | |
Collapse
|
35
|
Huber MT, Braun HA. Stimulus-response curves of a neuronal model for noisy subthreshold oscillations and related spike generation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:041929. [PMID: 16711858 DOI: 10.1103/physreve.73.041929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 02/21/2006] [Indexed: 05/09/2023]
Abstract
We investigate the stimulus-dependent tuning properties of a noisy ionic conductance model for intrinsic subthreshold oscillations in membrane potential and associated spike generation. Upon depolarization by an applied current, the model exhibits subthreshold oscillatory activity with an occasional spike generation when oscillations reach the spike threshold. We consider how the amount of applied current, the noise intensity, variation of maximum conductance values, and scaling to different temperature ranges alter the responses of the model with respect to voltage traces, interspike intervals and their statistics, and the mean spike frequency curves. We demonstrate that subthreshold oscillatory neurons in the presence of noise can sensitively and also selectively be tuned by the stimulus-dependent variation of model parameters.
Collapse
Affiliation(s)
- Martin Tobias Huber
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmannstrasse 8, D-35033 Marburg, Germany
| | | |
Collapse
|
36
|
Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, Noguchi K. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 2006; 493:596-606. [PMID: 16304633 DOI: 10.1002/cne.20794] [Citation(s) in RCA: 592] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transient receptor potential (TRP) superfamily of cation channels contains four temperature-sensitive channels, named TRPV1-4, that are activated by heat stimuli from warm to that in the noxious range. Recently, two other members of this superfamily, TRPA1 and TRPM8, have been cloned and characterized as possible candidates for cold transducers in primary afferent neurons. Using in situ hybridization histochemistry and immunohistochemistry, we characterized the precise distribution of TRPA1, TRPM8, and TRPV1 mRNAs in the rat dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons. In the DRG, TRPM8 mRNA was not expressed in the TRPV1-expressing neuronal population, whereas TRPA1 mRNA was only seen in some neurons in this population. Both A-fiber and C-fiber neurons expressed TRPM8, whereas TRPV1 was almost exclusively seen in C-fiber neurons. All TRPM8-expressing neurons also expressed TrkA, whereas the expression of TRPV1 and TRPA1 was independent of TrkA expression. None of these three TRP channels were coexpressed with TrkB or TrkC. The TRPM8-expressing neurons were more abundant in the TG compared with the DRG, especially in the mandibular nerve region innervating the tongue. Our data suggest heterogeneity of TRPM8 and TRPA1 expression by subpopulations of primary afferent neurons, which may result in the difference of cold-sensitive primary afferent neurons in sensitivity to chemicals such as menthol and capsaicin and nerve growth factor.
Collapse
Affiliation(s)
- Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Roza C, Belmonte C, Viana F. Cold sensitivity in axotomized fibers of experimental neuromas in mice. Pain 2006; 120:24-35. [PMID: 16359794 DOI: 10.1016/j.pain.2005.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 09/27/2005] [Accepted: 10/10/2005] [Indexed: 11/20/2022]
Abstract
Cold allodynia is a common complaint in patients with peripheral neuropathies. However, cold sensitivity of the different types of sensory afferents present in injured nerves is poorly known. We recorded activity evoked by cold in intact sensory fibers of the skin-saphenous nerve preparation and in axotomized sensory fibers of approximately 21 days-old neuromas of the saphenous nerve of mice, in vitro. Sixteen percent of the axotomized units responded to cooling with an accelerating discharge, which stopped immediately during rewarming. This response was similar to that observed in the intact cold-sensitive fibers. Temperature threshold distribution was broad in intact and axotomized cold fibers (30.7-22 degrees C and 34.5-14.5 degrees C, respectively). One-third of the axotomized cold-sensitive fibers were mechanosensitive and none of them displayed spontaneous activity at baseline temperature. In contrast, 33% of intact cold-sensitive fibers exhibited low rates of ongoing discharges. In 60% of the cold-sensitive, axotomized units, cold threshold was shifted towards warmer values by the TRPM8 agonist L-menthol. Seventy percent of axotomized, cold-insensitive units developed sensitivity to cold when exposed to 4-aminopyridine and their mean cold threshold (approximately 28 degrees C) was unaffected by menthol. Their response properties differed greatly from those of cold-sensitive units. In conclusion, the transducing capacity to cold stimuli is substantially recovered in neuromas. Furthermore, axotomized fibers maintain the 4-AP-sensitive, voltage-activated, transient potassium conductance that counteracts the depolarizing effects of cold in the majority of intact, cold-insensitive primary afferents. Our results indicate that injured nociceptors do not develop abnormal cold sensitivity, suggesting that other mechanisms underlie the cold-induced allodynia following peripheral nerve injury.
Collapse
Affiliation(s)
- Carolina Roza
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez/CSIC, Apdo. 18 San Juan de Alicante, 03550 Alicante, Spain
| | | | | |
Collapse
|
38
|
Rummel C, Barth SW, Voss T, Korte S, Gerstberger R, Hübschle T, Roth J. Localized vs. systemic inflammation in guinea pigs: a role for prostaglandins at distinct points of the fever induction pathways? Am J Physiol Regul Integr Comp Physiol 2005; 289:R340-R347. [PMID: 15831768 DOI: 10.1152/ajpregu.00104.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In guinea pigs, dose-dependent febrile responses were induced by injection of a high (100 μg/kg) or a low (10 μg/kg) dose of bacterial lipopolysaccharide (LPS) into artificial subcutaneously implanted Teflon chambers. Both LPS doses further induced a pronounced formation of prostaglandin E2 (PGE2) at the site of localized subcutaneous inflammation. Administration of diclofenac, a nonselective cyclooxygenase (COX) inhibitor, at different doses (5, 50, 500, or 5,000 μg/kg) attenuated or abrogated LPS-induced fever and inhibited LPS-induced local PGE2 formation (5 or 500 μg/kg diclofenac). Even the lowest dose of diclofenac (5 μg/kg) attenuated fever in response to 10 μg/kg LPS, but only when administered directly into the subcutaneous chamber, and not into the site contralateral to the chamber. This observation indicated that a localized formation of PGE2 at the site of inflammation mediated a portion of the febrile response, which was induced by injection of 10 μg/kg LPS into the subcutaneous chamber. Further support for this hypothesis derived from the observation that we failed to detect elevated amounts of COX-2 mRNA in the brain of guinea pigs injected subcutaneously with 10 μg/kg LPS, whereas subcutaneous injections of 100 μg/kg LPS, as well as systemic injections of LPS (intra-arterial or intraperitoneal routes), readily caused expression of the COX-2 gene in the guinea pig brain, as demonstrated by in situ hybridization. Therefore, fever in response to subcutaneous injection of 10 μg/kg LPS may, in part, have been evoked by a neural, rather than a humoral, pathway from the local site of inflammation to the brain.
Collapse
Affiliation(s)
- Christoph Rummel
- Institut für Veterinär-Physiologie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Reid G. ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch 2005; 451:250-63. [PMID: 16075243 DOI: 10.1007/s00424-005-1437-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 04/08/2005] [Indexed: 11/28/2022]
Abstract
Cooling is sensed by peripheral thermoreceptors, the main transduction mechanism of which is probably a cold- and menthol-activated ion channel, transient receptor potential (melastatin)-8 (TRPM8). Stronger cooling also activates another TRP channel, TRP (ankyrin-like)-1, (TRPA1), which has been suggested to underlie cold nociception. This review examines the roles of these two channels and other mechanisms in thermal transduction. TRPM8 is activated directly by gentle cooling and depolarises sensory neurones; its threshold temperature (normally approximately 26-31 degrees C in native neurones) is very flexible and it can adapt to long-term variations in baseline temperature to sensitively detect small temperature changes. This modulation is enabled by TRPM8's low intrinsic thermal sensitivity: it is sensitised to varying degrees by its cellular context. TRPM8 is not the only thermosensitive element in cold receptors and interacts with other ionic currents to shape cold receptor activity. Cold can also cause pain: the transduction mechanism is uncertain, possibly involving TRPM8 in some neurones, but another candidate is TRPA1 which is activated in expression systems by strong cooling. However, native neurones that appear to express TRPA1 respond very slowly to cold, and TRPA1 alone cannot account readily for cold nociceptor activity or cold pain in humans. Other, as yet unknown, mechanisms of cold nociception are likely.
Collapse
Affiliation(s)
- Gordon Reid
- Department of Animal Physiology and Biophysics Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 76201 Bucharest, Romania.
| |
Collapse
|
40
|
Sosnovtseva OV, Pavlov AN, Mosekilde E, Holstein-Rathlou NH, Marsh DJ. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics. Physiol Meas 2005; 26:351-62. [PMID: 15886431 DOI: 10.1088/0967-3334/26/4/002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
On the basis of double-wavelet analysis, the paper proposes a method to study interactions in the form of frequency and amplitude modulation in nonstationary multimode data series. Special emphasis is given to the problem of quantifying the strength of modulation for a fast signal by a coexisting slower dynamics and to its physiological interpretation. Application of the approach is demonstrated for a number of model systems, including a model that generates chaotic dynamics. The approach is then applied to proximal tubular pressure data from rat nephrons in order to estimate the degree to which the myogenic dynamics of the afferent arteriole is modulated by the slower tubulo-glomerular dynamics. Our analysis reveals a significantly stronger interaction between the two mechanisms in spontaneously hypertensive rats than in normotensive rats.
Collapse
Affiliation(s)
- O V Sosnovtseva
- Department of Physics, The Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | | | | |
Collapse
|
41
|
Sainz-Trapága M, Masoller C, Braun HA, Huber MT. Influence of time-delayed feedback in the firing pattern of thermally sensitive neurons. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:031904. [PMID: 15524546 DOI: 10.1103/physreve.70.031904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Indexed: 05/24/2023]
Abstract
We explore the dynamics of a Hodgkin-Huxley-type model for thermally sensitive neurons that exhibit intrinsic oscillatory activity. The model is modified to include a feedback loop that is represented by two parameters: the synaptic strength and the transmission delay time. We analyze the dynamics of the neuron depending on the temperature, the synaptic strength, and the delay time. We find parameter regions where the effect of the recurrent connexion is excitatory, inducing spikes or trains of spikes, and regions where it is inhibitory, reducing or eliminating completely the spiking behavior. We characterize the complex interplay of the intrinsic dynamics of the neuron with the recurrent feedback input and a noisy input.
Collapse
Affiliation(s)
- M Sainz-Trapága
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
42
|
Sosnovtseva OV, Pavlov AN, Mosekilde E, Holstein-Rathlou NH, Marsh DJ. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:031915. [PMID: 15524557 DOI: 10.1103/physreve.70.031915] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Indexed: 05/24/2023]
Abstract
Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using double-wavelet analysis we propose a method to examine how the instantaneous frequency and amplitude of a fast mode is modulated by the presence of a slower mode. Our method is applied both to experimental data from normotensive and hypertensive rats showing different oscillatory patterns and to simulation results obtained from a physiologically based model of the nephron pressure and flow control. We reveal a nonlinear interaction between the two mechanisms that regulate the renal blood flow in the form of frequency and amplitude modulation of the myogenic oscillations.
Collapse
Affiliation(s)
- O V Sosnovtseva
- Department of Physics, The Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | | | | |
Collapse
|
43
|
Braun HA, Voigt K, Huber MT. Oscillations, resonances and noise: basis of flexible neuronal pattern generation. Biosystems 2003; 71:39-50. [PMID: 14568205 DOI: 10.1016/s0303-2647(03)00108-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Modulation of neuronal impulse pattern is examined by means of a simplified Hodgkin-Huxley type computer model which refers to experimental recordings of cold receptor discharges. This model essentially consists of two potentially oscillating subsystems: a spike generator and a subthreshold oscillator. With addition of noise the model successfully mimics the major types of experimentally recorded impulse patterns and thereby elucidate different resonance behaviors. (1) There is a range of rhythmic spiking or bursting where the spike generator is strongly coupled to the subthreshold oscillator. (2) There is a pacemaker activity of more complex interactions where the spike generator has overtaken part of the control. (3) There is a situation where the two subsystems are decoupled and only resonate with the help of noise.
Collapse
Affiliation(s)
- Hans A Braun
- Laboratory of Neurodynamics, Institute of Physiology, University of Marburg, Deutschhausstr. 2, D-35037 Marburg, Germany.
| | | | | |
Collapse
|
44
|
Huber MT, Braun HA, Krieg JC. On episode sensitization in recurrent affective disorders: the role of noise. Neuropsychopharmacology 2003; 28 Suppl 1:S13-20. [PMID: 12827139 DOI: 10.1038/sj.npp.1300141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Episode sensitization is postulated as a key mechanism underlying the long-term course of recurrent affective disorders. Functionally, episode sensitization represents positive feedback between a disease process and its disease episodes resulting in a transition from externally triggered to autonomous episode generation. Recently, we introduced computational approaches to elucidate the functional properties of sensitization. Specifically, we considered the dynamics of episode sensitization with a simple computational model. The present study extends this work by investigating how naturally occurring, internal or external, random influences ("noise") affect episode sensitization. Our simulations demonstrate that actions of noise differ qualitatively in dependence on both the model's activity state as well as the noise intensity. Thereby induction as well as suppression of sensitization can be observed. Most interestingly, externally triggered sensitization development can be minimized by tuning the noise to intermediate intensities. Our findings contribute to the conceptual understanding of the clinical kindling model for affective disorders and also indicate interesting roles for random fluctuations in kindling and sensitization at the neuronal level.
Collapse
Affiliation(s)
- Martin Tobias Huber
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmannstrasse 8, D-35033 Marburg, Germany.
| | | | | |
Collapse
|
45
|
Carr RW, Pianova S, Fernandez J, Fallon JB, Belmonte C, Brock JA. Effects of heating and cooling on nerve terminal impulses recorded from cold-sensitive receptors in the guinea-pig cornea. J Gen Physiol 2003; 121:427-39. [PMID: 12695483 PMCID: PMC2217380 DOI: 10.1085/jgp.200308814] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
An in vitro preparation of the guinea-pig cornea was used to study the effects of changing temperature on nerve terminal impulses recorded extracellularly from cold-sensitive receptors. At a stable holding temperature (31-32.5 degrees C), cold receptors had an ongoing periodic discharge of nerve terminal impulses. This activity decreased or ceased with heating and increased with cooling. Reducing the rate of temperature change reduced the respective effects of heating and cooling on nerve terminal impulse frequency. In addition to changes in the frequency of activity, nerve terminal impulse shape also changed with heating and cooling. At the same ambient temperature, nerve terminal impulses were larger in amplitude and faster in time course during heating than those recorded during cooling. The magnitude of these effects of heating and cooling on nerve terminal impulse shape was reduced if the rate of temperature change was slowed. At 29, 31.5, and 35 degrees C, a train of 50 electrical stimuli delivered to the ciliary nerves at 10-40 Hz produced a progressive increase in the amplitude of successive nerve terminal impulses evoked during the train. Therefore, it is unlikely that the reduction in nerve terminal impulse amplitude observed during cooling is due to the activity-dependent changes in the nerve terminal produced by the concomitant increase in impulse frequency. Instead, the differences in nerve terminal impulse shape observed at the same ambient temperature during heating and cooling may reflect changes in the membrane potential of the nerve terminal associated with thermal transduction.
Collapse
Affiliation(s)
- Richard W Carr
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Sydney, NSW 2035, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Ross G, Hübschle T, Pehl U, Braun HA, Voigt K, Gerstberger R, Roth J. Fever induction by localized subcutaneous inflammation in guinea pigs: the role of cytokines and prostaglandins. J Appl Physiol (1985) 2003; 94:1395-402. [PMID: 12482772 DOI: 10.1152/japplphysiol.00485.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In guinea pigs, dose-dependent febrile responses can be induced by injection of a high (100 micro g/kg) or low (10 micro g/kg) dose of bacterial lipopolysaccharide (LPS) into artificial subcutaneously implanted Teflon chambers. In this fever model, LPS does not enter the systemic circulation from the site of localized tissue inflammation in considerable amounts but causes a local induction of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6), which can be measured in lavage fluid collected from the chamber area. Only in response to the high LPS dose, small traces of TNF are measurable in blood plasma. A moderate increase of circulating IL-6 occurs in response to administration of both LPS doses. To investigate the putative roles of TNF and prostaglandins in this fever model, a neutralizing TNF binding protein (TNF-bp) or a nonselective inhibitor of cyclooxygenases (diclofenac) was injected along with the high or low dose of LPS into the subcutaneous chamber. In control groups, both doses of LPS were administered into the chamber along with the respective vehicles for the applied drugs. The fever response to the high LPS dose remained unimpaired by treatment with TNF-bp despite an effective neutralization of bioactive TNF in the inflamed tissue area. In response to the low LPS dose, there was an accelerated defervescence under the influence of TNF-bp. Blockade of prostaglandin formation with diclofenac completely abolished fever in response to both LPS doses. In conclusion, prostaglandins seem to be essential components for the manifestation of fever in this model.
Collapse
Affiliation(s)
- Gunter Ross
- Institut für Veterinär-Physiologie, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhou C, Kurths J. Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. CHAOS (WOODBURY, N.Y.) 2003; 13:401-409. [PMID: 12675446 DOI: 10.1063/1.1493096] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We study nontrivial effects of noise on synchronization and coherence of a chaotic Hodgkin-Huxley model of thermally sensitive neurons. We demonstrate that identical neurons which are not coupled but subjected to a common fluctuating input (Gaussian noise) can achieve complete synchronization when the noise amplitude is larger than a threshold. For nonidentical neurons, noise can induce phase synchronization. Noise enhances synchronization of weakly coupled neurons. We also find that noise enhances the coherence of the spike trains. A saddle point embedded in the chaotic attractor is responsible for these nontrivial noise-induced effects. Relevance of our results to biological information processing is discussed.
Collapse
Affiliation(s)
- Changsong Zhou
- Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam, Germany.
| | | |
Collapse
|
48
|
Postnov DE, Sosnovtseva OV, Malova SY, Mosekilde E. Complex phase dynamics in coupled bursters. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003; 67:016215. [PMID: 12636593 DOI: 10.1103/physreve.67.016215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Indexed: 05/24/2023]
Abstract
The phenomenon of phase multistability in the synchronization of two coupled oscillatory systems typically arises when the systems individually display complex wave forms associated, for instance, with the presence of subharmonic components. Alternatively, phase multistability can be caused by variations of the phase velocity along the orbit of the individual oscillator. Focusing on the mechanisms underlying the appearance of phase multistability, the paper examines a variety of phase-locked patterns in the bursting behavior of a model of coupled pancreatic cells. In particular, we show how the number of spikes per train and the proximity of a neighboring equilibrium point can influence the formation of coexisting regimes.
Collapse
Affiliation(s)
- D E Postnov
- Physics Department, Saratov State University, Astrakhanskaya Street 83, Saratov 410026, Russia
| | | | | | | |
Collapse
|
49
|
Reid G, Babes A, Pluteanu F. A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol 2002; 545:595-614. [PMID: 12456837 PMCID: PMC2290674 DOI: 10.1113/jphysiol.2002.024331] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Accepted: 09/17/2002] [Indexed: 01/12/2023] Open
Abstract
Skin temperature is sensed by peripheral thermoreceptors. Using the neuronal soma in primary culture as a model of the receptor terminal, we have investigated the mechanisms of cold transduction in thermoreceptive neurones from rat dorsal root ganglia. Cold-sensitive neurones were pre-selected by screening for an increase in [Ca(2+)](i) on cooling; 49 % of them were also excited by 0.5 microM capsaicin. Action potentials and voltage-gated currents of cold-sensitive neurones were clearly distinct from those of cold-insensitive neurones. All cold-sensitive neurones expressed an inward current activated by cold and sensitised by (-)-menthol, which was absent from cold-insensitive neurones. This current was carried mainly by Na(+) ions and caused a depolarisation on cooling accompanied by action potentials, inducing voltage-gated Ca(2+) entry; a minor fraction of Ca(2+) entry was voltage-independent. Application of (-)-menthol shifted the threshold temperatures of the cold-induced depolarisation and the inward current to the same extent, indicating that the cold- and menthol-activated current normally sets the threshold temperature for depolarisation during cooling. The action of menthol was stereospecific, with the (+)-isomer being a less effective agonist than the (-)-isomer. Extracellular Ca(2+) modulated the cold- and menthol-activated current in a similar way to its action on intact cold receptors: lowered [Ca(2+)](o) sensitised the current, while raised [Ca(2+)](o) antagonised the menthol-induced sensitisation. During long cooling pulses the current showed adaptation, which depended on extracellular Ca(2+) and was mediated by a rise in [Ca(2+)](i). This adaptation consisted of a shift in the temperature sensitivity of the channel. In capsaicin-sensitive neurones, capsaicin application caused a profound depression of the cold-activated current. Inclusion of nerve growth factor in the culture medium shifted the threshold of the cold-activated current towards warmer temperatures. The current was blocked by 50 microM capsazepine and 100 microM SKF 96365. We conclude that the cold- and menthol-activated current is the major mechanism responsible for cold-induced depolarisation in DRG neurones, and largely accounts for the known transduction properties of intact cold receptors.
Collapse
Affiliation(s)
- Gordon Reid
- Department of Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 76201 Bucharest, Romania.
| | | | | |
Collapse
|
50
|
McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002; 416:52-8. [PMID: 11882888 DOI: 10.1038/nature719] [Citation(s) in RCA: 1865] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cellular and molecular mechanisms that enable us to sense cold are not well understood. Insights into this process have come from the use of pharmacological agents, such as menthol, that elicit a cooling sensation. Here we have characterized and cloned a menthol receptor from trigeminal sensory neurons that is also activated by thermal stimuli in the cool to cold range. This cold- and menthol-sensitive receptor, CMR1, is a member of the TRP family of excitatory ion channels, and we propose that it functions as a transducer of cold stimuli in the somatosensory system. These findings, together with our previous identification of the heat-sensitive channels VR1 and VRL-1, demonstrate that TRP channels detect temperatures over a wide range and are the principal sensors of thermal stimuli in the mammalian peripheral nervous system.
Collapse
Affiliation(s)
- David D McKemy
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-0450, USA
| | | | | |
Collapse
|