1
|
Brister EY, Vasi Z, Antipova O, Robinson A, Tan X, Agarwal A, Stock SR, Carriero A, Richter CP. X-ray fluorescence microscopy: A method of measuring ion concentrations in the ear. Hear Res 2020; 391:107948. [PMID: 32283439 DOI: 10.1016/j.heares.2020.107948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
This technical note describes synchrotron x-ray fluorescence microscopy (XFM) as a method for measuring the concentrations of different elements in cross-sections of the ear at extremely high resolution. This method could be of great importance for addressing many open questions in hearing research. XFM uses synchrotron radiation to evoke emissions from many biologically relevant elements in the tissue. The intensity and wavelength of the emitted radiation provide a fingerprint of the tissue composition that can be used to measure the concentration of the elements in the sampled location. Here, we focus on energies that target biologically-relevant elements of the periodic table between magnesium and zinc. Since a highly focused x-ray beam is used, the spot size is well below 1 μm and the samples can be scanned at a nanometer lateral resolution. This study shows that measurement of the concentrations of different elements is possible in a mid-modiolar cross-section of a mouse cochlea. Images are presented that indicate potassium and chloride "hot spots" in the spiral ligament and the spiral limbus, providing experimental evidence for the potassium recycling pathway and showing the cochlear structures involved. Scans of a section obtained from the incus, one of the middle ear ossicles, in a developing mouse have shown that zinc is not uniformly distributed This supports the hypothesis that zinc plays a special role in the process of ossification. Although limited by sophisticated sample preparation and sectioning, the method provides ample exciting opportunities, to understand the role of genetics and epigenetics on hearing mechanisms in ontogeny and phylogeny.
Collapse
Affiliation(s)
- Eileen Y Brister
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Speech and Hearing Sciences, Indiana University, Bloomington, IN, United States
| | - Zahra Vasi
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Illinois Mathematics and Science Academy, Aurora, IL, United States
| | - Olga Antipova
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
| | - Alan Robinson
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xiaodong Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Aditi Agarwal
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stuart R Stock
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, NY, United States
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States; The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
2
|
Wangemann P, Marcus DC. Ion and Fluid Homeostasis in the Cochlea. UNDERSTANDING THE COCHLEA 2017. [DOI: 10.1007/978-3-319-52073-5_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Miyazaki H, Wangemann P, Marcus DC. The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion. BMC PHYSIOLOGY 2016; 17:1. [PMID: 27515813 PMCID: PMC4982335 DOI: 10.1186/s12899-016-0024-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/29/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Disturbance of acid-base balance in the inner ear is known to be associated with hearing loss in a number of conditions including genetic mutations and pharmacologic interventions. Several previous physiologic and immunohistochemical observations lead to proposals of the involvement of acid-base transporters in stria vascularis. RESULTS We directly measured acid flux in vitro from the apical side of isolated stria vascularis from adult C57Bl/6 mice with a novel constant-perfusion pH-selective self-referencing probe. Acid efflux that depended on metabolism and ion transport was observed from the apical side of stria vascularis. The acid flux was decreased to about 40 % of control by removal of the metabolic substrate (glucose-free) and by inhibition of the sodium pump (ouabain). The flux was also decreased a) by inhibition of Na,H-exchangers by amiloride, dimethylamiloride (DMA), S3226 and Hoe694, b) by inhibition of Na,2Cl,K-cotransporter (NKCC1) by bumetanide, and c) by the likely inhibition of HCO3/anion exchange by DIDS. By contrast, the acid flux was increased by inhibition of gastric H,K-ATPase (SCH28080) but was not affected by an inhibitor of vH-ATPase (bafilomycin). K flux from stria vascularis was reduced less than 5 % by SCH28080. CONCLUSIONS These observations suggest that stria vascularis may be an important site of control of cochlear acid-base balance and demonstrate a functional role of several acid-base transporters in stria vascularis, including basolateral H,K-ATPase and apical Na,H-exchange. Previous suggestions that H secretion is mediated by an apical vH-ATPase and that basolateral H,K-ATPase contributes importantly to K secretion in stria vascularis are not supported. These results advance our understanding of inner ear acid-base balance and provide a stronger basis to interpret the etiology of genetic and pharmacologic cochlear dysfunctions that are influenced by endolymphatic pH.
Collapse
Affiliation(s)
- Hiromitsu Miyazaki
- Department of Anatomy & Physiology, Cellular Biophysics Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
- Deparment of Anatomy & Physiology, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574 Japan
| | - Philine Wangemann
- Deparment of Anatomy & Physiology, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
| | - Daniel C. Marcus
- Department of Anatomy & Physiology, Cellular Biophysics Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
| |
Collapse
|
4
|
Kim SH, Marcus DC. Regulation of sodium transport in the inner ear. Hear Res 2011; 280:21-9. [PMID: 21620939 DOI: 10.1016/j.heares.2011.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 12/31/2022]
Abstract
Na(+) concentrations in endolymph must be controlled to maintain hair cell function since the transduction channels of hair cells are cation-permeable, but not K(+)-selective. Flooding or fluctuations of the hair cell cytosol with Na(+) would be expected to lead to cellular dysfunction, hearing loss and vertigo. This review briefly describes cellular mechanisms known to be responsible for Na(+) homeostasis in each compartment of the inner ear, including the cochlea, saccule, semicircular canals and endolymphatic sac. The influx of Na(+) into endolymph of each of the organs is likely via passive diffusion, but these pathways have not yet been identified or characterized. Na(+) absorption is controlled by gate-keeper channels in the apical (endolymphatic) membrane of the transporting cells. Highly Na(+)-selective epithelial sodium channels (ENaCs) control absorption by Reissner's membrane, saccular extramacular epithelium, semicircular canal duct epithelium and endolymphatic sac. ENaC activity is controlled by a number of signal pathways, but most notably by genomic regulation of channel numbers in the membrane via glucocorticoid signaling. Non-selective cation channels in the apical membrane of outer sulcus epithelial cells and vestibular transitional cells mediate Na(+) and parasensory K(+) absorption. The K(+)-mediated transduction current in hair cells is also accompanied by a Na(+) flux since the transduction channels are non-selective cation channels. Cation absorption by all of these cells is regulated by extracellular ATP via apical non-selective cation channels (P2X receptors). The heterogeneous population of epithelial cells in the endolymphatic sac is thought to have multiple absorptive pathways for Na(+) with regulatory pathways that include glucocorticoids and purinergic agonists.
Collapse
Affiliation(s)
- Sung Huhn Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | | |
Collapse
|
5
|
Wu T, Marcus DC. Age-related changes in cochlear endolymphatic potassium and potential in CD-1 and CBA/CaJ mice. J Assoc Res Otolaryngol 2003; 4:353-62. [PMID: 14690053 PMCID: PMC3202724 DOI: 10.1007/s10162-002-3026-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Accepted: 12/31/2002] [Indexed: 10/26/2022] Open
Abstract
The CD-1 mouse strain is known to have early onset of hearing loss that is progressive with aging. We sought to determine whether a disturbance of K+ homeostasis and pathological changes in the cochlear lateral wall were involved in the age-related hearing loss (AHL) of CD-1 as compared to the CBA/CaJ strain which has minimal AHL. In the present study, the endocochlear potential (EP) and endolymphatic K+ concentration ([K+]e) were measured in both strains of mice with double-barrel microelectrodes at "young" (1-2 mo) and "old" (5-9 mo) ages. CBA/CaJ mice displayed no changes with aging in EP and [K+]e of the basal turn. In the apical turn, there was a small positive shift of the EP (10 mV) with aging under both normoxic and acute anoxic conditions (-EP), without any change of [K+]e. Further, there were no obvious pathological changes in the lateral wall of CBA/CaJ mice. By contrast, old CD-1 mice displayed a significantly reduced [K+]e by 30% in both basal and apical turns with no significant changes in normoxic EP. The -EP in the apical turn was significantly reduced in magnitude by 6 mV. A severe loss of cells with aging was observed in the region of type IV fibrocytes of the apical and basal turns and of type II fibrocytes in the basal turn. A complete degeneration of organ of Corti was also observed at the basal turn of old CD-1 mice, as well as a basalward decline of spiral ganglion neuron density. The pathological changes in spiral ligament of CD-1 mice were similar to those of an inbred mouse strain C57BL/6J that expresses an AHL gene (ahl) and might be a primary etiology of AHL of CD-1 mice. These findings have ramifications for our understanding of AHL and for interpretation of genetic mutations in a CD-1 background.
Collapse
Affiliation(s)
- Tao Wu
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel C. Marcus
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
6
|
Abstract
The tectorial membrane (TM) is a polyelectrolyte gel. Hence, its chemical, electrical, mechanical, and osmotic properties are inextricably linked. We review, integrate, and interpret recent findings on these properties in isolated TM preparations. The dimensions of the TM in alligator lizard, chick, and mouse are sensitive to bath ion concentrations of constituents normally present in the cochlear fluids - an increase in calcium concentration shrinks the TM, and an increase in sodium concentration swells the TM in a manner that depends competitively on the calcium concentration. The sodium-induced swelling is specific; it does not occur with other alkali metal cations. We interpret these findings as due to competitive binding of sodium and calcium to TM macromolecules which causes a change in their conformation that leads to a change in mechanical properties. In mouse TM, decreasing the bath pH below 6 or increasing it above 7 results in swelling of the TM. Electric potential measurements are consistent with the notion that the swelling is caused by a pH-driven increase in positive fixed charge at low pH and an increase in the magnitude of the negative fixed charge at high pH which is consistent with the known protonation pattern of TM macromolecules. Increasing the osmotic pressure of the bathing solution with polyethylene glycol shrinks the TM and decreasing the ionic strength of the bathing solution swells the TM. Both results are qualitatively consistent with predictions of a polyelectrolyte gel model of the TM.
Collapse
Affiliation(s)
- Dennis M Freeman
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
7
|
Sauer G, Richter CP, Klinke R. Sodium, potassium, chloride and calcium concentrations measured in pigeon perilymph and endolymph. Hear Res 1999; 129:1-6. [PMID: 10190746 DOI: 10.1016/s0378-5955(98)00230-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
According to Davis' (1965) model of the inner ear, a potential difference between the endocochlear potential and the hair cell resting potential drives the transduction current across the apical hair cell membrane. It is assumed that the endocochlear potential (EP) consists of two components. The first is a diffusion potential, which depends on the ionic composition of endolymph and perilymph and on the permeability of the perilymph-endolymph barrier. The second is an electrogenic component which is determined by active ion transport across the perilymph-endolymph barrier. In birds, the EP is between +8 and +20 mV. Little is known about the underlying mechanisms responsible for the measured EP in birds. The present paper studies whether ionic compositions of endo- and perilymph might explain the EP in birds. Concentrations of Na+, K+, Ca2+ and Cl- in pigeon scala vestibuli, scala tympani and scala media were determined with ion-selective microelectrodes. Na+, K+, Ca2+ and Cl- were 150.0, 4.2, 1.4 and 117.0 mM in perilymph (scala tympani and scala vestibuli). In scala media, the concentrations of K+, Ca2+ and Cl- were 140.6, 0.23 and 142.1 mM.
Collapse
Affiliation(s)
- G Sauer
- Physiologisches Institut III, J.W. Goethe-Universität, Frankfurt/Main, Germany
| | | | | |
Collapse
|
8
|
Shah DM, Freeman DM, Weiss TF. The osmotic response of the isolated, unfixed mouse tectorial membrane to isosmotic solutions: effect of Na+, K+, and Ca2+ concentration. Hear Res 1995; 87:187-207. [PMID: 8567436 DOI: 10.1016/0378-5955(95)00089-m] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in the size, shape, and structure of the isolated tectorial membrane (TM) of the mouse were measured in response to isosmotic changes in the ionic composition of the bathing solution. Substitution of artificial perilymph (AP) for artificial endolymph (AE) caused a small (approximately 1%) shrinkage of the TM's thickness. This substitution alters not only the predominate cation (from K+ to Na+) but also the Ca2+ concentration (from 20 mumol/l to 2 mmol/l). When the predominate cation was changed from K+ to Na+, while holding Ca2+ concentration constant, results depended on Ca2+ concentration: there was a small (approximately 1%) swelling for 20 mumol/l Ca2+, larger (approximately 14%) swelling for lower (< 7 mumol/l) concentrations of Ca2+, and little response for 2 mmol/l Ca2+ or for solutions containing the Ca2+ chelator EGTA. Addition of Ca2+ while holding the predominate cation constant caused shrinkage of the TM; both removal of Ca2+ and addition of the Ca2+ chelator EGTA caused swelling. Swelling responses were largely reversible if the magnitude of the swelling was small. Responses greater than a few percent were only partially reversible and caused long-lasting changes. Changes in ionic composition of the bath affected not only the thickness of the TM but also its other dimensions. Solution changes that increase TM thickness tend to cause radial shearing motions of the surfaces of the TM, which are accompanied by small decreases in width. Little change in length was observed. Although the responses were non-isotropic, increases in thickness were highly correlated with increases in volume. Swelling of the TM was also accompanied by a reduction in prominence of its radially oriented fibrillar structure. These results for the isolated TM of the mouse are qualitatively similar to those obtained previously for the isolated chick TM (Freeman et al., 1994) but different from those obtained for the in vitro mouse TM (Kronester-Frei, 1979a).
Collapse
Affiliation(s)
- D M Shah
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
9
|
Abstract
The scala media of the adult cochlea in mammals comprises a morphologically closed compartment sealed with tight junctions of the intermediate to tight types. The unique ionic composition of endolymph is maintained by the stria vascularis through active reabsorption of sodium and active secretion of potassium against ionic gradients. The subtectorial space is only a partially closed compartment which communicates with the endolymph via holes in the tectorial membrane at its outer insertion to the organ of Corti. Hardesty's membrane divides the subtectorial space into two compartments: one facing the surfaces of inner hair cells and one facing the surfaces of outer hair cells. In the study of comparative anatomy, hair cells, e.g. in the lizard, basilar papilla are of two types: those covered with a tectorial membrane and those being free-standing lacking the tectorial membrane. The ionic environment of the hair cell surface seems to be the same, independent of whether covered with a tectorial membrane or not. The tectorial membrane itself is semipermeable to ions in the endolymphatic space. Only the surface structures of the hair cell with the sensory hairs facing the subtectorial space are exposed to the high concentration of potassium, whereas the remaining parts of the hair cell are surrounded by a fluid having a more normal extracellular type of ionic composition (cortilymph/perilymph). During embryonic development the ionic composition of endolymph develops in parallel with the morphologic maturation of the stria vascularis. A completely mature composition of endolymph is reached before any electrophysiological potentials in the cochlea can be elicited. The sensory hair surface of hair cells has reached a mature morphology prior to the maturation of endolymph. In several species the tectorial membrane is morphologically only partially mature when the increase of the potassium concentration of endolymph starts. Drugs primarily affecting the stria vascularis causing a transient change of the ionic composition of endolymph result in a transient dysfunction of inner ear potentials. If the ionic changes persist for longer time, morphological changes can occur in both the stria vascularis and the hair cells of the organ of Corti. Whether such changes are primarily caused by the ototoxic drug itself or by changes in the ionic composition of endolymph has to be explored further.
Collapse
|
10
|
|
11
|
Kusakari J, Kambayashi J, Kobayashi T, Rokugo M, Arakawa E, Ohyama K, Kaneko Y. The effect of transient anoxia upon the cochlear potentials. Auris Nasus Larynx 1981; 8:55-64. [PMID: 7337589 DOI: 10.1016/s0385-8146(81)80002-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To contribute to the analysis of the electrocochleographical findings in humans, the reversibility of the cochlear potentials (the AP, CM, and SP) after transient anoxia was examined using 24 albino guinea pigs. The durations of anoxia ranged from 5 to 120 min, and the AP, CM and SP were examined one hour after restoration of the blood supply. The mildest form of cochlear damage after transient anoxia was the disappearance of the L-part of the AP and the severest was the complete abolition of these potentials. The severity of the damage closely correlated with the duration of anoxia. The AP was poorer in reversibility than the CM and the SP. These results were analysed and discussed in the light of literature on clinical and basic studies.
Collapse
|
12
|
Salt AN, Konishi T. Effects of noise on cochlear potentials and endolymph potassium concentration recorded with potassium-selective electrodes. Hear Res 1979; 1:343-63. [PMID: 541281 DOI: 10.1016/0378-5955(79)90005-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Guinea pig cochleas were exposed to either broad-band noise at intensities between 95 and 115 dBA or octave-band noise centered at 380 Hz or 4.2 kHz at intensities between 115 and 125 dB SPL. Cochlear microphonics (CM), summating potentials (SP) and action potentials (AP) were recorded from differential electrodes in the perilymphatic scalae between successive 20-min periods of noise exposure. The endocochlear potential (EP) and endolymph potassium concentration [Kendo+] were recorded continuously from scala media using double-barreled potassium-sensitive electrodes. It was found that the initial exposure to noise at 115 dBA produced considerable suppression of the CM and AP, while the EP and [Kendo+] were elevated above their normal values. When animals previously treated with kanamycin were subjected to the same level of noise exposure no systematic increase in either EP ro [Kendo+] was observed. After prolonged exposure to 380 Hz octave-band noise at 125 dB SPL, a slow decline of EP and [Kendo+] was observed. The relationships between the changes in EP, [Kendo+] and CM are discussed.
Collapse
|
13
|
Element composition of inner ear lymphs in cats, lizards, and skates determined by electron probe microanalysis of liquid samples. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1978. [DOI: 10.1007/bf01342645] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Melichar I, Syka J. Time course of anoxia-induced K+ concentration changes in the cochlea measured with K+ specific microelectrodes. Pflugers Arch 1977; 372:207-13. [PMID: 564043 DOI: 10.1007/bf01063854] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endocochlear potential (EP), potassium concentration in the endolymph (Ke+) and in the perilymph (Kp+) were measured in guinea-pigs during anoxia of different duration. Specific K+ double-barrel microelectrodes with liquid ion exchanger were used. The resting K+ concentration in the endolymph was 146.8 +/- 9.2 mM and in the perilymph 3.2 +/- 0.5 mM. The following time course of events was observed in the cochlea during anoxia: 40-50 s after the arrest of ventilation the K+ concentration decreased by 0.1-0.2 mM in the scala vestibuli, which was time related to a rapid fall of EP to negative values. Perilymphatic K+ started to increase in both scalae with a latency of 2-2.5 min, reaching a concentration of about 14 mM 60 min after the arrest of ventilation. The endolymphatic K+ began to decrease after a latency of 2.5-3 min, and 60 min after the arrest of ventilation an 80% concentration (average 112 mM K+) was reached as compared to the initial value. From the comparison of K+ concentration changes with the experimental values of the negative EP, it may be assumed that the negative EP is mainly generated by the K+ gradient between the perilymph and endolymph.
Collapse
|
15
|
Mnich Z. Analysis of curves Na-24 efflux from membrane labyrinth containing stria vascularis. Acta Otolaryngol 1975; 80:111-5. [PMID: 1166770 DOI: 10.3109/00016487509121308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The efflux of Na-24 was investigated in isolated labyrinths from a membrane section containing stria vascularis and spiral ligament in artificial endolymph medium. The efflux curves were calculated and compartmental analyses were made. The theoretical possibility of a exchange of sodium between compartments connected in different ways was considered. The calculated values of rate constant of transmembranal sodium fluxes are 0.0282+/-0.0052 min-1 and the half-time of the exchange of sodium between intracellular compartments is 24.27+/-4.53 min. The distribution of sodium in tissue with a commonly applied simplification gives 90% Na+ in the extracellular compartment and 3% Na+ in the intracellular compartment of the total tissue sodium content. The possibility of measuring the rate constant of transmembranal electrolyte fluxes in this tissue seems encouraging for future investigation of the mechanism by which they are transported.
Collapse
|
16
|
Sellick PM, Johnstone BM. Differential effects of ouabain and ethacrynic acid on the labyrinthine potentials. Pflugers Arch 1974; 352:339-50. [PMID: 4475414 DOI: 10.1007/bf00585686] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Sellick PM, Bock GR. Evidence for an electrogenic potassium pump as the origin of the positive component of the endocochlear potential. Pflugers Arch 1974; 352:351-61. [PMID: 4475415 DOI: 10.1007/bf00585687] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
|