1
|
Kofler R, Betancourt AJ, Schlötterer C. Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. PLoS Genet 2012; 8:e1002487. [PMID: 22291611 PMCID: PMC3266889 DOI: 10.1371/journal.pgen.1002487] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/01/2011] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many “novel” TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods. Transposable elements (TE's) are parasitic genetic elements that spread by replicating themselves within a host genome. Most organisms are burdened with transposable elements; in fact, up to 80% of some genomes can consist of TE–derived DNA. Here, we use new sequencing technology to examine variation in genomic TE composition within a population at a finer scale and in a more unbiased fashion than has been possible before. We study a Portuguese population of D. melanogaster and find a large number of TE insertions, most of which occur in few individuals. Our analysis confirms that TE insertions are subject to purifying selection that counteracts their spread, and it suggests that the genome records waves of past TE invasions, with recently active elements occurring at low population frequency. We also find indications that TE insertions may sometimes have beneficial effects.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| | | | | |
Collapse
|
2
|
A 'higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J 2009; 28:2323-36. [PMID: 19629032 PMCID: PMC2722253 DOI: 10.1038/emboj.2009.197] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/24/2009] [Indexed: 01/20/2023] Open
Abstract
Protection of chromosome ends from DNA repair and degradation activities is mediated by specialized protein complexes bound to telomere repeats. Recently, it has become apparent that epigenetic regulation of the telomric chromatin template critically impacts on telomere function and telomere-length homeostasis from yeast to man. Across all species, telomeric repeats as well as the adjacent subtelomeric regions carry features of repressive chromatin. Disruption of this silent chromatin environment results in loss of telomere-length control and increased telomere recombination. In turn, progressive telomere loss reduces chromatin compaction at telomeric and subtelomeric domains. The recent discoveries of telomere chromatin regulation during early mammalian development, as well as during nuclear reprogramming, further highlights a central role of telomere chromatin changes in ontogenesis. In addition, telomeres were recently shown to generate long, non-coding RNAs that remain associated to telomeric chromatin and will provide new insights into the regulation of telomere length and telomere chromatin. In this review, we will discuss the epigenetic regulation of telomeres across species, with special emphasis on mammalian telomeres. We will also discuss the links between epigenetic alterations at mammalian telomeres and telomere-associated diseases.
Collapse
|
3
|
Mason JM, Frydrychova RC, Biessmann H. Drosophila telomeres: an exception providing new insights. Bioessays 2008; 30:25-37. [PMID: 18081009 DOI: 10.1002/bies.20688] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Drosophila telomeres comprise DNA sequences that differ dramatically from those of other eukaryotes. Telomere functions, however, are similar to those found in telomerase-based telomeres, even though the underlying mechanisms may differ. Drosophila telomeres use arrays of retrotransposons to maintain chromosome length, while nearly all other eukaryotes rely on telomerase-generated short repeats. Regardless of the DNA sequence, several end-binding proteins are evolutionarily conserved. Away from the end, the Drosophila telomeric and subtelomeric DNA sequences are complexed with unique combinations of proteins that also modulate chromatin structure elsewhere in the genome. Maintaining and regulating the transcriptional activity of the telomeric retrotransposons in Drosophila requires specific chromatin structures and, while telomeric silencing spreads from the terminal repeats in yeast, the source of telomeric silencing in Drosophila is the subterminal arrays. However, the subterminal arrays in both species may be involved in telomere-telomere associations and/or communication.
Collapse
Affiliation(s)
- James M Mason
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | |
Collapse
|
4
|
Rong YS. Telomere capping in Drosophila: dealing with chromosome ends that most resemble DNA breaks. Chromosoma 2008; 117:235-42. [PMID: 18193446 DOI: 10.1007/s00412-007-0144-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/30/2007] [Accepted: 12/11/2007] [Indexed: 01/03/2023]
Abstract
Telomere caps prevent chromosome ends from being recognized as DNA double-strand breaks (DSBs). Unlike most organisms studied, the telomere-capping function of Drosophila does not require a specific sequence. Without this sequence component, Drosophila telomeres most resemble DNA breaks and, thus, represent a simpler system for the study of telomere capping. I review recent progress in Drosophila telomere studies, and challenge the notion that Drosophila may not be a relevant model for the study of telomere maintenance.
Collapse
Affiliation(s)
- Yikang S Rong
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
5
|
Török T, Benitez C, Takács S, Biessmann H. The protein encoded by the gene proliferation disrupter (prod) is associated with the telomeric retrotransposon array in Drosophila melanogaster. Chromosoma 2006; 116:185-95. [PMID: 17186256 DOI: 10.1007/s00412-006-0090-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 01/07/2023]
Abstract
We report in this paper that the PROD protein, encoded by the gene proliferation disrupter (prod), is associated with the telomeric chromatin in Drosophila melanogaster. It binds to a region just upstream of the promoter of the telomere-specific retrotransposon HeT-A, which is located in the long 3'untranslated region of the element near its oligo(A) tail. Reduction of PROD in prod heterozygote flies results in elevated levels of HeT-A RNA in the ovaries, suggesting that PROD functions as a repressor of HeT-A transcriptional activity at the telomeres.
Collapse
Affiliation(s)
- Tibor Török
- Department of Genetics and Molecular Biology, University of Szeged, Szeged, Hungary
| | | | | | | |
Collapse
|
6
|
Biessmann H, Prasad S, Walter MF, Mason JM. Euchromatic and heterochromatic domains at Drosophila telomeres. Biochem Cell Biol 2005; 83:477-85. [PMID: 16094451 DOI: 10.1139/o05-053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noncoding repetitive sequences make up a large portion of eukaryotic genomes, but their function is not well understood. Large blocks of repetitive DNA-forming heterochromatin around the centromeres are required for this region to function properly, but are difficult to analyze. The smaller regions of heterochromatin at the telomeres provide an opportunity to study their DNA and protein composition. Drosophila telomere length is maintained through the targeted transposition of specific non-long terminal repeat retrotransposons to chromosome ends, where they form long tandem arrays. A subterminal telomere-associated sequence (TAS) lies immediately proximal to the terminal-retrotransposon array. Here, we review the experimental support for the heterochromatic features of Drosophila telomeres, and provide evidence that telomeric regions contain 2 distinct chromatin subdomains: TAS, which exhibits features that resemble beta heterochromatin; and the terminal array of retrotransposons, which appears euchromatic. This organization is significantly different from the telomeric organization of other eukaryotes, where the terminal telomerase-generated repeats are often folded in a t-loop structure and become part of the heterochromatin protein complex.
Collapse
Affiliation(s)
- Harald Biessmann
- Developmental Biology Center, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
7
|
Biessmann H, Prasad S, Semeshin VF, Andreyeva EN, Nguyen Q, Walter MF, Mason JM. Two distinct domains in Drosophila melanogaster telomeres. Genetics 2005; 171:1767-77. [PMID: 16143601 PMCID: PMC1382029 DOI: 10.1534/genetics.105.048827] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeres are generally considered heterochromatic. On the basis of DNA composition, the telomeric region of Drosophila melanogaster contains two distinct subdomains: a subtelomeric region of repetitive DNA, termed TAS, and a terminal array of retrotransposons, which perform the elongation function instead of telomerase. We have identified several P-element insertions into this retrotransposon array and compared expression levels of transgenes with similar integrations into TAS and euchromatic regions. In contrast to insertions in TAS, which are silenced, reporter genes in the terminal HeT-A, TAHRE, or TART retroelements did not exhibit repressed expression in comparison with the same transgene construct in euchromatin. These data, in combination with cytological studies, provide evidence that the subtelomeric TAS region exhibits features resembling heterochromatin, while the terminal retrotransposon array exhibits euchromatic characteristics.
Collapse
Affiliation(s)
- Harald Biessmann
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Melnikova L, Biessmann H, Georgiev P. The vicinity of a broken chromosome end affects P element mobilization in Drosophila melanogaster. Mol Genet Genomics 2004; 272:512-8. [PMID: 15503143 DOI: 10.1007/s00438-004-1072-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 09/24/2004] [Indexed: 01/26/2023]
Abstract
Broken chromosome ends are believed to be capped by a terminal protein complex, and can be maintained in Drosophila melanogaster for many generations. We investigated whether the vicinity of a chromosome end affected P element mobilization and the subsequent repair of the resulting DNA lesion. High levels of P element excision were observed when at least 5 kb of DNA was located between the P element and the end of the chromosome, but recovery of chromosomes from which the P element had been excised was greatly reduced when the chromosome end was positioned less than 5 kb away from the original P element insertion site. Moreover, when the P element was mobilized in terminal deficiency ( y (TD )) alleles, excision events were accompanied by deletions of sequences originally located distal to the P element.
Collapse
Affiliation(s)
- L Melnikova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russian Federation
| | | | | |
Collapse
|
9
|
Bae YA, Kong Y. Evolutionary course of CsRn1 long-terminal-repeat retrotransposon and its heterogeneous integrations into the genome of the liver fluke, Clonorchis sinensis. THE KOREAN JOURNAL OF PARASITOLOGY 2004; 41:209-19. [PMID: 14699262 PMCID: PMC2717513 DOI: 10.3347/kjp.2003.41.4.209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The evolutionary course of the CsRn1 long-terminal-repeat (LTR) retrotransposon was predicted by conducting a phylogenetic analysis with its paralog LTR sequences. Based on the clustering patterns in the phylogenetic tree, multiple CsRn1 copies could be grouped into four subsets, which were shown to have different integration times. Their differential sequence divergences and heterogeneous integration patterns strongly suggested that these subsets appeared sequentially in the genome of C. sinensis. Members of recently expanding subset showed the lowest level of divergence in their LTR and reverse transcriptase gene sequences. They were also shown to be highly polymorphic among individual genomes of the trematode. The CsRn1 element exhibited a preference for repetitive, agenic chromosomal regions in terms of selecting integration targets. Our results suggested that CsRn1 might induce a considerable degree of intergenomic variation and, thereby, have influenced the evolution of the C. sinensis genome.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon 440-746, Republic of Korea
| | | |
Collapse
|
10
|
Biessmann H, Walter MF, Mason JM. Drosophila telomere elongation. CIBA FOUNDATION SYMPOSIUM 1998; 211:53-67; discussion 67-70. [PMID: 9524751 DOI: 10.1002/9780470515433.ch5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drosophila melanogaster has an unusual telomere elongation mechanism. Instead of short repeats that are synthesized by telomerase, long retrotransposons, HeT-A and TART, transpose to the ends of chromosomes. This mechanism generates tandem arrays of these elements at the chromosome ends, in which all elements are oriented with their oligo(A) tails towards the centromere. Structural features of HeT-A and TART elements may provide clues as to their transposition mechanism. Drosophila telomere length polymorphism is mainly due to terminal retrotransposon arrays that differ between chromosome tips and that change with time. In addition, stable terminal chromosome deletions can be generated that do not contain terminal HeT-A and TART arrays, suggesting that, unlike the equivalent terminal repeats in yeast and humans, the presence and length of terminal arrays in Drosophila may not be critical for cell cycle progression.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
11
|
Zhimulev IF. Polytene chromosomes, heterochromatin, and position effect variegation. ADVANCES IN GENETICS 1997; 37:1-566. [PMID: 9352629 DOI: 10.1016/s0065-2660(08)60341-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
12
|
|
13
|
Walter MF, Jang C, Kasravi B, Donath J, Mechler BM, Mason JM, Biessmann H. DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 1995; 104:229-41. [PMID: 8565699 DOI: 10.1007/bf00352254] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Telomeres at the ends of linear chromosomes of eukaryotes protect the chromosome termini from degradation and fusion. While telomeric replication/elongation mechanisms have been studied extensively, the functions of subterminal sequences are less well understood. In general, subterminal regions can be quite polymorphic, varying in size from organism to organism, and differing among chromosomes within an organism. The subterminal regions of Drosophila melanogaster are not well characterized today, and it is not known which and how many different components they contain. Here we present the molecular characterization of DNA components and their organization in the subterminal region of the left arm of chromosome 2 of the Oregon RC wild-type strain of D. melanogaster, including a minisatellite with a 457bp repeat length. Two distinct polymorphic arrangements at 2L were found and analyzed, supporting the Drosophila telomere elongation model by retrotransposition. The high incidence of terminal chromosome deficiencies occurring in natural Drosophila populations is discussed in view of the telomere structure at 2L.
Collapse
Affiliation(s)
- M F Walter
- Developmental Biology Center, University of California, Irvine, CA 92717, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Okazaki S, Ishikawa H, Fujiwara H. Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, Bombyx mori. Mol Cell Biol 1995; 15:4545-52. [PMID: 7623845 PMCID: PMC230694 DOI: 10.1128/mcb.15.8.4545] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We characterized TRAS1, a retrotransposable element which was inserted into the telomeric repetitive sequence (CCTAA)n of the silkworm, Bombyx mori. The complete sequence of TRAS1, a stretch of 7.8 kb with a poly(A) tract at the 3' end, was determined. No long terminal repeat (LTR) was found at the termini of the element. TRAS1 contains gag- and pol-like open reading frames (ORFs) which are similar to those of non-LTR retrotransposons. The two ORFs overlap but are one nucleotide out of frame (+1 frameshift). Most of the approximately 250 copies of TRAS1 elements in the genome were highly conserved in the structure. Chromosomal in situ hybridization showed that TRAS1 elements are clustered at the telomeres of Bombyx chromosomes. A phylogenetic analysis using the amino acid sequence of the reverse transcriptase domain within the pol-like ORF revealed that TRAS1 falls into one lineage with R1, which is a family of non-LTR retrotransposons inserted into the same site within the 28S ribosomal DNA unit in most insects. TRAS1 may have been derived from R1 and changed the target specificity so that TRAS1 inserts into the telomeric repetitive sequence (CCTAA)n. Southern hybridization and Bal 31 exonuclease analyses showed that TRAS1 elements are clustered proximal to the terminal long tract of (CCTAA)n. TRAS1 is a novel family of non-LTR retrotransposons which are inserted into the telomeric repetitive sequences as target sites.
Collapse
Affiliation(s)
- S Okazaki
- Zoological Institute, Graduate School of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
15
|
Abstract
The telomeres of most eukaryotes contain short, simple repeats that are highly conserved. Drosophila, on the other hand, does not have such sequences, but carries at the ends of its chromosomes one or more LINE-like retrotransposable elements. Instead of elongation by telomerase, incomplete DNA replication at the termini of Drosophila chromosomes is counterbalanced by transposition of these elements at high frequency specifically to the termini. These transposable elements are not responsible for distinguishing telomeric ends in Drosophila from broken chromosome ends; the structure performing this function is not yet known. Proximal to the terminal array of transposable elements are regions of tandem repeats that are structurally, and probably functionally, analogous to the subterminal regions in other eukaryotes.
Collapse
Affiliation(s)
- J M Mason
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | |
Collapse
|
16
|
Wang M, Champion LE, Biessmann H, Mason JM. Mapping a mutator, mu2, which increases the frequency of terminal deletions in Drosophila melanogaster. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:598-607. [PMID: 7808410 DOI: 10.1007/bf00282222] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A mutator, mu2, in Drosophila melanogaster has been identified recently that potentiates the recovery of terminal deficiencies. The deleted chromosomes behave as if they had been capped; that is, they are protected from degradation and from fusion with other chromosome fragments. The mutator maps near the telomere on the left arm of chromosome 3. Using the selectable marker Aprt, 150 deficiencies for region 62 of the cytological map have been recovered. These deficiencies identify the map position of mu2 as 62B11-C1. A yeast artificial chromosome spanning this region has been subcloned into lambda phage, and the positions of deficiency breakpoints on either side of the mu2 gene have been identified within the subclones. These positions limit the location of the left end of the gene to a 23 kb region. In the course of these experiments, three additional, presumptive mutant alleles were identified, suggesting that other mutator alleles remain undiscovered in many standard laboratory stocks.
Collapse
Affiliation(s)
- M Wang
- Experimental Carcinogenesis and Mutagenesis Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | | | | | |
Collapse
|
17
|
Lim JK, Simmons MJ. Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. Bioessays 1994; 16:269-75. [PMID: 8031304 DOI: 10.1002/bies.950160410] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A combination of cytogenetic and molecular analyses has shown that several different transposable elements are involved in the restructuring of Drosophila chromosomes. Two kinds of elements, P and hobo, are especially prone to induce chromosome rearrangements. The mechanistic details of this process are unclear, but, at least some of the time, it seems to involve ectopic recombination between elements inserted at different chromosomal sites; the available data suggest that these ectopic recombination events are much more likely to occur between elements in the same chromosome than between elements in different chromosomes. Other Drosophila transposons also appear to mediate chromosome restructuring by ectopic recombination; these include the retrotransposons BEL, roo, Doc and I and the foldback element FB. In addition, two retrotransposons, HeT-A and TART, have been found to be associated specifically with the ends of Drosophila chromosomes. Very limited data indicate that transposon-mediated chromosome restructuring is occurring in natural populations of Drosophila. This suggests that transposable elements may help to shape the structure of the Drosophila genome and implies that they may have a similar role in other organisms.
Collapse
Affiliation(s)
- J K Lim
- Department of Biology, University of Wisconsin-Eau Claire 54702-4004
| | | |
Collapse
|
18
|
Biessmann H, Kasravi B, Bui T, Fujiwara G, Champion LE, Mason JM. Comparison of two active HeT-A retroposons of Drosophila melanogaster. Chromosoma 1994; 103:90-8. [PMID: 8055715 DOI: 10.1007/bf00352317] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HeT-A elements are Drosophila melanogaster LINE-like retroposons that transpose to broken chromosome ends by attaching themselves with an oligo(A) tail. Since this family of elements is believed to be involved in the vital function of telomere elongation in Drosophila, it is important to understand their transposition mechanism and the molecular aspects of activity. By comparison of several elements we have defined here the unit length of HeT-A elements to be approximately 6 kb. Also, we studied an active HeT-A element that had transposed very recently to the end of a terminally deleted X chromosome. The 12 kb of newly transposed DNA consisted of a tandem array of three different HeT-A elements joined by oligo(A) tails to each other and to the chromosome end broken in the yellow gene. Such an array may have transposed as a single unit or resulted from rapid successive transpositions of individual HeT-A elements. By sequence comparison with another recently transposed HeT-A element, conserved domains in the single open reading frame (ORF), encoding a gag-like polypeptide, of these elements were defined. We conclude that for transposition an intact ORF is required in cis, while the reverse transcriptase is not encoded on the HeT-A element but is provided in trans. This would make HeT-A elements dependent on an external reverse transcriptase for transposition and establish control of the genome over the activity of HeT-A elements. This distinguishes the Drosophila HeT-A element, which has been implicated in Drosophila telomere elongation, from the other, 'selfish' LINE-like elements.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | | | | | | | | | |
Collapse
|
19
|
Paricio N, Martínez-Sebastián MJ, de Frutos R. A heterochromatic P sequence in the D. subobscura genome. Genetica 1994; 92:177-86. [PMID: 7958941 DOI: 10.1007/bf00132536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The study of a heterochromatic P sequence of D. subobscura reveals that it is a degraded element, located at the centromeric region of the A chromosome (X chromosome in this species), and that it is strongly diverged from the euchromatic P sequences previously described in this species. This heterochromatic sequence is composed of some P element fragments embedded in undefined beta-heterochromatic sequences. These mosaic P sequences do not show any transcriptional activity and seem to be ancient parasites of the D. subobscura genome. Phylogenetic analyses indicate that both the euchromatic and heterochromatic P sequences of D. subobscura could come from an ancestral element which was present before the divergence of the subobscura species cluster.
Collapse
Affiliation(s)
- N Paricio
- Departament de Genètica, Facultat de Ciències Biològiques, Universitat de València, Spain
| | | | | |
Collapse
|
20
|
Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 1993; 75:1083-93. [PMID: 8261510 DOI: 10.1016/0092-8674(93)90318-k] [Citation(s) in RCA: 340] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present the first isolation of the terminal DNA of an intact Drosophila telomere. It differs from those isolated from other eukaryotes by the lack of short tandem repeats at the terminus. The terminal 14.5 kb is composed of four tandem elements derived from two families of non-long terminal repeat retrotransposons and is subject to slow terminal loss. One of these transposon families, TART (telomere-associated retrotransposon), is described for the first time here. The other element, HeT-A, has previously been shown to transpose to broken chromosome ends. Our results provide key evidence that these elements also transpose to natural chromosome ends. We propose that the telomere-associated repetitive DNA is maintained by saltatory expansions, including terminal transpositions of specialized retrotransposons, which serve to balance terminal loss.
Collapse
Affiliation(s)
- R W Levis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | | | |
Collapse
|